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Fault Detection for Fuzzy Systems With Intermittent
Measurements

Yan Zhao, James Lam, Senior Member, IEEE, and Huijun Gao, Member, IEEE

Abstract—This paper investigates the problem of fault detection
for Takagi–Sugeno (T–S) fuzzy systems with intermittent measure-
ments. The communication links between the plant and the fault de-
tection filter are assumed to be imperfect (i.e., data packet dropouts
occur intermittently, which appear typically in a network environ-
ment), and a stochastic variable satisfying the Bernoulli random
binary distribution is utilized to model the unreliable communica-
tion links. The aim is to design a fuzzy fault detection filter such
that, for all data missing conditions, the residual system is stochasti-
cally stable and preserves a guaranteed performance. The problem
is solved through a basis-dependent Lyapunov function method,
which is less conservative than the quadratic approach. The re-
sults are also extended to T–S fuzzy systems with time-varying
parameter uncertainties. All the results are formulated in the form
of linear matrix inequalities, which can be readily solved via stan-
dard numerical software. Two examples are provided to illustrate
the usefulness and applicability of the developed theoretical results.

Index Terms—Basis-dependent Lyapunov functions, fault de-
tection, intermittent measurements, Takagi–Sugeno (T–S) fuzzy
systems, uncertainties.

I. INTRODUCTION

IN CONTROL systems, due to the unexpected variations
in external surroundings, normal wear in components, or

sudden changes in signals, there may appear different kinds
of malfunction or imperfect behavior in normal operations, and
people call them faults. Since a fault can degrade a system’s per-
formance and even cause catastrophic accidents, it is of great
significance to detect it in time for the safety and reliability of
control systems. The objective of fault detection is to detect the
fault signal accurately whenever it appears. Many researchers
have devoted themselves to investigating this problem, and a lot
of methods have been established, mainly including the model-
based fault detection approach [2], [4], the parameter estima-
tion approach [24], and the generalized likelihood method [30].
Among these methods, the model-based one is very popular,
which is to design a fault detection filter or observer generating a
residual including a threshold to detect the fault signal. In virtue
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of the advancement of modeling and state estimation techniques
[6], [7], [19], [20], model-based fault detection has been well
developed [26]. To mention a few, fault detection problems have
been investigated for sampled-data systems in [9] and [32], un-
certain systems in [1], [11], and [33], systems with time delays
in [10], and Markovian jump linear systems in [14].

Most of the aforementioned results are concerned with linear
models. But in reality, most physical systems are nonlinear, and
thus, how to develop effective fault detection methods for non-
linear systems is an important and practical problem. However,
the difficulty in modeling nonlinearities makes fault detection
a hard task. To solve this problem, some researchers model the
nonlinear plants as differential equations and solve the fault de-
tection problem based on the conventional nonlinear system the-
ory [16], whose limitations often do not generalize the obtained
results. Other researchers take the advantage of artificial intel-
ligence techniques [23], and use the conventional fuzzy models
to represent the nonlinear systems by applying the inference
engine. It is worth mentioning that there are no systematic and
consistent approaches for the stability and performance analysis
of those conventional fuzzy systems, and hence, the applicabil-
ity of those results is also limited.

In recent years, Takagi–Sugeno (T–S) fuzzy models are play-
ing more and more important roles in dealing with problems
concerning nonlinear systems [3]. It has been proven that T–S
fuzzy systems with affine terms can smoothly approximate any
nonlinear functions to any specified accuracy within any com-
pact set, which provides a theoretical foundation for using T–S
fuzzy models to represent complex nonlinear systems approx-
imately. Meanwhile, T–S fuzzy models formulate the complex
nonlinear systems into a framework that interpolates some affine
local models by a set of fuzzy membership functions. Based on
this framework, a systematic analysis and design procedure for
complex nonlinear systems can be possibly developed in view
of the powerful control theories and techniques in linear sys-
tems. The T–S fuzzy model has attracted great interests from
researchers, and a number of results have been reported in lit-
eratures, including stability analysis [13], [27], stabilizing and
H∞ control design [12], [21], [34], and state estimation [35].
Since T–S fuzzy models have provided a convenient way to
study nonlinear systems, a feasible solution of the fault detec-
tion problem for nonlinear systems can be converted to that of
fault detection for T–S fuzzy systems [17].

On the other hand, data packet dropout phenomena may often
appear in many practical situations, i.e., some measurements
or control inputs may be lost during the transmission. This
problem has attracted more and more attention as the insertion
of networked control systems (NCSs) in the control loops
becomes popular [15]. Compared with the traditional point-to-
point communication bus, NCSs have several advantages such

1063-6706/$25.00 © 2009 IEEE
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as low cost, reduced weight and power requirements, simple
installation and maintenance, and high reliability. However,
in an NCS, since several components communicate over a
shared network, information flows are prone to the curse of
time sharing, and data loss always inevitably occurs from the
plant to the filter or controller. Since data packet dropout can
degrade a system’s performance and even cause instability,
it has been regarded as an important issue in the analysis
and synthesis of network-based control systems, and some
researchers have begun to study various problems of control
systems, simultaneously considering this communication
issue [28]. It is noted that most investigations concerning the
data loss phenomenon are focused on the stability analysis and
synthesis, and the plants are mostly linear. To the best of the
our knowledge, there are no results about the fault detection
problem for nonlinear systems with intermittent measurements.

Motivated by the aforementioned observations, in this pa-
per, we investigate the problem of fault detection for T–S fuzzy
systems with intermittent measurements. The measurements be-
tween the plant and the fault detection filter are assumed to be
intermittent, and a stochastic variable is utilized to describe
the imperfect communication links. Attention is focused on the
fuzzy fault detection filter design such that the residual sys-
tem is stochastically stable with the prescribed performance. A
basis-dependent Lyapunov function is utilized in the derivative
process, which renders the results to be potentially less con-
servative. Furthermore, the results are extended to T–S fuzzy
systems with time-varying uncertainties. All the results are for-
mulated in the form of linear matrix inequalities (LMIs). Two
examples are illustrated to show the usefulness and applicability
of the obtained results.

The remainder of the paper is organized as follows. Section II
formulates the problem under consideration. Section III presents
the fault detection filter design for the nominal fuzzy system,
and the results are extended to the fuzzy system with time-
varying uncertainties in Section IV. Two examples are illustrated
in Section V to show the usefulness and applicability of the
proposed approaches, and the paper is concluded in Section VI.

