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Discussion on the paper “Analyzing short time series data from peri-

odically fluctuating rodent populations by threshold models: A nearest
block bootstrap approach”

LI W.K. & LI GuoDong
Department of statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong, China

(email: hrntlwk@hku.hk, ligd@graduate.hku.hk)

The authors are to be congratulated for an innovative paper in terms of both modelling method-
ology and subject matter significance. The analysis of short time series is known to be difficult
even for linear models. In case that nonlinearity is present, the TAR or CTAR models are clearly
obvious choices for describing the dependence structure in the data because of their structural
simplicity and interpretability. This is well demonstrated in the present paper. Nevertheless,
there are viable alternatives that may offer a somewhat different view and interpretation of the
data. One example is the mixture type of models in [1, 2] . Wong and Li[1] considered a mix-
ture autoregressive model of K components that can be represented, in terms of its conditional
cumulative distribution F (·), as follows:

F (xt|Ft−1) =
K∑

k=1

αkΦ
(

xt − φk0 − φk1xt−1 − · · · − φkpk
xt−pk

σk

)

, (1)

where Φ(·) is the cumulative distribution function of the standard normal distribution, Ft−1 is
the information set up to time t − 1, α1 + · · · + αK = 1, αk > 0, k = 1, . . . , K. Clearly Φ(·)
can be replaced by other cumulative distribution functions. The αk’s in (1) can also be made
to depend on previous observations of xt or other variables (see [2]). For example, when K = 2
we may have

log
(

α1,t

α2,t

)

= β0 + β1v1t + · · · + βmvmt,

where α1,t and α2,t are the mixing proportions in

F (xt|Ft−1, Ωt) =
2∑

k=1

αk,tΦ(ek,t/σk), ekt = xt − ϕk0 −
pk∑

i=1

ϕkixt−i,

and Ωt is the information at time t generated by v1t, . . . , vmt. Note that {vit} could be a subset
of {xt, xt−1, . . .}. This results in a dynamic mixture autoregressive model. Extensions to
mixture autoregressive conditional heteroscedasticity (ARCH) models and generalized ARCH
(GARCH) models can be found in [3, 4]. A multivariate extension can be found in [5]. A
dynamical mixture GARCH model has been considered by Cheng et al.[6].

One advantage of the mixture type of models is that some components of (1) can be non-
stationary on its own but yet the entire series can still be stationary. Another advantage is that
the predictive distribution of xt can be multi-modal but this may not be the case with TAR
models. As pointed out in [1] a multimodal predictive density will be very useful in areas like
financial risk management.

Given the possibility of other alternatives the problem of model selection arises naturally.
However, classical tools like likelihood ratio test may not be applicable because the classes of
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models may not be nested. For non-nested model selection the classical tool, as pointed out by
the authors, has been the Cox statistic[7],

Tf = Lf(α̂) − Lg(β̂) − Eα̂{Lf(α̂) − Lg(β̂)}, (2)

where f(α) and g(β) are probability density functions belonging to two separate and possibly
non-overlapping families and α̂, β̂ are the respective maximum likelihood estimators; Eα̂(·)
denotes expectation under f(α̂). For time series data the null distribution of (2) (under H0 :
f(α) is the correct distributional density) is very difficult to obtain and Li[8,9] advocated the
use of the bootstrap method to estimate the unknown distribution. However, the bootstrap
approach in [8] is based on residuals under the null and alternative hypotheses as in regression
analysis. The Nearest Neighbor Bootstrap seems promising in offering a better approach in
finding an approximate distribution of the Cox-statistic (2). In fact, the bootstrap statistic is
given by

T ∗
f = Lf (α̂∗) − Lg(β̂∗),

where α̂∗ and β̂∗ refers to the respective maximum likelihood estimators for the bootstrapped
time series. Since the bootstrap sample is obtained non-parametrically the resulting statistics
should be more accurate in representing the truth. We therefore look forward to seeing further
development of the theory of NBB methodology by the authors in the future.

Finally, we would like to applaud the authors again for an interesting piece of work.
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