
Title BGP ingress-to-egress route configuration in a capacity-
constrained AS

Author(s) Chim, TW; Yeung, KL; Lui, KS

Citation 2005 Asia-Pacific Conference On Communications, 2005, v.
2005, p. 386-390

Issued Date 2005

URL http://hdl.handle.net/10722/57271

Rights

©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37893566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BGP Ingress-to-Egress Route Configuration
in a Capacity-constrained AS

Tat Wing Chim, Kwan L. Yeung and King-Shan Lui
Dept. of Electrical and Electronic Engineering

The University of Hong Kong
Pokfulam Road, Hong Kong

Tel: (852) 2857-8493; Fax: (852) 2559-8738
E-mail: {twchim, kyeung, kslui}@eee.hku.hk

Abstract — The BGP ingress-to-egress route configuration
problem is to find a set of paths in an ISP to carry the transit
flows, such that the amount of network resources consumed is
minimized without violating the bandwidth constraint on all
network links. To solve the problem, we first formulate it using
Integer Linear Programming (ILP). Due to the high complexity
involved in ILP, a heuristic algorithm, called MPPF, is then
proposed. MPPF is designed based on the idea that heavily-
loaded destination prefixes should be given higher priority to
select less expensive edge links and routes. Simulation results
show that MPPF requires less network resources and edge link
capacity than an alternative heuristic called BTF.

Keywords — BGP, Border Router Advertisements, Most
Popular Prefix First

I. INTRODUCTION
A major responsibility of an Internet Service Provider

(ISP) is to provide transit service for its neighbors. Traffic
goes into and out of an ISP through a set of border routers
which are managed by the ISP and are connected to its
neighbors via a set of peering edge links. The problem of BGP
ingress-to-egress route configuration is to determine a set of
ingress-to-egress paths within the ISP’s network to carry the
transit traffic such that the network resources consumed is
minimized.

To fully understand the mechanisms available for
configuring ingress-to-egress routes, knowledge of Border
Gateway Protocol (BGP) [1] is essential. In short, BGP is a
path vector protocol under which routing decisions can be
made based on policy. BGP divides the Internet into a
collection of Autonomous Systems (ASes). An AS is defined
as a set of routers under a single technical administration, e.g.
an ISP. ASes exchange routing reachability information
through external BGP peering sessions. A border BGP router
receives route advertisements from either external peers (in
neighboring ASes) or internal peers (in local AS). Each
advertisement contains a destination prefix, an IP address of
the next-hop, a multi-exit discriminator (MED) and a list of
ASes leading to the destination prefix. Some or all of these
received routes will be included into its own routing table and
advertised to its peers based on a set of decision criteria [1].

When an AS propagates an advertisement to an external
peer, the MED field can be used to indicate the preference of
accepting incoming traffic at a particular ingress edge (thus
ingress router) and the smaller the MED value, the higher the
preference. So properly setting the MED field can help to
balance the network load. In general, no matter where the
transit traffic arrives, as long as it has the same destination
prefix, it will be sent to the same selected egress link.

Related work on optimizing the performance of an ISP can
be found in some recent literatures. In [2] and [3], the problem

of intra-domain path selection is studied and several OSPF
weight assignment algorithms are proposed for setting up
peer-to-peer intra-domain paths. In [4], a border router and
intra-domain link placement problem is examined. The
solution is useful at the development phase of an ISP. In [5],
the problem of BGP route configuration is investigated under
the assumption that an ISP cannot control the ingress points of
the transit traffic and all ingress edge links and intra-domain
links have unlimited bandwidth. This problem is proved to be
NP-hard. Their proposed heuristic algorithm is based on the
Integer Linear Programming (ILP) formulation and is quite
complicated. In [6], a time-efficient algorithm based on the
idea of most popular prefix first is designed.