The notation used throughout the paper is fairly stan-
dard. The superscript “T ” stands for matrix transposition, R

n

denotes the n-dimensional Euclidean space, 0 represents the
zero matrix with appropriate dimensions, the notation P > 0
(≥ 0) means that P is real symmetric and positive definite
(semidefinite), l2 [0,∞) is the space of square-integrable vector
functions over [0,∞), and ‖ · ‖2 stands for the usual l2 [0,∞)
norm. In symmetric block matrices or complex matrix expres-
sions, we use an asterisk (∗) to represent a term that is induced by
symmetry and diag{. . .} stands for a block-diagonal ma-
trix. In addition, E{x} and E{x| y} will, respectively, mean
expectation of x and expectation of x conditional on y. Matri-
ces, if their dimensions are not explicitly stated, are assumed to
be compatible for algebraic operations.

II. PROBLEM FORMULATION

Consider the fault detection problem for T–S fuzzy systems
with intermittent measurements. The physical plant is repre-

sented by a T–S fuzzy model, and the signal transmissions ex-
isting between the plant and the fault detection filter are inter-
mittent.

A. Physical Plant

The nonlinear discrete-time system whose faults are to be
detected is represented by the following T–S fuzzy model.

Plant rule i: IF θ1(k) is Mi1 and θ2(k) is Mi2 and · · · and
θp(k) is Mip , THEN

xk+1 = (Ai + ∆Ai(k)) xk + (Bi + ∆Bi(k)) uk

+ E1iwk + E2ifk

yk = Cixk + Diuk + F1iwk + F2ifk ,

i = 1, . . . , r (1)

where Mij is the fuzzy set, xk ∈ R
np is the state vector; r

is the number of IF–THEN rules, θ(k) = [θ1(k), θ2(k), . . . ,
θp(k)] is the premise variable vector, uk ∈ R

m is the deter-
ministic input vector, wk ∈ R

p is the exogenous disturbance
input that belongs to l2 [0,∞), and fk ∈ R

q is the fault vector
that is also deterministic. Without the loss of generality, we as-
sume that the l2 norms of uk and fk exist and are bounded.
Ai,Bi, E1i , E2i , Ci,Di, F1i , and F2i are known constant ma-
trices with appropriate dimensions, ∆Ai(k) and ∆Bi(k) denote
the uncertainties in the model and are of the form

∆Ai(k) = NiZ(k)Qai ∆Bi(k) = NiZ(k)Qbi,

i = 1, . . . , r (2)

where Ni ∈ R
np ×nz , Qai ∈ R

nz ×np , and Qbi ∈ R
nz ×m are

known constant matrices, and Z(k) ∈ R
nz ×nz is an un-

known time-varying matrix with Lebesgue measurable elements
bounded by

ZT (k)Z(k) ≤ I. (3)

Given a pair of (xk , uk ), the overall fuzzy system is inferred
as

xk+1 =
r∑

i=1

hi(θ(k))[(Ai + ∆Ai(k))xk + (Bi + ∆Bi(k))uk

+ E1iwk + E2ifk ]

yk =
r∑

i=1

hi(θ(k))[Cixk + Diuk + F1iwk + F2ifk ] (4)

where hi(θ(k)) = ωi(θ(k))/
∑r

i=1 ωi(θ(k)) and ωi(θ(k)) =∏p
j=1 Mij (θj (k)), with Mij (θj (k)) representing the grade of

membership of θj (k) in Mij . Then, it can be seen that

ωi(θk ) ≥ 0, i = 1, 2, . . . , r,

r∑
i=1

ωi(θk ) > 0

for all k.

B. Fault Detection Filter

One key step of fault detection is the generation of a residual
signal, which must be sensitive to faults. This is often realized
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by utilizing fault detection observers [25], [26], [33] or filters
[10], [14], [20], [33]. Since disturbances often inevitably appear
in many systems, the residual signal must also be capable of
distinguishing faults from exogenous signals. H∞ filter can not
only describe the estimated signal accurately but also suppress
the disturbance effectively. Thus, for the physical plant with
disturbance in (1), we adopt the following fuzzy fault detection
filter form, whose role is to generate residual signal based on
the input yf k .

Filter Rule i: IF θ1(k) is Mi1 and θ2(k) is Mi2 and · · · and
θp(k) is Mip , THEN

x̂k+1 = Af ix̂k + Bf iyf k

rk = Cf ix̂k + Df iyf k

i = 1, . . . , r. (5)

Here, x̂k ∈ R
nf and rk ∈ Rq , and Af i, Bf i, Cf i , and Df i are

to be determined. Thus, the filter can be represented by the
following form:

x̂k+1 =
r∑

i=1

hi(θ(k)) (Af ix̂k + Bf iyf k )

rk =
r∑

i=1

hi(θ(k)) (Cf ix̂k + Df iyf k ) . (6)

C. Communication Links

In this paper, we assume that a communication medium exists
between the physical plant and the fault detection filter, and
the data packet dropout phenomenon happens intermittently.
Therefore, the measurement of the plant is no longer equivalent
to the input of the filter (i.e., yk �= yf k ). A stochastic process is
utilized to model the data loss phenomenon, i.e.

yf k = αkyk (7)

where αk is a Bernoulli process. When the link fails (i.e., data
are lost), αk = 0, and when the transmission is perfect, αk = 1.
A natural assumption on αk can be made as

Prob {αk = 1} = E {αk} = ᾱ Prob {αk = 0} = 1 − ᾱ

where ᾱ is assumed to be known. Based on this, we have

x̂k+1 =
r∑

i=1

hi(θ(k)) (Af ix̂k + αkBf iyk )

rk =
r∑

i=1

hi(θ(k)) (Cf ix̂k + αkDf iyk ) . (8)

Remark 1: The description of imperfect communication links
existing between the plant and the fault detection filter follows
that in the previous literature [28], [29]. The process of missing
data considered is assumed to satisfy the Bernoulli distributed
process. The probability distribution of the process is estimated
based on experimental measurements of data transmitting from
output of the plant to the input of the fault detection filter. This
can be achieved by sending a sequence of indexed data through
the communication medium and measuring the data dropout

characteristics. The inferred statistics of the Bernoulli process
will then be used for designing the fault detection filter.

