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Abstract

Peroxiredoxins are a family of antioxidant enzymes critically involved in cellular defense and signaling. Particularly, yeast
peroxiredoxin Tsa1p is thought to play a role in the maintenance of genome integrity, but the underlying mechanism is not
understood. In this study, we took a genetic approach to investigate the cause of genome instability in tsa1D cells. Strong
genetic interactions of TSA1 with DNA damage checkpoint components DUN1, SML1, and CRT1 were found when mutant
cells were analyzed for either sensitivity to DNA damage or rate of spontaneous base substitutions. An elevation in
intracellular dNTP production was observed in tsa1D cells. This was associated with constitutive activation of the DNA
damage checkpoint as indicated by phosphorylation of Rad9/Rad53p, reduced steady-state amount of Sml1p, and
induction of RNR and HUG1 genes. In addition, defects in the DNA damage checkpoint did not modulate intracellular level
of reactive oxygen species, but suppressed the mutator phenotype of tsa1D cells. On the contrary, overexpression of RNR1
exacerbated this phenotype by increasing dNTP levels. Taken together, our findings uncover a new role of TSA1 in
preventing the overproduction of dNTPs, which is a root cause of genome instability.
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Introduction

Peroxiredoxins belong to a family of thiol-specific peroxidases

widely and abundantly expressed in most living organisms [1,2].

Through one or more redox-sensitive cysteines, peroxiredoxins not

only scavenge reactive oxygen species (ROS) including peroxides

and peroxynitrite [3,4], but also function as an ROS sensor to

regulate cell signaling [5–11]. For many peroxiredoxins, another

level of regulation can be achieved through oligomerization

[1,2,12]. In addition to their roles in peroxide reduction,

peroxiredoxins are also known to possess chaperone activity

[12,13].

Loss-of-function studies in mice implicated an essential role of

peroxiredoxins in antioxidant defense and tumor suppression

[14]. Particularly, peroxiredoxin 1-knockout mice not only

suffered from severe anemia due to oxidative stress, but were

also susceptible to several types of malignant tumors [15].

Consistent with this, genome-wide screening revealed that yeast

peroxiredoxin TSA1 was a strong suppressor of gross chromo-

somal rearrangements and spontaneous mutations [16,17]. In

addition, a mutator phenotype was observed in yeast cells lacking

one or more peroxiredoxins. The phenotype could be rescued by

yeast peroxiredoxin Tsa1p or mammalian Prx1, but not by their

active-site mutants defective for peroxidase activity [18,19]. In

further support of a role of TSA1 in the maintenance of genome

stability, many genetic interaction partners of TSA1 identified

through synthetic genetic array analysis were components of

DNA repair machinery or DNA checkpoints [20,21]. For

example, TSA1 was found to interact genetically with REV1/

REV3 and OGG1, which are critically involved in translesion

synthesis (TLS) and the repair of oxidative DNA damage,

respectively [22,23]. However, the exact mechanism by which

Tsa1p suppresses genome instability remains to be fully

understood.

Intracellular dNTP levels are one important determinant of

cellular response to DNA damage [24]. For yeast cells to survive

DNA damage, increased dNTP production would be allowed to

facilitate replication, but with a trade-off of high spontaneous

mutation rate [25]. In other words, abnormally high dNTP levels

are causally associated with genome instability [24,26].

We previously demonstrated that yeast Tsa1p is a house-

keeping peroxiredoxin which sufficiently suppressed the mutator

phenotype [18]. Although both an aberrantly high level of ROS

and an imbalance in free radical contents, which is caused by

compensational activation of other antioxidants such as Sod1p

[27], could underlie the mutator phenotype of tsa1D cells,

additional events subsequent to the disruption of TSA1 might also

be influential in the induction of genome instability. In this study

we asked whether perturbation of dNTP pools might contribute to

the mutator phenotype observed in tsa1D cells. We then

investigated the cause of dNTP pool expansion. Our findings

suggested that constitutive activation of the DNA damage

checkpoint and consequent overproduction of dNTPs are the

root cause of genome instability in tsa1D cells.
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Results

Deletion of DUN1, SML1, or CRT1 Modulates Sensitivity of
tsa1D Cells to DNA Damage

Yeast peroxiredoxin TSA1 was found to be a strong suppressor

of mutations and gross chromosomal rearrangements [16–18]. In

addition, further deletion of another gene involved in DNA repair

or DNA checkpoints caused synthetic growth defect or lethality in

tsa1D cells [21,22]. Bearing these findings in mind, here we sought

to dissect the interaction of TSA1 with the DNA damage

checkpoint and particularly the machinery of dNTP synthesis, in

order to understand the role of TSA1 in the maintenance of

genome stability.

We first examined the sensitivity of tsa1D cells to various DNA

damaging agents. tsa1D cells were sensitive to hydroxyurea (HU),

4-nitroquinoline 1-oxide (4NQO) and ultraviolet (UV) irradiation

(Figure 1A, lanes 1 and 5; Figure 1B; Figure 1C and Figure 1D,

lanes 1 and 2). Re-expression of TSA1 in tsa1D cells suppressed the

sensitivity phenotype (Figure 1C and Figure 1D, lane 3). This

suppression required the catalytic cysteine (Cys47) of Tsa1p, but

not the C-terminal cysteine (Cys170), pointing to the importance

of the antioxidant property of Tsa1p in the protection against

DNA damage (Figure 1C, lanes 3–5).

