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Abstract 
The theoretical tolerable implant masses for ten magnesium alloys as degradable 
biomedical implant materials were evaluated in this article. Dose-response assessment 
was conducted by utilizing toxicological data from authoritative public health agencies 
such as US Agency for Toxic Substances and Disease Registry and USEPA Integrated 
Risk Information System, and assuming 1 year of even corrosion. Uncertainty factors 
adopted by the agencies were utilized. The tolerable limits corresponding to various 
component elements in an alloy were separately considered, and the lowest tolerable limit 
was selected as the tolerable limit of the alloy. The result showed that aluminum was 
usually the component element with the lowest tolerance, and the tolerable mass for 
Al-containing magnesium alloys fall around or below 1 gram per person per year, while 
the limit for other magnesium alloys can well exceed 10 grams. Deficits on toxicological 
data of some component elements were however noted. This article illustrated that 
toxicological calculations should be taken into consideration when developing novel 
degradable metallic implants. 
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Introduction 

The research on degradable magnesium alloys (and its synonyms) as implant materials 

had started in 1900s-1920s[1, 2]. However, since the development of bio-stable metallic 

implants had matured, the investigation of bio-corrodible metallic implants had become 

unpopular[3]. Renewed interest of degradable / resorbable metallic implants had recently 

emerged in the fields of bone fixation device, cardiovascular stent and tissue engineering 

scaffold[3-9]. 

 

Magnesium is itself considered relatively safe[3], however the alloying elements such as 

aluminum, zinc and manganese are well-known to carry substantial toxicological 

concerns[10-12]. There appears increased evidence suggesting that Al is a risk factor for 

Alzheimer’s disease[13-15] despite oppositions were not lacking[11, 16], but even so it is 

still unsure whether Al would be the sole factor[13]. Toxicological limit of this element 

was already developed based on its neurotoxicity, which should logically occur at lower 

dose than Alzheimer’s disease which is a more severe form of neurological disorder. Mn 

is also found to affect the nervous system[12, 17]. Unfortunately, it appeared to be a trend 

that journals on biomaterials tend to focus on the structure, properties and functions[18]. 
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Toxicological risk assessment is a gold standard adopted by most public health agencies, 

governments and institutions all over the world on assessing the risk of exposure for 

various potentially harmful biological or chemical substances to humans[10-12, 19-34], 

yet to date we could not identify any attempt made by other current researchers on the 

quantitative toxicological risk of magnesium alloys as a biomedical implant. For an 

assessment of implants intended for human application, NOAEL is more appropriate than 

LD50, as the latter utilizes lethality as the end point thereby ignoring non-lethal health 

effects occurring at much lower exposure levels. Current animal studies focused on 

localized biocompatibility around the implant site[9, 35, 36] and did not specifically 

target on other potential toxicological effects that could occur, probably after a longer 

duration than the experiments. Without proper toxicological assessment on systemic 

effects, it would be impossible for any novel biomedical implant to obtain regulatory 

approval in a developed country, and the loss of investment could be tremendous. As a 

result, during an early stage of implant development, it is important to ensure that an 

implant composition should not pose significant health risk to human, at least 

theoretically, when used at a mass typical for an intended application. 

 

Therefore, we have conducted a theoretical risk assessment to compute the lowest mass 
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of implant sufficient to result in any adverse side effect in some human. The toxicological 

issues of common alloying elements in ten standard magnesium alloys were considered 

based on the toxicological data from authoritative public health agencies, and the impact 

of the results were discussed. 

 

This article aims to remind researchers on degradable metallic implants on the potential 

systemic toxicological risk of this class of implant (or any new class of biomaterial), and 

to attract attention of toxicologists on this matter. The focus of the current risk assessment 

is the threshold implant mass, which reflects the theoretical maximum mass of such 

biomaterial that might be safely implanted into a patient; while a judgment on the relative 

severity of specific adverse effects is outside the scope of this article. 