D. Fault Weighting System

In fault detection, a reference residual model is usually needed
to describe the desired behavior of the residual vector rk . In this
paper, the reference model is chosen as f̄ (z) = W (z) f (z)
[33], where W (z) is given a priori. The choice of Wz is to
impose frequency weighting on the spectrum of the fault signal
for detection. Here, we choose a stable matrix W (z) to weight
the fault signal fk [33], whose state-space realization is

x̄k+1 = AW x̄k + BW fk

f̄k = CW x̄k + DW fk (9)

where x̄k ∈ R
nW and AW,BW,CW , and DW are priorly chosen.

E. Residual Evaluation

The residual evaluation function is to evaluate the generated
residual. After the residual signal being constructed, a residual
evaluation value will be computed through a prescribed evalua-
tion function, and it will be compared with a predefined thresh-
old. When the evaluation value is larger than the threshold, an
alarm of fault is generated. Here, we consider the following
evaluation function:

‖r‖T
�
=

1
T

√√√√ t2∑
k=t1

rT
k rk T = t2 − t1 + 1.

Choose a threshold Jth > 0, and for the detailed discussion of
the threshold Jth , readers are referred to [1] and [5]. The residual
evaluation function value and the threshold satisfy the following
relationship:{ ‖r‖T > Jth =⇒ with faults =⇒ alarm

‖r‖T ≤ Jth =⇒ no faults.

F. Residual System

From (4), (5), and (9), the residual system can be obtained as

ξk+1 =
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))

× [Ãij ξk + B̃ijϑk + α̃k Ā1ij ξk + α̃k B̄1ij ϑk ]

ek =
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))

×
[
C̄ij ξk + D̄ijϑk + α̃k C̄1ij ξk + α̃k D̄1ij ϑk

]
(10)

where

ξk = [ x̄T
k xT

k x̂T
k ]T ϑk = [uT

k wT
k fT

k ]T

ek = rk − f̄k , Ãij =


AW 0 0

0 Ai + ∆Ai(k) 0
0 ᾱBf iCj Af i



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B̃ij =




0 0 BW

Bi + ∆Bi(k) E1i E2i

ᾱBf iDj ᾱBf iF1j ᾱBf iF2j




Ā1ij =


 0 0 0

0 0 0
0 Bf iCj 0




B̄1ij =


 0 0 0

0 0 0
Bf iDj Bf iF1j Bf iF2j




C̄ij = [−CW ᾱDf iCj Cf i ]

D̄ij = [ ᾱDf iDj ᾱDf iF1j ᾱDf iF2j − DW ]

C̄1ij = [ 0 Df iCj 0 ]

D̄1ij = [Df iDj Df iF1j Df iF2j ]

α̃k = αk − ᾱ, E{α̃k} = 0 and E{α̃k α̃k} = ᾱ(1 − ᾱ).
The residual system presents the difference between the gen-

erated residual and the idealized reference residual signal. By
minimizing the H∞ norm of the difference, the effect of the dis-
turbance can be minimized and the sensitivity of the residual to
fault can be maximized [1], [18], [33]. Therefore, design of the
fault detection filter can be converted as an H∞ model matching
problem [33].

Then, the problem to be addressed in this paper is expressed
as follows.

Problem: Fuzzy fault detection with intermittent measure-
ments (FFDIMs): Consider the fuzzy system in (4), and suppose
that the intermittent transmission parameter ᾱ is known. Given
a scalar γ > 0, design a fuzzy fault detection filter in the form
of (5) such that:

1) the residual system in (10) is stochastically stable; and
2) under zero initial conditions, the residual error ek satisfies

‖e‖E ≤ γ‖ϑ‖2 (11)

where ‖e‖E
�
= E{

√∑∞
k=0 eT

k ek} and ‖ϑ‖2
�
= (

∑∞
k=0 ϑT

k

ϑk )
1
2 . It is noted that the l2 norm of ϑk exists and is

bounded since its constituent variables are all l2 norm
bounded.

Before proceeding further, we first introduce the following
definition.

Definition 1: The residual system in (10) is said to be stochas-
tically stable in the mean square (ϑk ≡ 0) if there exists a finite
V > 0 independent of ξ0 , such that for any initial condition
ξ0E{

∑∞
k=0 ξT

k ξk |ξ0} < ξT
0 V ξ0 .

Remark 2: Different statements of stochastic stability defini-
tions are presented in [22], which serve for different systems.
They have the same criterion that the expectation values of all
the solutions of the system must be energy-bounded when the
operation time is infinite. The solutions are generally dependent
on initial conditions or other elements, and thus, the condition

expectation is often used. The definition proposed here also
obeys the criterion.

III. FUZZY FAULT DETECTION FILTER DESIGN

FOR NOMINAL SYSTEMS

In this section, the FFDIM problem is solved for the nominal
fuzzy system in (12). The fault detection analysis problem is first
solved, and then, based on that, a full-rank fault detection filter
is designed (i.e., nf = np + nW ). The fuzzy basis-dependent
technique is utilized, which potentially reduces the conservatism
of the obtained results.

The nominal system of (4) takes the following form:

xk+1 =
r∑

i=1

hi(θ(k)) [Aixk + Biuk + E1iwk + E2ifk ]

yk =
r∑

i=1

hi(θ(k)) [Cixk + Diuk + F1iwk + F2ifk ] (12)

and the nominal residual fuzzy system is given by

ξk+1 =
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))

×
[
Āij ξk + B̄ijϑk + α̃k Ā1ij ξk + α̃k B̄1ij ϑk

]
ek =

r∑
i=1

r∑
j=1

hi(θ(k))hj (θ(k))

×
[
C̄ij ξk + D̄ijϑk + α̃k C̄1ij ξk + α̃k D̄1ij ϑk

]
(13)

where

Āij =




AW 0 0

0 Ai 0

0 ᾱBf iCj Af i




B̄ij =




0 0 BW

Bi E1i E2i

ᾱBf iDj ᾱBf iF1j ᾱBf iF2j


 .

A. Fault Detection Analysis

In this section, we assume that the fault detection filter matri-
ces in (5) are known, and the conditions are investigated under
which the residual system is stochastically stable and guarantees
the performance defined in (11). The following theorem tells us
that the performance of the residual system can be guaranteed
if there exist some matrices satisfying certain LMIs.