In this paper, we extend the model for BGP egress
selection [5][6] to take advantages of the MED option in BGP.
This allows a local AS to recommend certain ingress
edge/router to its neighbors for accepting their incoming
transit traffic. The resources consumed by the local AS can be
further reduced. Since the assumption of infinite capacity on
intra-domain links [5][6] may not be realistic, links with finite
bandwidth are considered in this paper. A new heuristic
algorithm called MPPF is proposed. It is based on the similar
idea of [6] that heavily-loaded destination prefixes should be
given higher priority to select less expensive ingress and
egress edge links and paths. This allows more traffic flows to
go through less expensive paths which can potentially
minimize the network resources consumed.

In the next section, the route configuration problem is
formally defined. In Section III, we show that the problem can
be solved using ILP. In Section IV, the heuristic algorithm
MPPF is presented and its performance is evaluated in Section
V. Finally, we conclude the paper in Section VI.

II. PROBLEM FORMULATION
Assume that all intra-domain links and edge links

connecting to other ASes have finite capacities and are
bidirectional. The capacity allocated to each direction is pre-
determined and dedicated. Let G = (V, E) denote the intra-
domain topology where V = {1 .. N} is the set of routers, and E
is the set of intra-domain links. Among N routers, X of them
are border routers. The set of edge links is given by B = {b1,
…, bI} and R(bi) returns the router associated with edge link
bi.

Multiple edge links may be connected to the same border
router. A neighboring AS may be connected to the local AS
through a direct edge link, or indirectly via other ASes. Each
neighbor may be connected to the local AS through multiple
edge links. For simplicity, we assume that the prefixes
received by the AS are non-overlapping. We further assume
that route advertisements for any prefix are advertised to all

This work is supported by Hong Kong Research Grant Council Earmarked Grant HKU 7048/02E.
386

2005 Asia-Pacific Conference on Communications, Perth, Western Australia, 3 - 5 October 2005.

0-7803-9132-2/05/$20.00 ©2005 IEEE.

connecting neighbors so that neighbors are able to choose
which ingress points to use (based on the MED value in the
advertisements).

Given a set of neighbors A = {A1, …, AH}. For each
neighbor Ah, let In(h) denote the set of edge links through
which Ah may send in the transit traffic. External BGP peering
sessions at the border routers receive advertisements for
network prefixes across the edge links. Let P = {P1, …, PK}
denote the set of prefix advertisements received across all
edge links. For each prefix Pk, let Out(k) denote the set of edge
links at which an advertisement for Pk has been received.

Each edge link bi has an ingress capacity constraint Ci
ingress

and an egress capacity constraint Ci
egress. The amount of

residual bandwidth on ingress and egress links is denoted by
wi

ingress and wi
egress respectively. Let l denote a direct link in E

and let dl, Cl and wl denote the cost per unit traffic, capacity
constraint and current residual capacity of that link
respectively. Also let p = [a, b] denote a path connecting
routers a and b in V and let dp denote the cost per unit traffic
along p, i.e.
 ∑

∈
=

pl
lp dd (1)

Problem Statement
Let t(h, k) be the volume of the traffic flow from neighbor

Ah to destination prefix Pk. Further denote f as the ingress-to-
egress route configuration function. For the flow from Ah to Pk,
f(h, k) returns an ingress edge igr(h, k) ∈ In(h), an egress edge
egr(h, k) ∈ Out(k), and a complete intra-domain path from the
router associated with igr(h, k) to the router associated with
egr(h, k). For convenience, we write f(h, k) = <igr(h, k), egr(h,
k), p(h, k)> where p(h, k) = [R(igr(h, k)), R(egr(h, k))].

Our goal is to minimize the total amount of network
resources consumed for carrying the transit traffic

 ∑∑
= =

⋅
H

h

K

k
khpdkht

1 1
),(),((2)

and f(h, k) = <igr(h, k), egr(h, k), p(h, k)> satisfies the
following constraints:

• No violation on ingress edge link capacity, i.e.
BlCkht ingress

llkhigrkh
∈∀≤∑ =

),(
),(:,

;

• No violation on egress edge link capacity, i.e.
BlCkht egress

llkhegrkh
∈∀≤∑ =

),(
),(:,

;

• No violation on intra-domain link capacity, i.e.
lCkht lkhplkh

∀≤∑ ∈
),(

),(:,
;

• The same egress edge link is assigned to all transit traffic flows
going to the same destination prefix, i.e., for each prefix Pk,
egr(h, k) = l ∀h for some l.

