<table>
<thead>
<tr>
<th>Title</th>
<th>Increased brain activation in motor cortex after acupuncture treatment for motor recovery in chronic stroke patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chau, ACM; Cheung, RTF; Jiang, X; Au-Yeung, PKM; Li, LSW</td>
</tr>
<tr>
<td>Citation</td>
<td>The Open Rehabilitation Journal, 2009, v. 2, p. 89-94</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/66136</td>
</tr>
<tr>
<td>Rights</td>
<td>Creative Commons: Attribution 3.0 Hong Kong License</td>
</tr>
</tbody>
</table>
Increased Brain Activation in Motor Cortex After Acupuncture Treatment for Motor Recovery in Chronic Stroke Patients

Anson C.M. Chau, Raymond T.F. Cheung*, Xianyong Jiang, Paul K.M. Au-Yeung and Leonard S.W. Li

Department of Medicine (Neurology), Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong

Abstract: Acupuncture has historically been recommended as adjunctive treatment to patients with stroke, but its effectiveness has yet to be proven. This case series aims to report the results of using functional magnetic resonance imaging (fMRI), together with motor function evaluations, to assess the effect of acupuncture on stable patients after stroke. Eleven chronic stroke patients underwent fMRI and motor function evaluations of their impaired upper limb before and after an 8-week period of acupuncture on two acupoints (Hegu LI-4 and Quchi LI-11), without undergoing simultaneous rehabilitation. Improvements in motor functions of the impaired upper limb were found after acupuncture treatment. Changes in cortical activities were closely related to the finding of improved motor functions. A larger and stronger activation was found in the sensorimotor area of the lesioned hemisphere after receiving the acupuncture intervention. Conjunction analysis demonstrated common regions that were activated during either motor task or acupuncture stimulation. Acupuncture may improve functions of the impaired upper limb in chronic stroke patients via modulating peri-infarct regions that are responsible for plasticity of the motor cortex.

INTRODUCTION

Stroke is a major consequence of cerebrovascular disease. The pathological process of stroke would manifest in one or more blood vessels of the brain to result in ischemia or bleeding in an area of the brain [1]. Stroke is a major cause of death and disability in all societies [2]. Acupuncture has long been used in China for stroke rehabilitation [3], and has been proposed as an adjunct therapy in stroke rehabilitation in Western medicine since 1998 [2, 4]. Acupuncture involves stimulation of anatomical locations on the skin by a variety of techniques. The commonest technique used to penetrate the skin is by thin, solid, metallic needles [4]. Acupuncture alters pain threshold via release of neurotransmitters and neuropeptides [5]. Acupuncture also induces changes in regional cerebral blood flow surrounding infarcts [6]. However, to date, no convincing scientific evidence from clinical trials has been published showing acupuncture to be effective as a therapy after stroke in enhancing functional improvement [7-10]. Furthermore, the neural mechanism of acupuncture in stroke patients has not yet been well defined [2].

Functional magnetic resonance imaging (fMRI) studies with healthy subjects have demonstrated cortical activities under acupuncture stimulation. Acupoints, such as Hegu LI-4 and Quchi LI-11, that are considered effective for motor impairment of the upper limbs [11], can trigger activities in the sensorimotor cortex when being stimulated [3, 12]. Hegu is located on the dorsum of the hand, lying between the first and second metacarpal bones, and approximately in the middle of the second metacarpal bone on the radial side. Quchi is located in the depression at the lateral end of the transverse cubital crease at the elbow [11]. These two acupoints have been widely used in stroke rehabilitation studies [13, 14]. The present study was conducted to test the hypothesis that promotion of upper limb function after acupuncture would correlate with an increase in cortical activation in the lesioned hemisphere of chronic stroke patients.

MATERIALS AND METHODS

Subjects

An established stroke database in a regional hospital was screened for suitable subjects. Patients who had suffered from a single episode of stroke with persistent upper limb motor impairment were recruited. All subjects had undergone intensive rehabilitation during the subacute stage of their strokes. As their strokes had occurred more than nine months ago, they were in the chronic stage [15] upon entry into the present study. Altogether fifteen patients were recruited, and 11 of them finished all acupuncture sessions. Demographic data of these 11 patients are summarized in Table 1. The stroke lesions were located in different sites, and the hand region of the primary sensorimotor cortex was spared. Acupuncture treatment was administered by a registered acupuncturist on an out-patient basis in a Traditional Chinese Medicine Research Centre of a convalescent hospital. Each patient received 24 acupuncture treatments which were given 3 times a week over a period of 2 months. In the beginning of acupuncture, the acupoints Hegu LI-4 and Quchi LI-11 were manually stimulated over the impaired arm. The manual stimulation included twisting and up-thrusting of the acupuncture needles. Adequate
stimulation was indicated by achieving the deqi sensation. In traditional Chinese medicine, deqi refers to a composite of unique sensations and is interpreted as a flow of vital energy, called qi [16]. The stimulation of the acupoints was maintained electrically for 30 minutes by an acupunctoscope (Model WQ-6F, Donghua Electronic Instrument Factory, Beijing, China) at a frequency of 2 Hz. During the study period, the patients did not receive any physiotherapy nor occupational therapy.