The sensitivity of tsa1D cells to DNA damage prompted us to

investigate further the genetic interactions between TSA1 and

components of the DNA damage checkpoint. In light of the

finding that TSA1 genetically interacts with DNA damage

checkpoint genes DUN1 and SML1 [22], we chose these two

genes and their effector CRT1 for further analysis. Dun1p is a

checkpoint kinase that phosphorylates and regulates ribonucleo-

tide reductase (RNR) inhibitor Sml1p [28]. Dun1p also inhibits

Crt1p, a transcriptional corepressor of RNR, through phosphor-

ylation [29,30]. Deletion of DUN1, SML1 or CRT1 in tsa1D cells

exerted a significant impact on their sensitivity to HU, 4NQO and

UV irradiation. Loss of DUN1 further sensitized tsa1D cells to

H2O2, HU, 4NQO and UV (Figure 1A, lanes 1, 2, 5 and 6). In

support of the specificity of effect, this sensitization was reversed

upon expression of TSA1 or DUN1 in tsa1D dun1D cells (Figure 1D,

lanes 6–8). Conversely, loss of SML1 or CRT1 rescued the

sensitivity phenotype of tsa1D cells to 4NQO and UV (Figure 1A,

lanes 5, 7 and 8). It is noteworthy that such reversion of sensitivity

was not observed in cells treated with H2O2 (Figure 1A, lanes 5, 7

and 8), suggesting that the effect might be specific to DNA

damaging agents and was not caused directly by ROS. These

observations supported the notion that TSA1 interacts specifically

with the DNA damage checkpoint in a manner that is not

mediated directly through ROS.

Although the sensitivity pattern of the different mutant strains in

the spot assay was highly reproducible, a more quantitative

comparison of these strains is desired. Hence, survival curves of

strains in the presence of 4NQO and UV were also obtained

(Figure 1B). Dose-dependent killing of the strains by 4NQO and

UV was observed. At all doses tested, the degrees of sensitivity of

different strains to either 4NQO or UV were in the same order as

shown in the spot assay. In particular, the survival curves indicated

a further enhancement of the sensitivity phenotype in tsa1D dun1D
versus tsa1D cells and a suppression of sensitivity in tsa1D sml1D
cells (Figure 1B). Collectively, our results demonstrated that the

survival of tsa1D cells under DNA damage was decreased upon

deletion of DUN1, but enhanced when either SML1 or CRT1 was

genetically disrupted.

We also compared the phenotypes of tsa1D cells and cells

lacking Sod1p, another key antioxidant enzyme [31]. In contrast

to the genetic interactions observed in tsa1D cells, deletion of

DUN1, SML1 or CRT1 in sod1D cells enhanced its sensitivity to

HU and 4NQO (Figure 1E, lanes 6, 7 and 8). Thus, TSA1 and

SOD1 interact with DUN1, SML1 and CRT1 through different

mechanisms.

Deletion of DUN1, SML1, or CRT1 Modulates Mutator
Phenotype of tsa1D Cells

We next investigated whether compromising DNA damage

checkpoint genes in tsa1D cells might also alter their mutator

phenotype. In agreement with previous reports [16–18], tsa1D cells

exhibited high rates of spontaneous mutations in both canavanine-

resistant (CANR) and 5FC-resistant (5FCR) assays (Figure 2A,

Figure 2B and Figure 2D, groups 1 and 5). On the other hand,

deletion of DUN1 did not significantly affect spontaneous mutation

rates (Figure 2A, Figure 2B and Figure 2D, groups 1 and 2),

whereas loss of SML1 or CRT1 caused a mild increase in CANR

mutation rates in WT cells (Figure 2A and Figure 2D, groups 1, 3

and 4). However, the disruption of DUN1, SML1 and CRT1 in

tsa1D cells modulated the mutator phenotype in opposite

directions (Figure 2A and Figure 2B, columns 5–8). Whereas

reduction of spontaneous mutation rates was observed in tsa1D
dun1D cells (Figure 2A and Figure 2B, columns 5 and 6), deletion

of SML1 or CRT1 in tsa1D cells significantly enhanced the mutator

phenotype (Figure 2A and Figure 2B, columns 1, 7 and 8).

Complementation of the reduction of mutation rate in tsa1D dun1D
cells by re-introduction of DUN1 or TSA1 further verified the

specificity of effect (Figure 2C, columns 6 and 8). Thus, the

mutation rates of tsa1D cells correlated with the activity of the

DNA damage checkpoint.

In all individual deletion mutants, tsa1D cells displayed the

highest mutation rate (Figure 2). We postulated that this might be

attributed either directly or indirectly to the elevation of

intracellular ROS levels in these cells [4]. If that is the case,

challenging the other DNA damage checkpoint mutants with ROS

might have an impact on the mutator phenotype. To test this idea,

we treated the cells with low-dose H2O2 and assessed the impact

on CANR mutation rates. Interestingly, mutation rates increased

in WT and dun1D cells to comparable levels (Figure 2D, groups 1

and 2). In contrast, a further increase in mutability was observed

when SML1 or CRT1 was comprised (Figure 2D, groups 1, 3 and

4). Although the mutation rates of sml1D and crt1D cells in the

presence of H2O2 were still not as high as that of tsa1D cells in the

absence of H2O2 (Figure 2D, groups 3–5), our results did suggest

Author Summary

Peroxiredoxins are a family of antioxidant enzymes highly
conserved from yeast to human. Loss of peroxiredoxin in
mice can lead to severe anemia and malignant tumors, but
the underlying cause is not understood. One way to derive
new knowledge of peroxiredoxins is through genetic
analysis in yeast. We have shown that loss of peroxiredox-
ins in yeast is associated with an increase in mutation rates.
Here, we demonstrate that this elevation of mutation rates
in yeast cells lacking a peroxiredoxin is due to increased
production of deoxyribonucleoside triphosphates (dNTPs),
the building blocks of DNA. Our findings suggest a new
model in which compromised antioxidant defense causes
accumulation of damaged DNA and activation of the DNA
damage checkpoint. For yeast cells to survive DNA
damage, dNTP production is increased to facilitate DNA
replication, but at the price of high mutation rates. This
new model could lead to a better understanding of human
diseases including cancer.