Theorem 1: Consider the fuzzy system in (12) and suppose the
fault detection filter matrices Af i, Bf i, Cf i , and Df i in (6) are
known. The residual system in (13) is stochastically stable with
a guaranteed performance γ if there exist n-dimensional matri-
ces Pl > 0 for l = 1, . . . , r, where n = nf + nW + np , and an
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n-dimensional matrix G satisfying the following inequality:


Πl 0 0 0 GT Āij GT B̄ij

∗ Πl 0 0 fGT Ā1ij fGT B̄1ij

∗ ∗ −I 0 C̄ij D̄ij

∗ ∗ ∗ −I fC̄1ij fD̄1ij

∗ ∗ ∗ ∗ −Pi 0
∗ ∗ ∗ ∗ ∗ −γ2I




< 0

i, j, l = 1, . . . , r (14)

where f =
√

ᾱ (1 − ᾱ) and Πl = Pl − G − GT .
Proof: Suppose there exist real symmetric positive definite

matrices Pl for l = 1, . . . , r and a nonsingular matrix G satis-
fying (14). Noting the inequality (Pl − G)T P−1

l (Pl − G) ≥ 0
implies Pl − G − GT ≥ −GT P−1

l G, which together with (14)
yields



Π̃i 0 0 0 GT Āij GT B̄ij

∗ Π̃i 0 0 fGT Ā1ij fGT B̄1ij

∗ ∗ −I 0 C̄ij D̄ij

∗ ∗ ∗ −I fC̄1ij fD̄1ij

∗ ∗ ∗ ∗ −Pi 0
∗ ∗ ∗ ∗ ∗ −γ2I




< 0 (15)

where Π̃l = −GT P−1
l G.

Pre- and postmultiplying diag
{
G−T ,G−T , I, I, I, I

}
and

diag
{
G−1 , G−1 , I, I, I, I

}
to (15) and by Schur complement,

we have[
ĀT

ij fĀT
1ij

B̄T
ij fB̄T

1ij

][
Pl 0
0 Pl

][
Āij B̄ij

fĀ1ij fB̄1ij

]
+
[

C̄T
ij fC̄T

1ij

D̄T
ij fD̄T

1ij

]

×
[

C̄ij D̄ij

fC̄1ij fD̄1ij

]
−

[
Pi 0
∗ γ2I

]
< 0. (16)

Now, we first prove the stochastic stability of the residual system
in (13). Define an index as

J =E

{
ξT
k+1

r∑
l=1

hl(θ(k+1))Plξk+1

∣∣∣∣∣ξk

}
− ξT

k

r∑
i=1

hi(θ(k))Piξk .

(17)
When ϑk ≡ 0, along the nominal system in (13), J gives

J = E




r∑
l=1

hl(θ(k + 1))
r∑

i=1

r∑
j=1

r∑
s=1

r∑
t=1

hi(θ(k))hj (θ(k))

×hs(θ(k))ht(θ(k))
[
Āij ξk + α̃k Ā1ij ξk

]T
Pl

×
[
Āstξk + α̃k Ā1stξk

]∣∣ ξk

}
− ξT

k

r∑
i=1

hi(θ(k))Piξk

≤ ξT
k

r∑
l=1

hl(θ(k + 1))
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))

×
{
ĀT

ijPlĀij + ᾱ (1 − ᾱ) ĀT
1ijPlĀ1ij − Pi

}
ξk . (18)

Define

Ψ̄ij l = ĀT
ijPlĀij + ᾱ (1 − ᾱ) ĀT

1ijPlĀ1ij − Pi

Ψ(k) =
r∑

l=1

hl(θ(k + 1))
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))Ψ̄ij l .

Then, the derivative process in (18) concludes J ≤ ξT
k Ψ(k)ξk ,

i.e.

E

{
ξT
k+1

r∑
l=1

hl(θ(k + 1))Plξk+1

∣∣∣∣∣ ξk

}

− ξT
k

r∑
i=1

hi(θ(k))Piξk ≤ ξT
k Ψ(k)ξk . (19)

Taking mathematical expectation and summing up the terms on
both sides of (19) for k = 0, . . . , β, for any β > 1, we have

E

{
ξT
β+1

r∑
l=1

hl(θ(β + 1))Plξβ+1

}
− ξT

0

r∑
i=1

hi(θ(0))Piξ0

≤ E




β∑
k=0

r∑
l=1

hl(θ(β+1))
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))ξT
k Ψ̄ij lξk




≤ E




β∑
k=0

r∑
l=1

hl (θ (β + 1))
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))

×
(
λmax

(
Ψ̄ij l

)
ξT
k ξk

)}

= E

{
β∑

k=0

max
i,j,l=1,...,r

(
λmax

(
Ψ̄ij l

))
ξT
k ξk

}
.

From the aforementioned inequalities, it is not difficult to con-
clude that, for i, j, l = 1, . . . , r and β, the following inequality
is true:

E
{
ξT
β+1Plξβ+1

}
− ξT

0 Piξ0

≤ max
i,j,l=1,...,r

(
λmax

(
Ψ̄ij l

))
E

{
β∑

k=0

ξT
k ξk

}
.

When β → ∞, we obtain

E
{
ξT
∞Plξ∞

}
− ξT

0 Piξ0

≤ max
i,j,l=1,...,r

(
λmax

(
Ψ̄ij l

))
E

{ ∞∑
k=0

ξT
k ξk

}
.

Considering nonzero initial condition and E
{
ξT
∞Plξ∞

}
≥ 0,

we have

E

{ ∞∑
k=0

ξT
k ξk

∣∣∣∣∣ ξ0

}
≤

(
− max

i,j,l=1,...,r
(λmax(Ψ̄ij l))

)−1
ξT
0 Piξ0

≤ ξT
0

(
−
(

max
i,j,l=1,...,r

(λmax(Ψ̄ij l))
)−1

max
i=1,...,r

(λmax(Pi))
)
ξ0

= σξT
0 ξ0
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where

σ
�
= −

(
max

i,j,l=1,...,r
(λmax(Ψ̄ij l))

)−1
max

i=1,...,r
(λmax(Pi))

and ξ0 is the initial condition. From (1, 1) block in the left side
of (16), Ψ̄ij l < 0 is obtained, and thus, σ > 0. According to
Definition 1, the residual system is stochastically stable in the
mean square.