 

Methodology 

Toxicological information on critical studies of oral exposure limits were obtained from 

authoritative public health agencies: Agency for Toxic Substances and Disease Registry 

(ATSDR) of the US Department of Health and Human Services, Integrated Risk 

Information System (IRIS) of the US Environmental Protection Agency (EPA), and UK 

Food Standards Agency (FSA). The NOAEL (No Observed Adverse Effect Level) 
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approach for dose-response assessment was adopted[37]. Intermediate-term NOAEL was 

adopted whenever available. The uncertainty factors (UFs) assigned by the toxicologists 

in the agencies to address for the interspecies and inter-individual differences (human 

variability) would continue to be adopted, unless there were strong reasons for the 

opposition. In general, the UFs were derived in concordance with WHO guideline[37]. 

ASTM upper abundance limits were adopted as the abundance of component elements 

inside the alloys[38-40]. Gastrointestinal absorption efficiencies were obtained from 

ATSDR and FSA in order to adjust the exposure limits to account for an assumed 100% 

absorption. 60kg body weight and 365 days of even corrosion were arbitrarily chosen to 

represent a normal person and a degradation period reasonable for common applications. 

 

Relevant computations were expressed by the following equations: 

Equation 1 

Raw Tolerable Exposure of a specific element (TE-r) for human, in mg/kg/day 

= (NOAEL equivalent [in mg/kg/day]) / (interspecies UF) / (interindividual UF) 

 

Equation 2 

Absorption-adjusted Tolerable Exposure (TE-aa) of a specific element 
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= TE-r x absorption efficiency from oral route 

 

Equation 3 

Reference annual exposure (RAE) of a specific element for a 60kg adult (in mg/yr) 

= TE-aa x 60 x 365 = 21900 x TE-aa 

 

To determine the reference annual exposure of an alloy, the element-specific RAE of each 

element in an alloy was then divided by its maximum abundance in the alloy. The 

resultant reference value, now defined as Abundance-Adjusted Reference Annual 

Exposure (AARAE), would be equal to the component-specific threshold alloy mass 

when this component element was assumed the sole source of adverse effects. 

 

Equation 4 

Abundance-Adjusted Reference Annual Exposure (AARAE) 

= RAE / abundance of the specific component element 

 

The lowest AARAE among component elements for a given alloy would then indicate the 

lowest alloy mass sufficient to produce an adverse effect, as an implant to be completely 
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absorbed in 12 months. 

  

Equations 1 to 4 may also be rearranged into a combined equation: 

 

Equation 5 (combined equation) 

(NOAEL equivalent) x oral absorption efficiency x 365 x 60 Threshold implant mass = UF x abundance 
�

 

The threshold implant masses based on different component elements in an alloy were 

calculated individually, and the lowest value was selected as the toxicological critical 

value of the alloy. 

 

Results 

Literature data for the toxicological critical values of common elements in magnesium 

alloys and the corresponding toxicological effects are listed in Table 1, upper abundance 

limits of component elements in the magnesium alloys listed in Table 2, and the derived 

toxicological data for ten magnesium alloys are listed in Table 3. 
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 Al Mn Zn Cu Ni Fe Sr Zr Ce# 

Source ATSDR[11] IRIS[17] ATSDR[10] ATSDR[24] ATSDR[25] 
& IRIS[25] UK FSA[28] ATSDR[23] 

not found in 
FSA/ ATSDR/ 

IRIS 
IRIS[41] 

Type of exposure 
limit* NOAEL-a NOAEL-h / 

RfD NOAEL-h NOAEL-h EPA RfD Guidance 
level NOAEL-a Insufficient 

data 
Insufficient 

data 

Potential adverse 
systemic effects 

at initial 
overdose** 

Neuro- 
toxicity 

CNS 
Effects  

Reduced 
erythrocyte 
superoxide 
dismutase 

level 

Changes in 
blood 

protein and 
enzyme 
levels 

Reduced 
body & 
organ 
mass 

Reduction 
in serum 

zinc; 
possible 

increased 
risks of 
cardio- 

vascular 
disease & 

cancer 

Abnormal 
bone 

minerial- 
ization 

Allergic 
hyper- 

sensitivity, 
dialysis 
osteo- 

malacia 
accumulates 
in the brain 
similar to 
Al[42, 43], 

Cardiac 
toxicity 

and 
reduction 
of hemo- 

globin 
oxygen 
affinity 

Exposure limit 
(mg/kg bw/day) 26 0.14 0.83 0.042 0.02 0.28 140 n/a n/a 

UF for 
interspecies 

variation 
10 1 1 1 1 1 10 n/a n/a 

UF for 
interindividual 

variation 
10 1 3 3 1 1 3 n/a n/a 

Oral absorption 
efficiency 0.63% 5% 20% 36% 27% 15% 20% n/a n/a 

Modifying factor 
for 100% 

absorption 
 (= 1 / oral 

bioavailability) 