Tests of impaired upper limb functions and fMRI examinations were conducted at baseline i.e. prior to any study intervention, and as well as 9 weeks after completion of the study intervention. Upper limb functions were tested using validated, internationally recognized neurological scales, including Motricity Index [17] (MI), Fugl-Meyer assessment (FMA) [18] and grip force [19]. MRI was conducted using a 3T clinical MRI scanner (Magnetom Trio Tim syngo, Siemens Medical Solutions, Erlangen, Germany) equipped with echo planar imaging (EPI) protocols and a 12-channel head coil receiver.

The T1-weighted (TR/TE= 566/14ms; flip angle=120°; FOV=230X230mm; slice thickness=3mm contiguous) and T2-weighted (TR/TE= 411/92ms; flip angle=120°; FOV=230X230mm; slice thickness=3mm contiguous) anatomical images, covering the entire cerebral cortex and cerebellum, were obtained in parallel to the intercomissural line for anatomical localization.

Two sets of fMRI data were collected using a T2*-weighted EPI sequence (TR/TE= 3000/30ms; flip angle=90°; FOV=230X230mm; matrix= 64X64; slice thickness=3mm contiguous; 44 slices; 60 time points for a total of 180s). Each EPI sequence was composed of 4 alternating blocks of 45 s each: rest, activation, rest, and activation. The activation of the first set was achieved by using the impaired arm to perform a hand grip task. The activation of the second set was achieved by stimulation of acupoints LI-4 and LI-11.

The study protocol was approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster. Informed consent was obtained from all subjects.

Data Analysis

A. Motor Function Evaluations

Data on motor function assessments before and after acupuncture treatment were compared by paired t-test using the Statistical Package for Social Science software, version 15.0 for Windows (SPSS Inc., Chicago, IL). Data were given in mean±SD. A p-value less than 0.05 was taken to infer statistical significance.

B. Functional Magnetic Resonance Imaging Data

fMRI data were analyzed using SPM2 (Wellcome Department of Cognitive Neurology, London, UK). Contrast images were first created for individual subjects. Next group activations in response to unilateral hand grip movements or acupuncture stimulation of the impaired hand were detected. Group activation images were thresholded at 50 voxels with p-values corrected for multiple comparisons.

Cortical activity during unilateral hand grip task was used to reveal cerebral functional reorganization. It was defined as post-treatment activation exceeded baseline activation using a paired t-test plus an extent threshold of 20 voxels.

To evaluate the influence of acupuncture on motor recovery via cerebral functional reorganization, a conjunction test with family-wise error adjustment plus an extent threshold of 10 voxels was performed to reveal activation sites common to both hand grip task and acupoints stimulation after the course of acupuncture treatment.

Anatomical localization and Brodmann’s area (BA) assignment were done using Montreal Neurological Institute (MNI) Space utility [20].

Table 1. Demographic Data

<table>
<thead>
<tr>
<th>Subject Number</th>
<th>Gender</th>
<th>Age</th>
<th>Chronicity (Months)</th>
<th>Paretic Side</th>
<th>Lesion Sites</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>45</td>
<td>87</td>
<td>Right</td>
<td>Sensorimotor lacunar</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>54</td>
<td>38</td>
<td>Right</td>
<td>Internal capsule</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>58</td>
<td>39</td>
<td>Right</td>
<td>Basal ganglia</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>54</td>
<td>93</td>
<td>Right</td>
<td>Thalamus and internal capsule</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>43</td>
<td>16</td>
<td>Left</td>
<td>Thalamus</td>
<td>I</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>72</td>
<td>18</td>
<td>Right</td>
<td>Corona radiata and bilateral thalami</td>
<td>I</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>66</td>
<td>9</td>
<td>Right</td>
<td>Basal ganglia</td>
<td>H</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>48</td>
<td>25</td>
<td>Right</td>
<td>Internal capsule</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>64</td>
<td>22</td>
<td>Right</td>
<td>Thalamus</td>
<td>I</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>78</td>
<td>12</td>
<td>Right</td>
<td>Basal ganglia</td>
<td>I</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>75</td>
<td>9</td>
<td>Right</td>
<td>Basal ganglia</td>
<td>I</td>
</tr>
</tbody>
</table>

H: hemorrhagic; I: ischemic.
RESULTS

Improved motor functions were documented after acupuncture treatment for 2 months. The MI score was significantly increased from 73±36.1 at baseline to 76±34.1 (paired t-test, p<0.05). The mean FMA score and grip force increased by 1% and 8%, respectively, but these changes did not reach statistical significance.