Next, we prove that the performance defined in (11) is guar-
anteed. To this end, assume zero initial condition and ϑk �= 0.
An index is introduced as

J̄ = E

{
ξT
k+1

r∑
l=1

hl(θ(k + 1))Plξk+1

∣∣∣∣∣ ξk

}

− ξT
k

r∑
i=1

hi(θ(k))Piξk + E
{

eT
k ek

∣∣ ξk

}
− γ2ϑT

k ϑk . (20)

Along the nominal system in (13), we have

E

{
ξT
k+1

r∑
l=1

hl(θ(k + 1))Plξk+1

∣∣∣∣∣ ξk

}

= E




r∑
l=1

hl(θ(k + 1))
r∑

i=1

r∑
j=1

r∑
s=1

r∑
t=1

hi(θ(k))hj (θ(k))

×hs(θ(k))ht(θ(k))ηT
k

([
ĀT

ij

B̄T
ij

]
+ α̃k

[
ĀT

1ij

B̄T
1ij

])

×Pl ([ Āst B̄st ] + α̃k [ Ā1st B̄1st ]) ηk

∣∣∣∣∣ ξk

}

≤
r∑

l=1

hl(θ(k + 1))
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))ηT
k

×
{[

ĀT
ij

B̄T
ij

]
Pl [ Āij B̄ij ] + f 2

[
ĀT

1ij

B̄T
1ij

]
Pl [ Ā1ij B̄1ij ]

}
ηk

E
{

eT
k ek

∣∣ ξk

}

= E




r∑
i=1

r∑
j=1

r∑
s=1

r∑
t=1

hi(θ(k))hj (θ(k))

×hs(θ(k))ht(θ(k))ηT
k

([
C̄T

ij

D̄T
ij

]
+ α̃k

[
C̄T

1ij

D̄T
1ij

])

× ([ C̄st D̄st ] + α̃k [ C̄1st D̄1st ]) ηk

∣∣∣∣∣ ξk

}

≤ ηT
k

r∑
i=1

r∑
j=1

hi(θ(k))hj (θ(k))

×
([

C̄T
ij

D̄T
ij

]
[ C̄ij D̄ij ] + f 2

[
C̄T

1ij

D̄T
1ij

]
[ C̄1ij D̄1ij ]

)
ηk

(21)

where ηk = [ ξT
k ϑT

k ]T . By substituting (21) into (20), the
following holds:

J̄ ≤
r∑

l=1

hl(θ(k + 1))
r∑

i=1

r∑
j=1

hi(θ(k))hj (θ(k))

× ηT
k

{[
ĀT

ij

B̄T
ij

]
Pl [ Āij B̄ij ] + f 2

[
ĀT

1ij

B̄T
1ij

]
Pl

× [ Ā1ij B̄1ij ] +

[
C̄T

ij

D̄T
ij

]
[ C̄ij D̄ij ]

+ f 2

[
C̄T

1ij

D̄T
1ij

]
[ C̄1ij D̄1ij ]

}
ηk − ηT

k

[
Pi 0
0 γ2I

]
ηk

which leads to J̄ ≤ 0 by consideration of (16), i.e.

E

{
ξT
k+1

r∑
l=1

hl(θ(k + 1))Plξk+1

∣∣∣∣∣ ξk

}
− ξT

k

r∑
i=1

hi(θ(k))Piξk

+ E
{

eT
k ek

∣∣ ξk

}
− γ2ϑT

k ϑk ≤ 0. (22)

Taking mathematical expectation on both sides of (22), we
obtain

E

{
ξT
k+1

r∑
l=1

hl(θ(k + 1))Plξk+1

}

− E

{
ξT
k

r∑
i=1

hi(θ(k))Piξk

}
+ E{eT

k ek} − γ2ϑT
k ϑk ≤ 0.

For k = 0, 1, 2, . . . , summing up both sides of the afore-
mentioned inequality, considering zero initial condition and
E{ξT

∞
∑r

i=1 hi(θ(∞))Piξ∞} > 0, we have

E

{ ∞∑
k=0

eT
k ek

}
− γ2

∞∑
k=0

ϑT
k ϑk ≤ 0

which is equivalent to the inequality in (11), and thus, the proof
is completed. �

Remark 3: Results of fault detection for fuzzy systems provide
feasible solutions to the problem of fault detection for nonlinear
systems [17], which are useful in practice since most physical
systems in the real world are nonlinear. Previous results are
mostly concerned with the perfect communication links. Ac-
tually, in practice, the transmission is often imperfect between
the plant and the filter, i.e., data packet dropout may occur
intermittently, especially in systems based on the network com-
munication links. In this paper, data missing is considered in the
fuzzy model, which makes the obtained results more general
and practical.

B. Fault Detection Filter Design

In this section, the fault detection filter design problem will
be investigated based on Theorem 1, i.e., a method will be
developed to determine the fault detection filter matrices in (5),
such that the residual system in (13) is stochastically stable and
the performance defined in (11) is guaranteed.



404 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 17, NO. 2, APRIL 2009

Theorem 2: Consider the fuzzy system in (12). For a given
positive constant γ, if there exist n-dimensional matrices

P̃l =
[

P̃1l P̃2l

P̃ T
2l P̃3l

]
> 0,

where n = nf + nW + np , matrices Ăf i , B̆f i , C̆f i , and D̆f i ,
for any i, l = 1, . . . , r, and (np + nW )-dimensional matrices
U,X , and W satisfy the following inequality:

Φij l =




Θl 0 0 0 Θ15ij Θ16ij

∗ Θl 0 0 Θ25ij Θ26ij

∗ ∗ −I 0 Θ35ij Θ36ij

∗ ∗ ∗ −I Θ45ij Θ46ij

∗ ∗ ∗ ∗ Θ55i 0
∗ ∗ ∗ ∗ ∗ −γ2I




< 0

i, j, l = 1, . . . , r (23)

where

Θl = P̃l − Ω − ΩT Ω =
[

U X
WT WT

]

Θ15ij =
[

UT Ăi + ᾱB̆f iC̆j Ăf i

XT Ăi + ᾱB̆f iC̆j Ăf i

]
Θ25ij =

[
fB̆f iC̆j 0
fB̆f iC̆j 0

]

Θ45ij = [ fD̆f iC̆j 0 ] Θ35ij = [ ᾱD̆f iC̆j − CW C̆f i ]

Θ55i =
[
−P̃1i −P̃2i

−P̃ T
2i −P̃3i

]
Θ16ij =

[
UT B̆1i + ᾱB̆f iD̆j

XT B̆1i + ᾱB̆f iD̆j

]

Θ26ij =
[

fB̆f iD̆j

fB̆f iD̆j

]
Θ36ij =

[
ᾱD̆f iD̆j − D̆W

]

Θ46ij = fD̆f iD̆j Ăi =
[

AW 0
0 Ai

]

B̆1i =
[

0 0 BW

Bi E1i E2i

]
D̆f i = Df i C̆i = [ 0 Ci ]

D̆i = [Di F1i F2i ] D̆W = [ 0 0 DW ] . (24)

then there exists a fuzzy fault detection filter in the form of
(6), such that the residual system in (13) is stochastically stable
with the performance γ defined in (11). Moreover, if the afore-
mentioned conditions are satisfied, the matrices for the fault
detection filter in (6) are given by[

Af i Bf i

Cf i Df i

]
=

[
G−T

4 0
0 I

] [
Ăf i B̆f i

C̆f i D̆f i

] [
V −1 0
0 I

]
(25)

with G4 and V being nonsingular matrices and satisfying W =
GT

4 V .
Proof: Suppose there exist real symmetric positive definite

matrices P̃l for l = 1, . . . r, matrices U,X , and W satisfy (23).