III. INTEGER LINEAR PROGRAMMING FORMULATION

To facilitate our problem formulation, we introduce a flat
network topology G’ = (V’, E’). Details of G’ = (V’, E’) are
defined below:

• }|){(}|){(' PPkHNAAhNVV kh ∈++∪∈+∪=

•
})(,|)),({(
)}(,|))(,{('

kOutePPkHNeR
hIneAAeRhNEE

k

h

∈∈++∪
∈∈+∪=

•










++≤≤++=−−∈

=−∈+≤≤+

∈∀

=

∈∀

KHNjHNeRiHNjOuteC

eRjNiIneHNiNC

ElC

c

Eji

egress
e

ingress
e

l

ji

1),(),(,

)(),(,1,

,
'),(

),(

•





 ∈∀

=

∈∀

otherwise,0

,
'),(

),(

Eld
d

Eji

l
ji

That is, nodes 1 to N represent the set of routers in the local
AS, nodes N + 1 to N + H represent the set of neighboring
ASes (A1 to AH), nodes N + H + 1 to N + H + K represent the
set of destination prefix networks (networks having prefixes
P1 to PK). Note that the cost for the ingress and egress edge
links are all set to zero so that they will not affect our intra-AS
cost calculations. Let Xij

hk represent the percentage of the
traffic from neighbor Ah to destination prefix Pk that flows
across link (i, j) in E’. The ILP formulation for the ingress-to-
egress route configuration problem is given below.

ILP Formulation









⋅⋅∑∑ ∑

= = ∈

H

h

K

k Eji

hk
ijji Xdkht

1 1 '),(
),(),(min (3)

s.t.

kHNihNiPPAAXX kh
Eijj

hk
ji

Ejij

hk
ij ++≠+≠∈∈=− ∑∑

∈∈

 and , , ,0
'),(:'),(:

 (4)

 , , ,1
'),(:'),(:

hNiPPAAXX kh
Eijj

hk
ji

Ejij

hk
ij +=∈∈=− ∑∑

∈∈

 (5)

'),(,1or 0 EjiX hk
ij ∈∀= (6)

),(),(
1 1

ji

H

h

K

k

hk
ij cXkht ≤⋅∑∑

= =

 (7)

],1[,,,,
21

21
)()(NiPPAAAXX khh

kh
kHNi

kh
kHNi ∈∈∈= ++++ (8)

The objective function (3) is to minimize the resources
consumed. (4) and (5) are flow conservation constraints. (4)
states that the amount of traffic flowing into a node has to be
equal to the amount of traffic flowing out of the node for non-
source and destination nodes. (5) states that the net flow out of
a source node is 1. (6) restricts the Xij

hk variables to be either 0
or 1. (7) is the link capacity utilization constraint. (8) ensures
that the same egress edge link is assigned to all transit traffic flows
going to the same prefix. Noted that this constrain also
differentiates the formulation from those for the well-known
multicommodity unsplittable flow problem [7].

Though the ingress-to-egress route configuration problem
can be solved by ILP, the process is too complicated for any
realistic sized problems.

IV. HEURISTIC ALGORITHM – MPPF

A. MPPF Algorithm
Let pk be the total amount of traffic destined to prefix Pk.

Our proposed algorithm aims at giving the prefix with the
largest amount of traffic destined to it, i.e. maxk{pk}, the
highest route selection priority. The idea is that if no priority is
given to the prefix with the largest pk value, it is very likely
that the most desirable egress link leading to this prefix
together with the corresponding intra-domain route would
have been occupied by others. The potential extra cost of
carrying this traffic on alternative egress links together with
the corresponding intra-domain route would be very high.
Since the route configuration priority is based on pk, we call
our algorithm Most Popular Prefix First (MPPF).