Loss of Peroxiredoxin Tsa1p Elevates dNTP Levels
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Figure 1. Influence of DUN1, SML1, or CRT1 deletion on the sensitivity of tsa1D cells to DNA damage and replicative stress. (A) Spot
tests. Ten-fold serial dilutions of strains BY4741 (WT), dun1D, sml1D, crt1D, tsa1D, tsa1D dun1D, tsa1D sml1D, and tsa1D crt1D were spotted on YPD
medium containing indicated doses of H2O2, HU or 4-NQO. Cells were exposed to the indicated dose of UV after plating. Plates were incubated for 4
days at 30uC. Experiments were repeated for six times and similar results were obtained. (B) Survival curves. Logarithmically growing yeast cells,
BY4741 (WT), dun1D, sml1D, tsa1D, tsa1D dun1D, and tsa1D sml1D, in YPD were treated with indicated doses of 4-NQO for 90 min before plating on
YPD agar. For UV treatment, cells were first plated onto YPD agar followed by UV irradiation at the indicated doses. Plates were incubated for 3 days
at 30uC, and then counted for survival. The number of colonies from untreated plates was taken as 100%. Experiments were repeated for three times
and similar results were obtained. (C) TSA1 catalytic cysteine mutant cannot complement the HU sensitivity in tsa1D cells. Tenfold serial dilutions of
the indicated strains transformed with pRS415, pTSA1, pTSA1C47S, or pTSA1C170S were spotted on SC-Leu plates containing 2% glucose and the
indicated doses of diamide or HU. Note that cells grew more slowly on SC plates than on YPD plates as shown in (A). (D) Influence of DUN1, SML1, or
CRT1 deletion on the sensitivity of sod1D cells to DNA damage. (E) Complementation of drug sensitivity in tsa1D dun1D cells by TSA1 or DUN1.
doi:10.1371/journal.pgen.1000697.g001

Loss of Peroxiredoxin Tsa1p Elevates dNTP Levels
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that ROS could differentially modulate the mutator phenotype of

different mutants.

Loss of TSA1 Elevates Cellular dNTP Production
We next investigated the mechanism that underlies the

correlation of DNA damage checkpoint activity in tsa1D cells

with drug sensitivity and mutator phenotype (Figure 1 and

Figure 2). DUN1, SML1 and CRT1 are regulators of RNR, the

rate-limiting enzyme in dNTP synthesis [32–34]. Considered

together with the model that elevated dNTP levels are required for

surviving DNA damage in yeast at the price of increasing mutation

rates [24], we asked whether the mutator phenotype of tsa1D cells

would be due to alteration in cellular dNTP production. Thus, we

measured dNTP levels in our mutants. Surprisingly, tsa1D cells

produced significantly more dNTPs than wild type (WT) cells

(Figure 3A, groups 1 and 5). The magnitude of dNTP

overproduction in tsa1D cells was comparable to that in sml1D
cells (Figure 3A, groups 3 and 5), in which the removal of Sml1p

activates RNR leading to the rise in dNTP levels [28].

To shed further light on the roles of dNTP production in the

generation of mutator phenotype, we compared the dNTP levels

in other mutant cells. As expected, dun1D cells produced less

dNTPs than WT cells (Figure 3A, groups 1 and 2), since Dun1p is

required for phosphorylation and subsequent removal of the RNR

inhibitor Sml1p [28]. Loss of CRT1 was also found to increase

cellular dNTP production (Figure 3A, groups 1 and 4), as Crt1p is

a transcriptional corepressor of RNRs [29]. However, loss of

DUN1 reduced cellular dNTP production in tsa1D cells (Figure 3A,

groups 5 and 6), whereas deletion of SML1 or CRT1 in tsa1D cells

further increased dNTP levels (Figure 3A, groups 5, 7 and 8).

Figure 2. Influence of DUN1, SML1, or CRT1 deletion on the mutation rates of tsa1D cells. The number of CANR (A) or 5FCR (B) colonies on
synthetic complete solid medium either lacking arginine but containing CAN (60 mg/L) or supplemented with 5FC (100 mg/L) was normalized with
the total number of viable cells grown on the same solid medium without CAN or 5FC. The relative mutation rate of BY4741 cells (WT) was taken as
1.00. Results represent the average from triplicate analysis of ten independent cultures. (C) Complementation of mutator phenotype in tsa1D dun1D
cells by TSA1 or DUN1. The rates of spontaneous CANR mutation were calculated as in (A). (D) Influence of ROS on mutation rates. Cells of the
indicated genotypes logarithmically growing in YPD were subjected to treatment of H2O2 (0.6 mM, 15 min) before plating on synthetic complete
solid medium lacking arginine and supplemented with CAN (60 mg/L). The rates of spontaneous CANR mutation were calculated as in (A).
doi:10.1371/journal.pgen.1000697.g002

Loss of Peroxiredoxin Tsa1p Elevates dNTP Levels
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Noteworthily, increased production of dNTPs in tsa1D cells could

be fully complemented by Tsa1p, but not by its catalytic cysteine

mutant C47S (Figure 3B). Thus, the antioxidant property of Tsa1p

was likely required for preventing overproduction of dNTPs.