158.7 20 5 2.78 3.703 6.6 5 n/a n/a 

UF/absorption 
adjusted 

exposure limit 
(mg/kg bw/day) 

1.64E-03 7.00E-03 5.53E-02 5.04E-03 5.40E-03 4.24E-02 9.33E-01 n/a n/a 

Daily exposure 
limit for a 60kg 
adult (mg/day) 

9.83E-02 4.20E-01 3.32E+00 3.02E-01 3.24E-01 2.55E+00 5.60E+01 n/a n/a 

Annual 
exposure limit 

for a 60kg adult 
(mg/yr) 

35.88 153.30 1211.80 110.29 118.28 929.09 20440 n/a n/a 

�� �� �� � � � � 	 � 
 � �� � � � �� �� � 	 �� � � 
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�

Table 1: Toxicological critical values and derived toxicological critical values for 
common alloying elements in magnesium alloys 
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 Al Mn Zn Cu Ni Fe Sr Zr 
Rare 
earth 

metals 
Mg 

AZ91D 9.7 0.5 1        

AZ31B 3.5 1 1.4 0.05 0.005 0.005     

AM60B 6.5 0.6 0.22        

AM50A 5.4 0.6 0.22        

AJ52A 5.5 0.6 0.22    2.3    

ZK61A   6.5 0.1 0.01   1   

EZ33A   3.1 0.1 0.01   1 4  

WE54A  0.03 0.2 0.03 0.005   1 4  

WE43A  0.15 0.2 0.03 0.005 0.01  1 4.4  

K1A        1  99.6 

Table 2: Upper abundance limits of component elements in the magnesium alloys[38-40]
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 Al Mn Zn Cu Ni Fe Sr Zr 
Rare 
earth 

metals 

Lowest 
value 

AZ91D 0.37 31 121     n/a n/a 0.37 

AZ31B 1.03 15 87 221 2366 18582  n/a n/a 1.03 

AM60B 0.55 26 551     n/a n/a 0.55 

AM50A 0.66 26 551     n/a n/a 0.66 

AJ52A 0.65 26 551    889 n/a n/a 0.65 

ZK61A   19 110 1183   n/a n/a 19 

EZ33A   39 110 1183   n/a n/a 39 

WE54A  511 606 368 2366   n/a n/a 368 

WE43A  102 606 368 2366 9291  n/a n/a 102 

K1A        n/a n/a n/a 

� � �� ��% � ��� � �
 � 	 � � �$ � �$ � � � "��� � ��� � �� � � �
 � �# ��	 �� & � �� ��' � �! � � �� � ��� ��( ) * �+ * * � � ,
 � # -. / "�+ + 0�! ��� �� �� � � � �� � ���# �� ��� � � � ��) * 1 -. / 0"���� 	 � � ��	 � ��	 �� �2 + �3 ( � ,# � � ��

Table 3: Threshold implant mass (g/year) based on different component elements in magnesium alloys 
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Discussion 

It can be observed from Table 3 that Al-containing magnesium alloys bear tolerable 

masses much less than the other alloys. Not only because of the higher abundance of 

aluminum relative to other alloying elements in the alloys, but also because of the low 

element-specific annual exposure of Al. As the threshold implant mass for Al-containing 

Mg alloys lie between 0.37 to 1.03 grams per year, the data suggested that these alloys 

should pose no significant health risk to humans for small application such as 

cardiovascular stents, or as degradable screws (used in small numbers), but the use as 

multiple bone plates and screws in a patient with multiple fractures would necessitate 

added caution. A utilization of lower abundance limits of Al would yield similar results, 

as they were only 13-29% lower than the upper abundance[38-40]. 