387

The pseudo code of MPPF is listed in Fig. 1. Traffic flows
t(t1, t2) are first sorted in non-increasing order of their volumes
to form an ordered list T (Step 4). Then prefixes (Pk) are
sorted in non-increasing order of prefix traffic volume pk to
form an ordered list K (Step 6). For each prefix in list K (Step
8), we determine the egress edge (from the set of egress edges
which have advertisements for that prefix) which leads to the
minimum incurred cost (Steps 8.1 to 8.3). This is done by
considering the egress links one by one. During the
consideration of each egress link, we compute the
corresponding minimum incurred cost by calling the function
Cost_Prefix() in Fig. 2. When a minimum egress link is found,
the same selection process as in function Cost_Prefix() is used
to perform the actual assignments/configurations (Step 8.4).
Note that all these procedures are designed to give priority to
prefixes with larger traffic volumes.

Fig. 1 Main algorithm in the MPPF algorithm

Function Cost_Prefix() in Fig. 2 is for computing the

minimum cost for forwarding all traffic flows for prefix Pk to
egress edge bj. It imports the sorted lists T and examines
traffic flows going to prefix Pk one by one in non-increasing

order of their traffic volumes (Step 4). Each flow is tentatively
assigned to a minimum possible ingress link together with an
ingress-to-egress path (Step 4.4) making use of the function
Shortest_Path() (summarized in Fig. 4 for completeness).
Note that the assignments at this stage are tentative in the
sense that the actual ingress residual capacities (wingress and w)
will not be updated. This is because we still need to compare
the costs of using other egress links. So two running vectors
vwingress and vw are used in Step 2 and Step 3 for storing the
tentative residual capacities.

Fig. 2 Function Cost_Prefix() in the MPPF algorithm

Fig. 3 Function Shortest_ Path() in the MPPF algorithm

B. Time Complexity
The sorting in Step 4 of Fig. 1 requires a worst case time

complexity of O(HKlog(HK)), where H is the number of
neighbors and K is the number of prefixes. The sorting in Step

Function Shortest_Path (G, Src, Dest, Vol, w, Path)
Parameters
G: local AS topology
Src: source node
Dest: destination node
Vol: volume of the traffic instance under consideration
w: an array that stores residual capacities of all links
Path: the shortest wide path found

1. VG = (VV, VE) = G = (V, E)
2. VElVolwvw ll ∈∀−=

3. Prune out link l from VG if it has insufficient resources, i.e. vwl < 0
VEl ∈∀

4. Find the shortest path Path connecting Src and Dest using Dijkstra’s
algorithm on VG.

Function Cost_Prefix (G, k, j, wingress, w, T)
Input Parameters
G: local AS topology
k: prefix Pk under consideration
j: egress edge bj under consideration
wingress: residual capacity of all ingress edges
w: residual capacity on all links
T: a sorted list that contains traffic flows t(h, k) in non-increasing

order
Output Parameter
Minimum cost for forwarding all traffic for prefix Pk using egress edge bj

1. MinCost = 0 /* Initial MinCost to 0. */
2. For all i, set vwi

ingress = wi
ingress /* Store virtual ingress capacities. */

3. For all l, set vwl = wl /* Store virtual link capacities. */
4. For each t(t1, k) in the ordered list T {
4.1 MinIngress = 0 /* MinIngress = null, i.e. 0 by default. */
4.2 MinIngressCost = ∞ /* MinIngressCost = ∞ by default. */
4.3 MinPath = null /* MinPath = null by default. */
4.4 For each ingress edge bi in In(t1)

{)(&)0),((if 1 jikttvwingress
i ≠≥−

Shortest_Path (G, R(i), R(j), t(t1, k), vw, Path)
 If (t(t1, k) * dPath < MinIngressCost) {
 MinIngress = i
 MinIngressCost = t(t1, k) * dPath
 MinPath = Path
 }
}

MinCost = MinCost + MinIngressCost
),(1 ktvwvw ingress

MinIngress
ingress
MinIngress −=

MinPathlkttvwvw ll ∈∀−=),(1

}
return MinCost

MPPF Algorithm
Input Parameters
G; t(h, k) for all h, k; dl for all l
Output Parameter
 f

1. For all i, set wi

ingress = Ci
ingress /* Initialize ingress residual capacities.