We then asked whether the reduction of dNTP pools in tsa1D
dun1D cells would be associated with a further drop in intracellular

ROS levels in the absence of DUN1. Interestingly, tsa1D dun1D cells

exhibited a higher level of intracellular ROS over WT, tsa1D or

dun1D cells (Figure 3C, columns 1, 2, 5 and 6), suggesting that the

mutator phenotype in tsa1D and tsa1D dun1D cells correlates directly

with dNTP production, but not generation of ROS. On the other

hand, loss of SML1 or CRT1 did not alter the ROS levels in either

WT or tsa1D cells (Figure 3C, columns 1, 3, 4, 5, 7 and 8). Thus, in

addition to the accumulation of ROS, elevation of dNTP

production might also contribute to genome instability in tsa1D cells.

While deletion of DUN1, SML1 or CRT1 has an impact on

dNTP production, they are multifunctional proteins that might

also affect other biological processes [28–30]. To address this

concern, we modulated the production of dNTP more directly by

overexpressing RNR1 gene in tsa1D and sod1D cells. This

overexpression has previously been shown to elevate intracellular

dNTP levels substantially [24,26]. Indeed, when we induced the

expression of Rnr1-3MYCp in WT cells (Figure 4A), the

spontaneous mutation rate was increased (Figure 4B, columns 1

and 2). Furthermore, overexpression of RNR1 also exacerbated

the mutator phenotype in tsa1D and sod1D cells (Figure 4B,

columns 3–6). This lent additional support to the importance of

dNTP overproduction in the induction of genome instability.

Figure 3. dNTP levels of tsa1D cells and influence of DUN1,
SML1, and CRT1 deletion. (A) Comparison of dNTP levels. Relative
dNTP levels were determined in the indicated strains of cells growing
logarithmically. (B) Suppression of dNTP pool phenotype by TSA1.
Assays were done with WT and tsa1D strains transformed with pRS415,
pTSA1, or pTSA1C47S. (C) ROS detection. Cells of the indicated strains
logarithmically growing in YPD were subjected to treatment with DCF
(10 mM, 45 min). Crude extracts of cells were subjected to DCF
fluorescence measurement on an F-4500 spectrofluorimeter (Hitachi).
The excitation and emission wavelengths were 488 and 520 nm,
respectively. The reading of DCF fluorescence was normalized to
protein concentration. The fluorescent intensity of BY4741 cells (WT)
was taken as 1. Results represent the average from three independent
experiments.
doi:10.1371/journal.pgen.1000697.g003

Figure 4. Overexpression of RNR1 enhances mutator pheno-
type of tsa1D cells. BY4741 (WT), sod1D, and tsa1D cells carrying
plasmid pGal-RNR1 were grown in SC-Ura medium supplemented with
raffinose (uninduced) or galactose (induced) to mid-log phase. (A)
Galactose-induced expression of Rnr1-3MYCp. Western blotting was
performed with mouse anti-MYC (Roche) and mouse anti-Pgk1p
(Invitrogen) antibodies. (B) Mutation rates. Experiments were carried
out as in Figure 2.
doi:10.1371/journal.pgen.1000697.g004

Loss of Peroxiredoxin Tsa1p Elevates dNTP Levels
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If the mutability of tsa1D cells is indeed caused by dNTP

overproduction, the mutations generated would primarily be base

substitutions rather than large deletion and gross chromosomal

rearrangements [24]. With this in mind, we examined the types of

mutations arisen in tsa1D and other mutants (Table 1). We noted

that the majority of mutations found in tsa1D cells were base

substitutions (83.3%) and frameshifts (13.3%). Large deletions

were very rare in tsa1D cells (3.3%) when compared with WT

(13.3%) cells. In addition, all of the mutations found in tsa1D sml1D
cells with high dNTP levels (Figure 3) were base substitutions

(90%) and frameshifts (10%), whereas more deletions (13.3%) were

detected in tsa1D dun1D cells (Table 1) with low dNTP

concentrations (Figure 3). In keeping with previous findings [16],

relatively more deletions (10%) were also observed in sod1D cells

(Table 1). Generally, base substitutions were more prevalent in the

strain when dNTP levels were high (Figure 3), whereas the

incidences of deletions correlated negatively with dNTP concen-

trations. Therefore, the mutation spectra of tsa1D and other strains

are consistent with the notion that elevation of dNTP levels is the

underlying cause of genome instability in the absence of TSA1.

Loss of TSA1 Activates DNA Damage Checkpoint Leading
to Elevation in dNTP Production

Above we demonstrated the elevation of dNTP levels in tsa1D
cells (Figure 3). In addition, our results also indicated the genetic

interaction of TSA1 with DNA checkpoint genes (Figure 1). This

led us to further investigate whether elevated production of dNTPs

in the absence of TSA1 might be explained by the activation of the

DNA damage checkpoint. As a first step, we assessed checkpoint

activation by examining the steady-state levels of Rad53p, the

yeast ortholog of human CHK2 kinase whose phosphorylation

and activation are pivotally involved in the control of checkpoint

response to DNA damage [35,36]. Particularly, Rad53p is a

master regulator of Dun1p, Sml1p and Crt1p [35].