 

While it might appear to engineering researchers that the tolerance for Al is low because 

an uncertainty factor of 10 x 10 = 100 was utilized, it must be noted that safety would 

always be the primary concern to any biomedical implant, and the uncertainty factor was 

specifically adopted: 10 for extrapolation of animal data to human and 10 to account for 

interindividual variability; therefore well-justified on a public health perspective[11, 37]. 

Any loosening of the standard practice could leave vulnerable patients at risk. 
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It may also be observed from Table 1 that no authoritative NOAEL or similar values were 

identified for some of the alloying elements, such as rare earth metals or zirconium. This 

should however be considered as a lack of sufficient information only, and it would be 

conceptually wrong to consider that something is safe “because of” an insufficiency of 

data resulted from experimental deficiencies. For example, as in the case of cerium (a 

rare earth metal), “an RfD for cerium was not derived because the available studies were 

not suitable for quantitation of effects for various reasons…” according to IRIS[41].  

 

A report by TERA in 1999[45] had suggested oral RfDs for soluble chlorides of three rare 

earth elements, at 0.004mg/kg/day to 0.03mg/kg/day based on decreased body weight; 

however the confidence of the oral RfDs in this report was “medium to low” (original 

wording, page 23), and the lack of reviewed data on gastrointestinal absorption of 

individual rare earth metals disallowed an extrapolation of toxicological data to a 100% 

absorption scenario. Moreover, a decrease in body weight could probably result from 

gastrointestinal effects, thus this end point might not be applicable for assessing a 

degradable metallic implant. Despite an insufficiency of data, the report also summarized 

systemic toxicological symptoms identified by Haley et al.[46-50], such as respiratory 
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paralysis and impaired locomotion caused by acute intraperitoneal exposure of common 

rare earth metals, and perinuclear vacuolization of liver cells caused by sub-chronic oral 

exposure. Adverse effects of rare earth metals[51, 52] and zirconium[42, 43] were also 

well-documented in other articles and their references. The derived tolerable mass for 

ZK61A, EZ33A, WE54A, WE43A and K1A, which carry Zr and RE metals, should 

therefore be considered as for reference only; being data-deficient instead of carrying 

exceptionally low toxicity. 

 

As for any theoretical or experimental assessment, it should also be noted that this model 

carries some limitations. For example, the oral and potentially inhalational intake of the 

metals from daily activities, which could be considerable for some elements[10-12, 17, 

24, 25, 28, 53], were not taken into account. Logically, when such intake occurs, the 

tolerable mass should be reduced. This factor might be offset when the degradation time 

is increased, to the limit that the period does not exceed three years as specified by 

ASTM[54] for a degradable implant. 

 

On the other hand, this model could potentially overcast the systemic toxicological 

concern if the corrosion products of the metals could not dissolve well in the body. Under 
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this condition, however, the existence of such undissolved foreign material particles or 

accumulated ions would create remaining symptoms[55], foreign body response[56, 57] 

or other localized effects that could require surgical interventions, and in such case it 

would be arguable for whether it’s appropriate to continue calling it a “resorbable” 

implant (although the implant would inarguably be completely “degradable” in the sense 

of mechanical integrity). 

 

Interactions of different metals and metal ions were also omitted from our assessment. 

For a pioneering theoretical assessment, it could only be assumed that corrosion would be 

even, and the release of different metal ions during degradation would also be even; 

however this is unlikely for a degradable implant in reality. In the body, the release of 

metal ions, as in any case of corrosion, is expected to be non-linear and multifactorial, 

affected by engineering parameters such as grain size, manufacturing process, shape, size 

and surface area of the implant; or non-engineering factors such as pH, ion concentrations, 

fluid content and pressure at the implant site; plus the often-forgotten yet significant 

effect of peri-implant fibrous tissues and gas bubbles[58]; although instantaneous 

fluctuations might be dampened by the buffering ability of bones. Corrosion modelling in 

various physiological conditions would thus serve as multiple research projects of 
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considerable sizes by itself, requiring years of joint effort among chemical, medical and 

engineering researchers. On the biological side, an interaction of various metal ions on 

the toxicological effects would also be expected, but it also existed as a part of 

knowledge deficiency in the toxicology of metal ions, and a quantitative modelling of 

such interaction could only be achieved by extensive studies. 