From (23), we know that

P̃l < Ω + ΩT

which implies Ω and W are nonsingular. One can always find
square and nonsingular matrices G3 and G4 such that W =
GT

4 G−1
3 G4 . Let

G1 = U X = GT
2 G−1

3 G4 V = G−1
3 G4 G =

[
G1 G2
G4 G3

]
(26)

and define a transposition matrix

T =
[

I 0
0 G−1

3 G4

]
. (27)

Without loss of generality, we can assume[
P̃1i P̃2i

P̃ T
2i P̃3i

]
= TT PiT. (28)

From (25) and (26), we know that[
Ăf i B̆f i

C̆f i D̆f i

]
=

[
GT

4 0
0 I

] [
Af i Bf i

Cf i Df i

] [
G−1

3 G4 0
0 I

]
.

(29)
Substituting (26)–(29) into (23), we have

Θl = TT
(
Pl − G − GT

)
T = P̃l − Ω − ΩT

Θ15ij =

[
GT

1 Ăi + ᾱGT
4 Bf iC̆j GT

4 Af iG
−1
3 G4

GT
4 G−T

3 G2Ăi + ᾱGT
4 Bf iC̆j GT

4 Af iG
−1
3 G4

]

Θ25ij =

[
fGT

4 Bf iC̆j 0

fGT
4 Bf iC̆j 0

]
Θ45ij = [ fDf iC̆j 0 ]

Θ35ij = [ ᾱDf iC̆j − CW Cf iG
−1
3 G4 ]

Θ55ij = TT

[
−P1i −P2i

−PT
2i −P3i

]
T

Θ16ij =

[
UT B̆1i + ᾱGT

4 Bf iD̆j

GT
4 G−T

3 G2B̆1i + ᾱGT
4 Bf iD̆j

]

Θ26ij =

[
fGT

4 Bf iD̆j

fGT
4 Bf iD̆j

]
Θ36ij =

[
ᾱDf iD̆j − D̆W

]

Θ46ij = fDf iD̆j .

Then, one can conclude that the inequality in (23) is equiv-
alent to (30), as shown at the bottom of this page, which
clearly guarantees the inequality in (14). Thus, the proof is
completed. �

Remark 4: Without loss of generality, we assume the number
of rows in CW is nCW

. Then, the two identity matrices in (3,3)




TT 0 0 0 0 0
0 TT 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 TT 0
0 0 0 0 0 I







Πl 0 0 0 GT Āij GT B̄ij

∗ Πl 0 0 fGT Ā1ij fGT B̄1ij

∗ ∗ −I 0 C̄ij D̄ij

∗ ∗ ∗ −I fC̄1ij fD̄1ij

∗ ∗ ∗ ∗ −Pi 0
∗ ∗ ∗ ∗ ∗ −γ2I







T 0 0 0 0 0
0 T 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 T 0
0 0 0 0 0 I


 < 0 (30)
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and (4,4) blocks in the left side of (14) are nCW
-dimensional, and

the identity matrix in (6,6) block is (m + p + q)-dimensional,
which are same as those of the identity matrices in (15) and (23).

Remark 5: After the variables Ăf i , B̆f i , C̆f i , and D̆f i are
obtained from the LMI in (23), we have to perform the decom-
position on the matrix W to obtain the solution in (25). Since
by most matrix decomposition methods G4 and V cannot be
determined uniquely, the solution of (25) is not unique.

Remark 6: Theorem 2 presents the conditions under which the
residual system is stochastically stable and satisfies the guaran-
teed performance γ. The result also covers the case of the per-
fect communication links existing between the physical plant
and the fault detection filter, i.e., there is no data packet dropout
and ᾱ = 1, with Φij l modified as

Φij l =




Θl 0 Θ15ij Θ16ij

∗ −I Θ35ij Θ36ij

∗ ∗ Θ55i 0
∗ ∗ ∗ −γ2I




where Θl ,Θ55i , Ăi , B̆1i , C̆i , D̆i , and D̆W are defined in (24)

Θ15ij =
[

UT Ăi + B̆f iC̆j Ăf i

XT Ăi + B̆f iC̆j Ăf i

]

Θ16ij =
[

UT B̆1i + B̆f iD̆j

XT B̆1i + B̆f iD̆j

]

Θ35ij = [Df iC̆j − CW C̆f i ]

Θ36ij =
[
Df iD̆j − D̆W

]
.

Remark 7: It is noted that (23) is an LMI over both the
matrix variables and the scalar γ. Among those feasible so-
lutions, the best performance scalar γ can be found by solving
an optimization problem in which γ is included as an opti-
mization variable. The minimum [in terms of the feasibility
of (23)] attenuation level of the fault detection filter can be
readily obtained by solving the following convex optimization
problem using LMI Toolbox: minimize γ subject to (23) over
P̃1l , P̃2l , P̃3l , U,X,W, Ăf i , B̆f i , C̆f i , and D̆f i .

IV. FUZZY FAULT DETECTION FILTER DESIGN

FOR UNCERTAIN SYSTEMS

In this section, the results obtained previously for nominal
systems will be extended to fuzzy systems with uncertainties
described in (2), i.e., the fuzzy fault detection filter is designed
for the uncertain fuzzy system in (4), such that the residual
system in (10) is stochastically stable with the performance
defined in (11).

Before proceeding further, we first give the following lemma
that is needed for our subsequent derivation.