In this analysis we included the sod1D control strain, in which

the effectors of the Mec1p-dependent DNA damage checkpoint

were previously shown to be downregulated [31]. Phosphorylated

Rad53p species were more evident in tsa1D cells compared to WT

and sod1D cells (Figure 5A, lanes 1, 3 and 5; Figure 5B, lanes 1 and

2; Figure 6A, lanes 1 and 2; and Figure 7A, lanes 1 and 3). This

difference became more pronounced in the presence of H2O2

(Figure 5A, lanes 2, 4 and 6; Figure 5B, lanes 5 and 6; Figure 6A,

lanes 3 and 4; and Figure 7A, lanes 5 and 7).

The steady-state levels of phosphorylated Rad53p in DNA

damage checkpoint mutants were also compared. Whereas

deletion of DUN1 triggered phosphorylation of Rad53p

(Figure 5C, lanes 1 and 2), an observable increase in phosphor-

ylated Rad53p species was not found in sml1D or crt1D cells

(Figure 5C, lanes 1, 3 and 4). Notably, loss of DUN1 in tsa1D cells

further enhanced the activation of Rad53p (Figure 5C, lanes 5 and

Table 1. Spectra and rates of CANR mutations in tsa1D and sod1D strains.

strain type of mutation frequency (%) mutation rate (61027) specific mutation rate (61027)

wild type base substitution 18/30 (60.0%) 3.1 1.9

transversion 10/30 (33.3%) 1.0

transition 8/30 (26.7%) 0.8

frameshift 5/30 (16.7%) 0.5

large deletion 3/30 (10.0%) 0.3

complex 4/30 (13.3%) 0.4

tsa1D base substitution 25/30 (83.3%) 62.5 52.0

transversion 15/30 (50.0%) 31.2

transition 10/30 (33.3%) 20.8

frameshift 4/30 (13.3%) 8.3

large deletion 1/30 (3.3%) 2.1

tsa1Ddun1D base substitution 24/30 (80.0%) 35.5 28.4

transversion 14/30 (46.7%) 16.6

transition 10/30 (33.3%) 11.8

frameshift 2/30 (6.7%) 2.4

3 bp deletion 1/30 (3.3%) 1.2

large deletion 3/30 (10.0%) 3.6

tsa1Dsml1D base substitution 27/30 (90.0%) 143.3 129.0

transversion 15/30 (50.0%) 71.7

transition 12/30 (40.0%) 57.3

frameshift 3/30 (10.0%) 14.3

sod1D base substitution 24/30 (80.0%) 33.9 27.1

transversion 14/30 (46.7%) 15.8

transition 10/30 (33.3%) 11.3

frameshift 3/30 (10.0%) 3.4

large deletion 3/30 (10.0%) 3.4

Mutation rates are calculated from three independent experiments, each with ten cultures. Variations are within 15% of the values.
doi:10.1371/journal.pgen.1000697.t001

Loss of Peroxiredoxin Tsa1p Elevates dNTP Levels
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6), whereas tsa1D sml1D and tsa1D crt1D cells had similar levels of

phosphorylated Rad53p compared to tsa1D cells (Figure 5C, lanes

5, 7 and 8).

In addition to Rad53p, we also checked for the status of Rad9p,

a more upstream transducer in the DNA damage checkpoint

pathway [37]. Rad9-13MYCp was found to be activated in tsa1D
cells (Figure 6B, lanes 1, 2, 4 and 5) and this activation could not

be reversed by the C47S mutant of Tsa1p (Figure 6B, lanes 2, 3, 5

and 6). As a marker for DNA double-strand breaks (DSBs) [38],

the level of cH2A was also found to be elevated in tsa1D cells as

compared to WT (Figure 5B, lanes 1 and 2; Figure 6A, lanes 1 and

2; and Figure 6B, lanes 1 and 2). This agrees with a recent report

that tsa1D cells displayed an increased number of Rad52-YFP foci

indicative of DNA damage [23]. The levels of cH2A in other DNA

damage checkpoint mutant cells were also examined. Among

dun1D, sml1D and crt1D cells, an elevation in cH2A level was only

found in dun1D cells (Figure 5C, lane 2). In addition, disruption of

DUN1, SML1 or CRT1 in tsa1D cells did not affect cH2A levels

significantly (Figure 5C, lanes 5–8). Noteworthily, although

phosphorylated Rad53p and cH2A were abundant in dun1D and

tsa1D dun1D cells (Figure 5C, lanes 2 and 6), their mutation rates

remained low (Figure 2A and Figure 2B, columns 2 and 6)

plausibly due to the low levels of dNTPs (Figure 3A, groups 2 and

6). In other words, elevation of dNTP levels might be the direct

cause of genome instability.

Consistent with the activation of Rad53p and Rad9p, the levels

of Rad53p target Sml1-3HAp were diminished in tsa1D cells in the

presence (Figure 5B, lanes 5 and 6) and absence of H2O2

(Figure 5B, lanes 1 and 2). Importantly, all of the above changes in

tsa1D cells could be fully complemented by TSA1 (Figure 5B, lanes

2 and 3), but not by its C47S mutant (Figure 5B, lanes 2 and 4).

On the other hand, in agreement with previous findings [31], we

did not observe a significant change of Sml1p level in sod1D cells

(data not shown).

RNR is an important downstream effector of the DNA damage

checkpoint which mediates the production of dNTPs [33,34].