*/
2. For all i, set wi

egress = Ci
egress /* Initialize egress residual capacities. */

3. For all l, set wl = Cl /* Initialize link residual capacities. */
4. Sort (t1, t2) in non-increasing order of t(t1, t2) to form an ordered list T.
5.].,1[),(Compute

1
Kkkhtp

H

h
k ∈∀=∑

=

6. Sort k in non-increasing order of pk to form an ordered list K.
7. For all (h, k), set f(h, k) = null. /* Initialize assignments */
8. For each k in the ordered list K {
8.1 MinEgress = 0 /* MinEgress = null, i.e. 0 by default. */
8.2 MinEgressCost = ∞ /* MinEgressCost = ∞ by default. */
8.3 For each egress edge bj in Out(k)

if (Cost_Prefix (G, k, j, wingress, w, T) < MinEgressCost)
{)0(& ≥− k

egress
j pw

MinEgress = j
MinEgressCost = Cost_Prefix (G, k, j, wingress, C, T)

}
8.4 For each t(t1, k) in the ordered list T {

MinIngress = 0
MinIngressCost = ∞
MinPath = null
For each ingress edge bi in In(t1)

 {)(&)0),((if 1 MinEgressikttwingress
i ≠≥−

Shortest_Path (G, R(i),
R(MinEgress), t(t1, k), w, δ, Path)

 If (t(t1, k) * dPath < MinIngressCost) {
 MinIngress = i
 MinIngressCost

= t(t1, k) * dPath
MinPath = Path

 }
 }
}

>=< MinPathMinEgressMinIngressktf ,,),(1

),(1 kttww ingress
MinIngress

ingress
MinIngress −=

),(1 kttww egress
MinEgress

egress
MinEgress −=

MinPathlkttww ll ∈∀−=),(1

}

388

6 requires a worst case time complexity of O(K log K). Step 8
is the most expensive step and it invokes function
Cost_Prefix() many times.

Function Cost_Prefix() in turn goes through at most HK
traffic flows and for each traffic flow, we have to go through I
ingress edges and for each ingress edge, function
Shortest_Path(), which is based on Dijkstra’s Algorithm, is
invoked. Let N be the number of nodes in the topology, the
worst case time complexity of Dijkstra’s Algorithm is known
to be O(N log N + |E|) ~ O(N log N) since |E| ~ N in a BGP
environment. As a result, the time complexity of function
Cost_Prefix() is O(HKIN log N).

As Step 8.3 iterates function Cost_Prefix() I times, its time
complexity is O(HKI2N log N) and it is the most expensive
substep in Step 8. Therefore, the running time of MPPF is
O(HK2I2N log N).

C. Implementation using MPLS
Current OSPF intra-domain routing protocol is shortest-

path based. However, due to capacity constraints on internal
links, the paths returned by MPPF may not be the shortest. To
allow a flow following a non-shortest path, the technique of
OSPF weight assignment [2][3] or the technique of Multi-
Protocol Label Switching (MPLS) [8] can be used. Since not
all paths can be specified by setting OSPF weights [9], MPLS
is preferred. With MPLS, each path found by the MPPF
algorithm is specified by a logical label-switched path. Upon
receiving a transit traffic flow, a border router checks its BGP
routing table to determine which egress edge (thus egress
border router) should be used. Then it forwards the flow to the
selected egress border router using a predetermined label-
switched path.