Lemma 1 [31]: Given matrices Φ = ΦT , N, Q, and R =
RT > 0 of appropriate dimensions

Φ + NFQ + QT FT NT < 0

for all F satisfying FT F ≤ R, if and only if there exists a scalar
ε > 0, such that

Φ + ε−1NNT + εQT RQ < 0.

Then, we are in a position to give the fault detection filter
design for the fuzzy system with norm bounded uncertainties.

Theorem 3: Consider the fuzzy system in (4). For a given
positive constant γ, if there exist n-dimensional matrices

P̃l =
[

P̃1l P̃2l

P̃ T
2l P̃3l

]
> 0

where n = nf + nW + np , matrices Ăf i , B̆f i , C̆f i , and D̆f i ,
scalars εij l for any i, j, l = 1, . . . , r, and n-dimensional matrices
U,X , and W satisfying the following inequality:[

Φij l + εij lQ̃
T
i Q̃i Ñi

ÑT
i −εij lI

]
< 0 (31)

where

Ñi =
[

0 N̆i

0 0

]
N̆i =

[
UT

XT

] [ [
0
Ni

]
0

[
0
Ni

] ]

Q̃i =
[

0 0
0 Q̆i

]
Q̆i =


 [ 0 Qai ] 0 0

∗ 0 0
∗ ∗ [ Qbi 0 0 ]




and Φij l is defined in Theorem 2, then there exists a fuzzy
fault detection filter in the form of (6), such that the residual
system is stochastically stable with the performance γ defined
in (11). Moreover, if the aforementioned condition is satisfied,
the matrices for the fault detection filter in (6) are given by[

Af i Bf i

Cf i Df i

]
=

[
U−T 0

0 I

] [
Ăf i B̆f i

C̆f i D̆f i

] [
V −1 0
0 I

]
(32)

with G4 and V being nonsingular matrices and satisfying W =
GT

4 V .
Proof: Replacing Ai and Bi in (23) with Ai + NiZ(k)Qai

and Bi + NiZ(k)Qbi , respectively, we have

Φij l + ÑiZ̃(k)Q̃i + (ÑiZ̃(k)Q̃i)T < 0

where Z̃(k) is an appropriate dimensioned block-diagonal ma-
trix with entries Z(k). According to Lemma 1, the aforemen-
tioned inequality holds if

Φij l + ε−1
ij l ÑiÑ

T
i + εij lQ̃

T
i Q̃i < 0

which, by Schur complement, is equivalent to the inequality in
(31). The proof is completed. �

Remark 8: The conditions derived here are based on the basis-
dependent Lyapunov function method, which can potentially
reduce the conservatism of the results. But the computation cost
will be increased at the same time, especially when the number
of fuzzy rules of the plant is large. One way to solve this problem
is to try to reduce the rules in modeling of the physical plant.
However, when the number of fuzzy rules for some complex
nonlinear systems is large and cannot be reduced in fuzzy mod-
eling, we can adopt the quadratic Lyapunov function approach
in solving the fault detection problem. The quadratic approach
can be found in [3] and [27].

In this paper, we utilize the flexible and powerful LMI tool to
solve the fault detection problem, which is preferred by many
researchers [1], [33]. The Schur complement and congruent
transformation are used to convert the H∞ norm constraints



406 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 17, NO. 2, APRIL 2009

into LMIs feasibility conditions, which are actually convex op-
timization problems. Solutions can be determined by solving
those optimization problems via MATLAB toolbox.

V. ILLUSTRATIVE EXAMPLES

In this section, two examples are presented to illustrate the
usefulness and applicability of the fault detection filter design
approaches developed previously.

A. Example 1

In this example, we will illustrate the applicability of the fault
detection filter design method for the nominal fuzzy system.

Consider a tunnel diode circuit system whose model is estab-
lished in [8]. With a sampling time T = 0.02 s, the discrete-time
model is obtained as

xk+1 =
2∑

i=1

hi(x1k ) (Aixk + Eiwk )

yk =
2∑

i=1

hi(x1k ) (Cixk + Fiwk ) (33)

where the state variables are chosen as x1 (t) = vC (t) and
x2 (t) = iL (t), and vC (t) and iL (t) are the capacitor voltage
and inductance current, respectively. The parameter matrices
are given by

A1 =
[

0.9887 0.9024
−0.0180 0.8100

]
E1 =

[
0.0093
0.0181

]

A2 =
[

0.9033 0.8617
−0.0172 0.8103

]
E2 =

[
0.0091
0.0181

]

Ci = [ 1 0 ] Fi = 1.

We assume that there are faults on the capacitor voltage, and the
fault matrices are given by

G1 =
[

0.9887
−0.0180

]
G2 =

[
0.9033
−0.0172

]
.

The aim is to design a fuzzy fault detection filter such that the
residual system in the form of (13) is stochastically stable and
the performance defined in (11) is guaranteed.

The fault weighting system is in the form of (9) and the
matrices are chosen as follows:

AW = 0.1 BW = 0.25 CW = 0.5 DW = 0.

We first consider the perfect communication case, i.e., there
is no data packet dropout between the physical plant and the
fault detection filter, and thus, ᾱ = 1. By solving the LMI in
Theorem 2, the matrix variables are obtained as

Ăf 1 =


 0.0301 −0.0043 −0.0628
−0.0028 0.0010 0.0273
−0.0038 0.0210 0.7217


 D̆f 1 = 0.0369

B̆f 1 =


 0.0164
−0.0014
0.0063


 C̆f 1 = [−0.5023 0.0372 0.0066 ]

Ăf 2 =


 0.0294 −0.0048 −0.0658
−0.0027 0.0011 0.0273
−0.0039 0.0222 0.7146


 D̆f 2 = 0.0368

B̆f 2 =


 0.0143
−0.0011
−0.0104


 C̆f 2 = [−0.4995 0.0372 0.0041 ]

W =


 0.2959 −0.0250 −0.0736
−0.0248 0.0033 0.0327
−0.0778 0.0330 0.8847




and the guaranteed performance defined in (11) is γ∗ = 0.1042.
Applying a full-rank factorization on W , we get G4 and V

G4 =


 0.1249 −0.0399 −0.9914

0.9893 −0.0711 0.1275
−0.0755 −0.9967 0.0306




V =


 0.1151 −0.0360 −0.8876

0.2845 −0.0207 0.0377
−0.0000 −0.0004 0.0000




and thus, the fuzzy fault detection filter matrices can be calcu-
lated by (25)

Af 1 =


 0.8034 −0.2985 −3.1752
−0.0266 0.1147 0.6210
0.0005 0.0011 0.0089


 Df 1 = 0.0369

Bf 1 =


−0.0042

0.0171
0.0004


 Cf 1 = [−0.0810 −1.7323 4.1194 ]

Af 2 =


 0.7961 −0.2950 0.3848
−0.0224 0.1104 0.1722
0.0005 0.0009 0.0245


 Df 2 = 0.0368

Bf 2 =


−0.0085

0.0156
0.0003


 Cf 2 = [−0.0779 −1.7237 3.4360 ] .