Since the expression of RNR genes is transcriptionally activated in

response to DNA damage [29], we used semi-quantitative RT-

PCR to determine the relative levels of RNR1/2/3/4 transcripts in

the presence and absence of HU. In this analysis we included an

additional control termed HUG1, a target of Mec1p induced

highly by DNA damage [39]. As shown in Figure 6C, RNR

transcripts were induced to higher levels in tsa1D cells than in WT

and sod1D cells. The induction of RNR1 and RNR3 was greatest in

both untreated and HU-treated tsa1D cells. The level of HUG1

transcript was also elevated in tsa1D cells and this was more

pronounced in the presence of HU (Figure 6C). In sharp contrast,

sod1D cells treated with HU showed a lower magnitude of

induction of RNR1, RNR3 and HUG1 mRNAs (Figure 6C). These

results obtained from sod1D cells were generally consistent with

previous findings [31]. Thus, the pattern of RNR induction in

tsa1D cells was not ascribed to a general effect caused by the lack of

any antioxidant enzyme, but was highly specific. Collectively, our

results suggested that loss of TSA1 induces the activation of the

DNA damage checkpoint leading to the induction of RNR and

consequent overproduction of dNTPs.

Mutation of Rad53p Suppresses Genome Instability in
tsa1D Cells

If activation of the DNA damage checkpoint in tsa1D cells is

really important to the generation of genome instability caused by

dNTP overproduction, genetic disruption of the checkpoint would

be able to reverse the mutator phenotype of tsa1D cells.

Figure 5. Activation of DNA damage checkpoint in tsa1D cells.
(A) Western blot analysis of Rad53p. Cells of WT, sod1D, and tsa1D
strains logarithmically growing in YPD were subjected to treatment
with H2O2 (0.8 mM, 30 min). Western blotting was performed with goat
anti-Rad53p (Santa-Cruz) and mouse anti-Pgk1p antibodies. Percentag-
es of phosphorylated Rad53p were determined by densitometry and
indicated at the bottom of the panel. (B) TSA1 complementation assay.
WT and tsa1D cells were transformed with pRS415, pTSA1, or
pTSA1C47S plasmid. Western blotting was carried out with goat anti-
Rad53p, mouse anti-HA (Santa-Cruz), rabbit anti-histone H2A phos-
phorylated at S129 (cH2A; Abcam), and mouse anti-Pgk1p antibodies.
Relative amounts of Sml1-3HAp or cH2A normalized to Pgk1p were
determined by densitometry and indicated at the bottom of the panels.
(C) Checkpoint activation in different strains.
doi:10.1371/journal.pgen.1000697.g005
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Figure 6. Activation of DNA damage checkpoint in tsa1D cells. (A) Western blot analysis of Rad53p. Cells of the indicated strains in W303
background logarithmically growing in YPD were subjected to treatment with H2O2 (0.8 mM, 30 min). (B) Western blot analysis of Rad9p in tsa1D and
TSA1-complemented strains. A longer exposure (long exp.) of the Rad9p blot was also shown. (C) Semi-quantitative RT–PCR analysis of RNR
transcripts. Logarithmically growing cells of the indicated strains in YPD were subjected to treatment with HU (200 mM) at the indicated time points.
Total RNA was extracted and 3 mg of RNA was used for cDNA synthesis. PCR was performed to assess the levels of RNR1/2/3/4, HUG1, and ACT1
transcripts. The expected sizes of the PCR product for RNR1, RNR2, RNR3, RNR4, ACT1, and HUG1 are 219, 390, 199, 455, 520, and 190 bp, respectively.
Relative levels of RNA determined by densitometry and normalized to the amount of ACT1 transcript were indicated at the bottom of the panels.
doi:10.1371/journal.pgen.1000697.g006
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To test this hypothesis, we employed a RAD53 mutant termed

rad53AA, in which both T354 and T358 in the activation loop of

Rad53p had been replaced by alanine, thereby abrogating the

autophosphorylation activity in response to DNA damage [40].

This defective rad53AA allele similar to rad53-11 is thought to be

associated with reduced dNTP production due to high abundance

of Sml1p [40,41]. Thus, we set out to characterize the phenotypes

of tsa1D cells carrying the rad53AA allele.

As documented previously [40], TSA1 rad53AA cells exhibited

lower levels of phosphorylated Rad53p and higher abundance of

Sml1-3HAp than TSA1 RAD53 cells (Figure 7A, lanes 1, 2, 5 and

6). In response to H2O2, cH2A was induced to higher levels in all

mutant cells (Figure 7A, lanes 5–8 compared to lanes 1–4).

Notably, both tsa1D RAD53 and tsa1D rad53AA cells showed

similar basal levels of cH2A (Figure 7A, lanes 3 and 4). Although

stronger Rad53p activation was observed in tsa1D rad53AA cells, a

more pronounced Sml1-3HAp protein band was seen (Figure 7A,

lane 4 compared to lane 3), suggestive of a defective DNA damage

checkpoint.

We next characterized the sensitivity of these mutants towards

H2O2, UV and HU. TSA1 rad53AA cells were sensitive to HU

(Figure 7B, lanes 1 and 2) as previously described [40]; while tsa1D
RAD53 cells were sensitive to H2O2, UV and HU (Figure 7B, lanes

1 and 3) similar to tsa1D cells in BY4741 background (Figure 1,

lanes 1 and 5). Resembling tsa1D dun1D cells in BY4741, tsa1D
rad53AA cells in W303 background displayed further sensitivity to

H2O2 and UV when compared to tsa1D RAD53 cells (Figure 7B,

lanes 3 and 4).