As a final remark, MPPF algorithm has assumed that
neighboring ASes will always honor the ingress edge
recommendations made by the local AS. In reality, this may
not be the case, possibly due to the conflict of interests among
neighboring ASes. We will study the impact of such factors in
the future.

V. PERFORMANCE EVALUATIONS

A. Network Model
Consider a local AS with N – X internal and X border

routers, H neighboring ASes and K destination prefixes for
transit flows. The network topology for simulation is
generated as follows:

• A topology containing N nodes with cost per unit traffic
on the direct link between any two nodes in the range
{1…10} is generated by BRITE [10]; X nodes are picked
up randomly to become border routers. Assume d(i, j) =
d(j, i) for any two routers ri and rj.

• The multihoming degree of each border router is
randomly selected from 1 to 3. Each border router is then
associated with the corresponding number of edge links.
All edge links are uniquely numbered to form the edge
set.

• The size of set In(h) for each neighbor Ah is randomly
selected from 2 to 3. The elements of In(h) are randomly
selected from the edge set.

• For each prefix Pk, the size of Out(k) is randomly selected
from 2 to 5. The elements of Out(k) are again randomly
selected from the edge set.

B. Traffic Model
Assume that every neighboring AS has some traffic

destined for every destination prefix. So there are altogether H
x K traffic instances/flows, which forms an H x K traffic
matrix. Each entry of the matrix represents the traffic volume
of a flow. Its value is uniformly distributed between real
numbers 0 and 20. Looping is not allowed. So if a neighboring
AS has forwarded an advertisement for prefix Pk to the local
AS, this AS cannot inject traffic for prefix Pk into the local
AS.

Two sets of simulations are conducted based on the
parameters used in [5]. In particular, simulation results based
on (N = 100, X = 25, H = 12, K = 35) are plotted in Fig. 4 and
Fig. 5. Simulation results based on (N = 100, X = 30, H = 17,
K = 110) are shown in Fig. 6 and Fig. 7. Each point of
simulation results is obtained by taking the average of 20
independent experiments each with a randomly generated
BRITE network topology and traffic matrix.

C. MPPF vs other algorithms
Besides MPPF algorithm, the following algorithms are

implemented for comparison:
• BTF (Biggest Traffic First): BTF is an alternative heuristic

that might be used by an ISP [5]. In BTF, the set of traffic
instances are sorted in non-increasing order. For each
traffic instance t(h, k), an attempt is made to search for the
best shortest path with sufficient capacity connecting the
sets In(h) and Out(k). The ingress and egress links are
returned automatically. If prefix Pk has already been
assigned to a particular egress link and which still has
sufficient egress capacity, the search is limited to paths
going to the same egress link only. Otherwise, the search is
not limited by any egress link.

• MPPF_NI (Most Popular Prefix First with No Ingress
Recommendation). MPPF_NI is the same as MPPF except
that ingress edges of all transit traffic flows are determined
by neighboring ASes and the local AS does not make any
recommendations.

• ICS (Infinite Capacity Solution): This is obtained by
assuming all ingress capacities, egress capacities and
internal link capacities are infinite. It serves as a lower
bound.
Note that the algorithms proposed in [5] cannot be

extended to cover the ingress-to-egress route configuration
problem. In [5], the ingress edges of the traffic flows are
assumed to be known in advance and so traffic flows going to
the same prefix can be aggregated into a job as in the
generalized assignment problem [11]. Also the path used is
assumed to be always the shortest path and intra-domain link
capacities are assumed to be infinity. However, in our ingress-
to-egress route configuration problem, all these assumptions
do not hold.

Assume the initial unidirectional capacity of all ingress
links and all egress links are fixed to ExtBW. Also assume that
the initial unidirectional capacity of all intra-domain links are
fixed to IntBW. The performance of using two different values
of IntBW is shown in Fig. 5. Fig. 4 and Fig. 6 show the
percentage of traffic sent against ExtBW. Fig. 5 and Fig. 7
show the solution cost, which is normalized by the solution
cost obtained using ICS algorithm, against ExtBW.