Fig. 1 shows the residual response rk and the response of the
residual evaluation function ‖ · ‖T varying as time k when wk =
0, where the fault is supposed to be

fk =
{

1, 300 ≤ k ≤ 600
0, else. (34)

From the figure, we can see that the designed filter can detect
the fault effectively when it occurs.

Then, we assume the disturbance

wk =
{

rand [0, 1] , 200 ≤ k ≤ 700
0, else. (35)

Fig. 2 shows the residual response and the residual evaluation
function response with the disturbance wk , respectively, which
indicate that the residual can not only reflect the fault in time, but
also recognize the fault without confusing it with the disturbance
wk .

Next, we consider the fault detection problem with imperfect
communication links. The parameter is assumed to be ᾱ = 0.8,
which means that there are 20% data lost during the transmission
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Fig. 1. Residual response and evaluation function for the nominal system with zero uk and wk (ᾱ = 1).

Fig. 2. Residual response and evaluation function for the nominal system with wk (ᾱ = 1).

from the physical plant to the fault detection filter. By applying
Theorem 2, the fuzzy fault detection filter matrices are given by

Af 1 =


 0.7880 −0.4444 10.9624
−0.0734 0.1514 −8.8659
−0.0007 −0.0010 0.6085


 Df 1 = 0.0240

Bf 1 =


 0.0007
−0.0046
0.0002


 Cf 1 = [ 0.1412 1.7282 11.2867 ]

Af 2 =


 0.7986 −0.4315 8.3850
−0.0754 0.1482 −5.3386
−0.0005 −0.0008 0.3067


 Df 2 = 0.0240

Bf 2 =


 0.0022
−0.0049
0.0003


 Cf 2 = [ 0.1560 1.7534 7.8455 ]

and the guaranteed performance is γ∗ = 0.1216. By assuming
the same fault as in (34) and zeros disturbance wk , Fig. 3 shows
the residual response of rk and the evaluation function response,
which clearly tell us that the fault can be detected effectively
when it appears.

Then, assume the same disturbance as that in (35). Fig. 4
shows the residual response and the evaluation function re-

sponse, which clearly indicate that the residual can also detect
the fault without confusing it with the disturbance.

It is worth noting that the obtained minimum-guaranteed per-
formance γ∗ will change as the different values of ᾱ, which is
shown in Table I. From the table, we know that as the values
of ᾱ become larger, the higher γ∗ can be obtained. This is true
since the larger ᾱ means the less missing measurements; there-
fore, the better disturbance attenuation performance γ∗ can be
obtained.

B. Example 2

In this example, we will design a fuzzy fault detection filter
for the fuzzy system with uncertainties. We still consider the
fuzzy system in Example 1. For simulation, we assume there
are some uncertainties in the form of (2), and the parameters are
given by

Ni =
[

0.25
0.25

]
Qai = [ 0.1 0 ] Qbi = 0.1.

First, we consider the perfect communication condition (ᾱ =
1). By solving the inequalities in Theorem 3, the minimum
performance value is obtained as γ∗ = 0.1043, and the fuzzy
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Fig. 3. Residual response and evaluation function for the nominal system with zero uk and wk (ᾱ = 0.8).

Fig. 4. Residual response and evaluation function for the nominal system with wk (ᾱ = 0.8).

TABLE I
MINIMUM GUARANTEED PERFORMANCE γ FOR DIFFERENT VALUES OF ᾱ

detection filter matrices are

Af 1 =


 0.7912 −0.2836 1.5684
−0.1096 0.1483 −0.7187
−0.0013 −0.0008 −0.0020


 Df 1 = 0.0377

Bf 1 =


−0.0017
−0.0166
0.0003


 Cf 1 = [ 0.3017 1.6957 4.1770 ]

Af 2 =


 0.7660 −0.2853 −0.9327
−0.1011 0.1451 −0.9949
−0.0013 −0.0005 0.0236


 Df 2 = 0.0376

Bf 2 =


 0.0014
−0.0154
0.0003


 Cf 2 = [ 0.2969 1.6880 3.5792 ] .

Next, we consider the robust case with intermittent measure-
ments. Without loss of generality, we suppose ᾱ = 0.8. The min-
imum performance defined in (11) is obtained as γ∗ = 0.1241,
and the fuzzy fault detection filter matrices are obtained as

Af 1 =


 0.2766 −0.3567 −5.0519
−0.2921 0.6742 −6.2744
−0.0018 0.0009 0.6778


 Df 1 = 0.0203

Cf 1 = [ 1.4222 1.0240 10.7865 ] Bf 1 =


−0.0017
−0.0029
0.0002




Af 2 =


 0.2961 −0.3280 −1.9103
−0.2847 0.6502 −6.2402
−0.0013 −0.0003 0.4207


 Df 2 = 0.0195

Bf 2 =


−0.0011
−0.0037
0.0002


 Cf 2 = [ 1.4503 0.9920 8.0067 ] .

Fig. 5 shows the residual response and the response of the resid-
ual evaluation function. It can be seen that the designed fuzzy
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Fig. 5. Residual response and evaluation function for the uncertain system with wk (ᾱ = 0.8).

fault detection filter is also effective for the uncertain fuzzy
system with missing measurements.

VI. CONCLUDING REMARKS

In this paper, the problem of fault detection for T–S fuzzy
systems with intermittent measurements has been investigated.
The communication links between the plant and the fault detec-
tion filter are assumed to be imperfect, and a stochastic variable
satisfying the Bernoulli random binary distribution is utilized
to model the unreliable communication links. A fuzzy fault
detection filter has been designed such that, for all data miss-
ing conditions, the residual system is stochastically stable and
preserves a guaranteed performance. The results have been ex-
tended to the T–S fuzzy systems with time-varying parameter
uncertainties. All the results are formulated in the form of LMIs.
Two examples have been provided to illustrate the usefulness
and applicability of the results.
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