 

On a related note, while magnesium was erroneously considered by many researchers as 

“non-toxic”[3, 59, 60], its adverse effects had long been documented[28, 44], and cases 

of lethality caused by soluble magnesium ions on otherwise healthy individuals were 

reported[61-64]. The tolerable daily intake of magnesium as food was set at 

350-400mg/day[28, 44] for guidance purpose, and the bioavailability of magnesium is 

about 50%[28], translating into a tolerable mass of implant at 64-73g/year, assuming no 

intake of magnesium from other routes. Non-fatal, non-gastrointestinal adverse effect due 

to magnesium (as nausea and hypermagnesaemia) could occur, and diarrhea caused by 

magnesium overdose is at least partially non-osmotic according to current evidence on its 

linkage with nitric oxide synthase����. Although diarrhea alone is seldom fatal, it can 

definitely affect the living standard of a patient, and the resultant dehydration and ion 

imbalance might lead to increased fatality when associated with other diseases and 
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conditions. 

 

This pioneering risk assessment model should not be considered as a perfect one, and it 

had been subjected to refinements[66, 67]. Toxicological data might also be overridden 

by newer, more sophisticated experiments. As the research on degradable metallic 

implants becomes more popular and metal ions from industrial waste continue to pose 

health threat to mankind, it is expected that more toxicological studies will be conducted, 

and international joint programs such as the International Program of Chemical Safety 

run by WHO, ILO and UNEP[68], or hopefully an establishment of a toxicological 

database on metals similar to the scale of IPCS, will provide peer-reviewed and updated 

toxicological guidance limits of metals in the future, so that toxicological risk 

assessments could be conducted without excessive reliance on data from governments. 

 

The dose of a given substance is an important factor to toxicological effects[69]. Even 

pure water can kill at a sufficiently high dose[70, 71]. Despite engineering advancements, 

researchers must realize that degradable metallic implant is not a class of totally inert 

material, and degradation products do get into the body. As metal ions are released when 

degradation occurs, it does carry potential side effects that truly require adequate 
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interdisplinary attention, and cooperation, among engineers, medical doctors, biochemists, 

medical researchers on toxicology, orthopedics, cardiology, neurology and other areas, 

plus public health agency officers, before an implant made this class of biomaterial can 

be considered safe for human use at a considerable dose, i.e. volume.  

 

Conclusion 

In this article, dose-response assessment was conducted to derive tolerable limits for 

alloys that could potentially be adopted as degradable metallic implants. It was found that 

the limiting factor for the tolerable implant masses of common magnesium alloys was 

usually aluminum, and the tolerable mass of such alloys at below or around 1 gram per 

year might be inadequate for applications such as larger internal fixation devices of bone 

fracture. However, for some component elements such as zirconium and rare earth metals, 

reliable theoretical assessment could not yet be performed due to a deficit of 

toxicological data, and toxicological studies should be conducted in the future for such 

elements to ensure the safety on their use in degradable biomedical implants.  
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Statement on the impact 

 

Current researchers on degradable metallic implants sometimes study in vivo 

models or with cell line, but it appears that the majority of articles are on 

degradable magnesium implants mainly focus on corrosion control and 

mechanical properties. Even for the in vivo models, it appeared that their focus 

was the localized effects. Insufficient attention was paid to potential systemic 

adverse effects, and some researchers even assumed magnesium alloys to be 

completely non-toxic. This is very dangerous, as nothing is totally non-toxic. 

 

This short article utilized the methodology of dose-response assessment, adopted 

by World Health Organization and most public health agencies, to state the 

important issue of potential metal toxicity in degradable metallic implant. The 

possibility of remnant particles after degradation is also briefly discussed. 

 

By attracting the attention of toxicologists, it is hoped that future researchers will 

be more aware of the toxicological issues of alloying elements, to ensure that 

future implants will at least be theoretically tolerable to the body. 