We then looked at the effect of a defective DNA damage

checkpoint on genome instability in tsa1D cells. Intriguingly, tsa1D
rad53AA cells displayed a significantly reduced (,50%) rate

of spontaneous 5FCR mutations over tsa1D RAD53 cells

(Figure 7C). On the other hand, both tsa1D rad53AA and tsa1D
RAD53 cells had high levels of intracellular ROS over WT cells as

measured by DCF fluorescence (Figure 7D). These observations

suggested that rad53AA mutation can suppress the mutator

phenotype in tsa1D cells without affecting cellular redox

environment. This generally agrees with the phenotypes of tsa1D
dun1D cells (Figure 1 and Figure 2), lending further support to the

concept that intracellular dNTP levels are an important

determinant in the induction of genome instability in tsa1D cells.

Discussion

Here, we provided the first evidence that loss of yeast

peroxiredoxin TSA1 causes genome instability through constitutive

activation of the DNA damage checkpoint leading to overproduc-

tion of intracellular dNTPs. There are two salient points in our

work. First, we demonstrated the elevation of dNTP levels in tsa1D
cells and its direct correlation with the mutator phenotype (Figure 2,

Figure 3, Figure 4). Second, we demonstrated the activation of the

DNA damage checkpoint in tsa1D cells in relation to elevated

production of dNTPs (Figure 1, Figure 5, Figure 6, Figure 7). Our

findings suggested a new model for the role of peroxiredoxins in the

maintenance of genome integrity, which has implications in the

understanding of human diseases including cancer.

In agreement with our findings on the accumulation of cH2A

and activation of the DNA damage checkpoint in tsa1D cells,

several lines of evidence in the literature supported the role of

Tsa1p and other peroxiredoxins in the protection of cells against

DNA damage. First, tsa1D cells produce significantly more ROS

[4], which cause DNA and protein damage [27,42,43]. Second,

loss of TSA1 results in increased formation of Rad52-YFP foci, an

indicator of DNA DSBs [23]. Third, tsa1D cells are highly sensitive

to the functional state of DNA repair and checkpoints [22]. In

particular, tsa1D is synthetically lethal with rad51D mutation,

indicating that the viability of rad51D cells deficient in recombi-

nation repair requires TSA1 function [44]. Finally, human

Figure 7. Impact of RAD53 mutation on tsa1D cells. (A) Western blot analysis of Rad53p and Sml1-3HAp. Cells of the indicated strains in W303
background logarithmically growing in YPD were subjected to treatment with H2O2 (0.8 mM, 30 min). Western blotting was performed as in
Figure 5B. (B) Spot assay. Ten-fold serial dilutions of the indicated strains were spotted on YPD medium containing the indicated doses of H2O2 or HU.
Some cells were exposed to UV after plating. (C) RAD53 mutation suppresses mutator phenotype in tsa1D cells. Mutation rates were calculated as in
Figure 2B. (D) ROS detection. DCF fluorescence was measured as in Figure 3C.
doi:10.1371/journal.pgen.1000697.g007
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peroxiredoxins have been implicated in cellular defense against

oxidative DNA lesions [45]. In this context, the activation of the

DNA damage checkpoint in tsa1D cells demonstrated in our study

highlights the pivotal roles of the checkpoint in cell survival and

provides an explanation for the synthetic lethality seen in various

double deletion mutants involving TSA1 and another DNA repair

or checkpoint gene [21].

Deletion of TSA1 in yeast cells has previously been shown to

result in both a mutator phenotype and an increase in gross

chromosomal rearrangements [16,22,23]. Although the causes and

origin of gross chromosomal rearrangements remain poorly

understood, oxygen metabolism and ROS production are

implicated in the prevalence of these rearrangements in tsa1D
cells [23]. Noteworthily, base substitution, but not chromosomal

rearrangement, was the predominant type of mutation found in

our analysis of mutation rates (Table 1). Thus, the major type of

genome instability analyzed in our study is an increased rate of

point mutations, but not gross chromosomal rearrangements

involving more complex alterations such as translocations, large

deletions and amplifications.

Our findings point to a role of dNTP levels in determining the

mutation rate of tsa1D cells. Strong genetic interactions between

TSA1 and four RNR regulators DUN1, SML1, CRT1 and RAD53

were observed in the context of sensitivity to DNA damage

(Figure 1 and Figure 7), spontaneous mutability (Figure 2 and

Figure 7) and dNTP production (Figure 3). Although the catalytic

cysteine of Tsa1p is required for the suppression of mutator

phenotype, the mutability of tsa1D cells correlated directly with

dNTP concentrations (Figure 2, Figure 3, Figure 4), but not with

high ROS levels (Figure 3 and Figure 7). One plausible

explanation is that the loss of TSA1 might cause accumulation of

both ROS [4] and DNA damage (Figure 5). This activates the

DNA damage checkpoint through Rad53p, Rad9p and Sml1p

(Figure 5, Figure 6, Figure 7) leading to transcriptional activation

of RNR genes (Figure 6) and elevated production of dNTPs

(Figure 3). Once at high dNTP levels, replicative and TLS

polymerases by-pass DNA lesions more efficiently to promote

survival, but only at the price of increasing mutation rates [24,25].

This model implicates dNTP pool expansion as the major culprit

in the induction of genome instability in tsa1D cells. Indeed,

reducing dNTP levels without affecting ROS production was

sufficient to reverse the mutator phenotype of tsa1D cells (Figure 3).