Group analysis of baseline fMRI data confirmed activation over the precentral gyrus (BA4) of the lesioned hemisphere during the hand grip task performed by the impaired hand (Fig. 1). After acupuncture treatment, the activation volume for the handgrip task was enlarged to include both precentral and postcentral gyri (BA3, BA4, BA6 and BA40) (Fig. 2). In addition, the activation also appeared to be stronger (t-value= 4.02) when compared to the activation at baseline (t-value= 3.26) (Tables 2 and 3). Peak maxima of activations were different between the baseline and post-treatment fMRI scans in the lesioned hemisphere (Tables 2 and 3).

Fig. (1). Activation maps showing significant activation clusters during hand grip task performed by the impaired limb of chronic stroke patients before acupuncture intervention. The numbers below image refer to MNI z-plane coordinates. Each image is 5mm apart from each other. The t score scale is shown in the right lower corner. The left hemisphere of the brain is on the left side of the image.
Conjunction analysis revealed that a small region (15 voxels) in the lesioned sensorimotor area \((x=-40, y=-22, z=-68; \text{BA4})\) was activated both during the hand grip task and acupoints stimulation \((p<0.05)\).

DISCUSSION

The results of this study support the notion that acupuncture applied to chronic stroke patients with persistent upper limb motor impairment may be beneficial. First, improved motor functions were seen after acupuncture treatment. Second, post-treatment fMRI scan showed increased activation in the lesioned motor cortex during the hand grip task.

Improved functions were detected in chronic stroke patients using all three neurological scales, but only the change in MI score reached statistical significance. A larger sample size is necessary to confirm the potential benefit of acupuncture in motor rehabilitation for chronic stroke patients.

Activation of the motor cortex during the hand grip task was different between baseline and post-treatment in three aspects. First, post-treatment motor cortical activation was larger in volume. Second, post-treatment activation was stronger in magnitude. Third, the peak maxima were differentially localized. A larger and stronger activation is a positive indication of dynamic brain reorganization in order to enhance motor recovery of the impaired upper limb [21]. Displacement of coordinates of the peak maxima may represent cortical rewiring to access the undamaged corticospinal pathways in order to facilitate motor control [22-24]. These observed changes from fMRI scans are in line with the important role of brain plasticity in functional recovery.

A brain imaging study that used single-photon emission computed tomography has shown that acupuncture increases activity in peri-infarct regions within the motor cortex of stroke patients [6]. In the present study, conjunction analysis...
demonstrated common regions that are activated during either acupuncture stimulation or hand grip task. This is in support of the ability of our selected acupoints to promote motor functional recovery via stimulation of relevant brain areas. Activations induced by our selected acupoints are similar to those seen in a previous study [25], and there is some discrepancies because the previous study stimulated one acupoint instead of stimulation over two acupoints in the present study. The precise mechanism underlying the effect of acupuncture in motor recovery after stroke is unknown. To the best of our knowledge, this is the first report on longitudinal changes in fMRI signals of chronic stroke patients. Clinical efficacy of acupuncture in stroke rehabilitation in the chronic phase is yet to be confirmed in a controlled clinical trial using a larger sample size. However, the effectiveness of acupuncture is suggested by the present results, as acupuncture stimulation on well recognized motor-implicated acupoints Hegu LI-4 [13, 26-28] and Quchi LI-11 [13, 27-30] was the sole intervention applied during the study period to our clinically stable chronic stroke patients. Such a setting cannot be applied to studies on stroke patients at acute or subacute phase [13, 14, 30, 31] because of ethical considerations. Studies performed to date have been comparisons between acupuncture plus conventional rehabilitation therapy and conventional rehabilitation therapy alone. The effect of acupuncture alone is not easily demonstrable because its beneficial effect would be confounded by the concurrent conventional rehabilitation therapy [9]. However, natural or spontaneous reorganization during the intervention period cannot be ruled out due to the absence of control group in the present study.

In conclusion, this case series was performed to study the effectiveness of acupuncture for motor recovery in patients with chronic stroke. After the intervention, our results showed improved motor functions in the impaired upper limb. fMRI data revealed a larger and stronger activation in the lesioned sensorimotor motor cortex. Modulations of the motor cortex using acupuncture intervention were also seen. However, absence of a control group of patients is a limitation of our study. Further randomized controlled studies are needed to more thoroughly investigate the efficacy of acupuncture in patients with acute or chronic stroke.

ACKNOWLEDGEMENTS

We are grateful to Mr. Raymond Lee and his colleagues at Hong Kong Sanatorium & Hospital MRI centre for their assistance in data collection. We would thank Dr. S.W. Choi for editing the first draft of this manuscript. This study was supported by a General Research Fund from Research Grants Council, HKSAR (HKU7379/04M) and a research grant from Tung Wah Group of Hospitals (20004428). The work forms part of the PhD thesis submitted to the University of Hong Kong by Anson C.M. Chau.
REFERENCES