In particular, tsa1D dun1D cells have high levels of ROS

(Figure 3C), phosphorylated Rad53p (Figure 5C) and cH2A

(Figure 5C). However, these cells showed a low mutation rate

(Figure 2C) because the dNTP levels were also low (Figure 3A). On

the contrary, increasing dNTP levels by overexpressing RNR1

aggravated the mutator phenotype (Figure 4). Furthermore, point

mutations but not deletions were predominantly found in tsa1D
cells (Table 1), implicating a role for dNTP overproduction in

compromising genome stability. In further support of this model,

compromise of TLS polymerases also suppressed CANR mutations

in tsa1D cells [23].

We found that the levels of dNTPs in tsa1D cells were as high as

those in sml1D cells (Figure 3A). This finding revealed an

unexpected role of TSA1 in the maintenance of dNTP pools in

eukaryotic cells. We further observed transcriptional activation of

RNR genes in tsa1D cells (Figure 6), which could be mediated

through the activation of Rad53p checkpoint. Although this might

provide an explanation for the overproduction of dNTPs, exactly

how Tsa1p is mechanistically involved in regulating RNR

expression remains to be further investigated.

Consistent with previous findings [26], elevation of intracellular

dNTPs over a particular threshold level by overexpressing Rnr1p

can sufficiently induce a mutator phenotype (Figure 4). Plausibly,

the dNTP levels in tsa1D sml1D and tsa1D crt1D cells might have

reached the threshold level causing a dramatically increased

mutation rate (Figure 2 and Figure 3). When the elevation of

dNTP levels have not reached the threshold as in the case of

sml1D, crt1D and tsa1D cells, accumulation of intracellular ROS

might serve to trigger or aggravate the mutator phenotype. In

tsa1D cells, ROS levels were constantly high (Figure 3C) causing

severe DNA damage (Figure 5). In contrast, ROS levels were low

(Figure 3C) and DNA damage was not detected (Figure 5C) in

sml1D or crt1D cells. This might explain the higher mutation rate in

tsa1D cells versus sml1D or crt1D cells (Figure 2). Further

exacerbation of the mutator phenotype of sml1D and crt1D cells

by ROS such as H2O2 (Figure 2D) lent some credence to this

model.

We demonstrated the requirement of the catalytic cysteine for

the ability of Tsa1p to modulate dNTP production (Figure 3).

Through irreversible hyperoxidation, this residue can act as a

redox sensor, which triggers the switch of peroxiredoxin from

peroxidase to chaperone activity under stress [12,13]. In this

connection, it would be of great interest to understand whether

and how the chaperone activity of Tsa1p might be involved in the

regulation of dNTP production.

Activation of Rad53p by upstream kinase Mec1p requires

adaptor proteins Rad9p and Mrc1p [46,47]. We noted that

Rad53p phosphorylation was dramatically increased in tsa1D
versus WT cells (Figure 6A and Figure 7A). In contrast, the

increase in Rad9p phosphorylation in the absence of TSA1 was less

pronounced (Figure 6B). Although additional experiments are

required to investigate the cause of this difference between

Rad53p and Rad9p, one possibility is that the deletion of TSA1

might exert a stronger effect on Mrc1p activity.

Hypermutability or genome instability is a hallmark of cancer

[48]. Mammalian Prx1 is a candidate tumor suppressor gene

[15,49]. Because peroxiredoxins are highly evolutionarily con-

served proteins, an understanding of the mechanism by which

yeast Tsa1p protects cell from genome instability might derive

novel insight into the tumor suppressive role of Prx1 in

mammalian cells. Our work demonstrates the importance of high

dNTP levels in the mutability of tsa1D cells. Further analysis of

dNTP concentrations of Prx1-null mouse cells will reveal whether

increased production of dNTPs might be a general mechanism for

the generation of genome instability in higher eukaryotes.

Materials and Methods

Strains and Plasmids
S. cerevisiae strains BY4741 [50] and W303-1a, and their isogenic

strains (Table 2) were used. All knockout mutants were constructed

by one-step gene deletion method [51]. Primers were listed in

Table 3. Expression vector for DUN1 was derived from pRS415.

Expression plasmids for TSA1 and its mutants have been described

[18].

Plasmid pGal-RNR1 kindly provided by Dr. Stephen Elledge

has also been described previously [52].

Measurement of Mutation Rates, dNTP, and ROS Levels
Rates of spontaneous forward mutations to confer CANR or

5FCR were measured as described [18,53]. Spectra of CANR

mutations were determined by DNA sequencing. Ten indepen-

dent cultures were analyzed in each experiment. Cell extracts

were prepared and dNTP levels were measured with Klenow

enzyme and [3H] labeled dATP or dTTP (PerkinElmer) as

described [54]. Standard curves were used to estimate the
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cellular dNTP levels. Three independent cultures were ana-

lyzed in each experiment. Intracellular ROS levels were

measured by fluorimetry using DCF (Molecular Probes) as

described [4,18].

RNA Analysis
Total RNA was extracted by phenol/freeze RNA preparation

method as described [55]. For RT-PCR, 3 mg of total RNA was

used for cDNA synthesis. Semi-quantitative PCR was performed

and optimized to ensure that the amplification was in the linear

range. PCR primers were listed in Table 3.

Western Blotting
Western blot analysis was performed essentially as described

[31]. Yeast cells were harvested by centrifugation, followed by

trichloroacetic acid extraction with the help of glass beads.
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