From Fig. 4 and Fig. 6, we can see that MPPF requires
lower edge capacity than BTF to forward 100% of traffic. In
particular, when edge capacity is not enough (< 600 in Fig. 4
and < 1200 in Fig. 6), our MPPF algorithm can forward up to

389

9.14% and 25% more traffic than BTF algorithm in the two
different parameter settings respectively.

From Fig. 5 and Fig. 7, we can see that the normalized
solution cost for BTF is worse than that for MPPF. In fact, the
normalized solution cost for BTF cannot converge to that of
ICS. We can see that the normalized solution cost for BTF is
about 10% higher than that of MPPF. For MPPF_NI, since
there is no ingress edge recommendation, its normalized
solution cost is 35% - 40% higher than MPPF.

85

90

95

100

200 400 600 800 1000 1200 1400 1600 1800 2000
ExtBW

Tr
af

fic
 S

en
t (

%
)

BTF (IntBW = 3500 / 7000)

M PPF (IntBW = 3500 / 7000)

Fig. 4 Percentage of traffic sent (N = 100, X = 25, H = 12 and K = 35)

0.8

1

1.2

1.4

200 400 600 800 1000 1200 1400 1600 1800 2000
ExtBW

So
lu

tio
n

C
os

t

BTF (IntBW = 500)
BTF (IntBW = 3500 / 7000)
M PPF (IntBW = 500)
M PPF (IntBW = 3500 / 7000)
M PPF_NI (IntBW = 3500)

Fig. 5 Normalized solution cost (N = 100, X = 25, H = 12 and K = 35)

40

50

60

70

80

90

100

200 400 600 800 1000 1200 1400 1600 1800 2000
ExtBW

Tr
af

fic
 S

en
t (

%
)

BTF (IntBW = 3500 / 7000)

M PPF (IntBW = 3500 / 7000)

Fig. 6 Percentage of traffic sent (N = 100, X = 30, H = 17 and K = 110)

0.4

0.6

0.8

1

1.2

1.4

200 400 600 800 1000 1200 1400 1600 1800 2000
ExtBW

So
lu

tio
n

C
os

t

BTF (IntBW = 3500 / 7000)

M PPF (IntBW = 3500 / 7000)

M PPF_NI (IntBW = 3500)

Fig. 7 Normalized solution cost (N = 100, X = 30, H = 17 and K = 110)

VI. CONCLUSIONS
The BGP ingress-to-egress route configuration problem is

to find a set of paths in an AS/ISP to carry the transit flows,
such that the amount of network resources consumed is
minimized without violating the bandwidth constraint on all
network links. To solve the problem, we first formulated it
using Integer Linear Programming (ILP). Due to the high
complexity involved in ILP, a heuristic algorithm, called
MPPF, was then proposed. MPPF was designed based on the
idea that heavily-loaded destination prefixes should be given
higher priority to select less expensive edge links and routes.

REFERENCES
[1] Y. Rekhter and T. Li, “A border gateway protocol 4,” Internet-Draft

(RFC1771), February 1998.
[2] Y. Wang, Z. Wang and L. Zhang, “Internet Traffic Engineering without

Full Mesh Overlaying,” Proceedings of IEEE INFOCOM, vol. 1, pp.
565 – 571, April 2001.

[3] B. Fortz and M. Thorup, “Internet Traffic Engineering by Optimizing
OSPF Weights,” Proceedings of IEEE INFOCOM, vol. 2, pp. 519 –
528, March 2000.

[4] F. Lam, W. C. Lau and V. O. K. Li, “Inter-Domain Router Placement
and Traffic Engineering,” Proceedings of IEEE ICC, vol. 4, pp. 2443 -
2448, May 2002.

[5] T. C. Bressoud, R. Rastogi and M. A. Smith, “Optimal Configuration for
BGP Route Selection,” Proceedings of IEEE INFOCOM, vol. 2, pp. 916
– 926, April 2003.

[6] T. W. Chim and K. L. Yeung, “Time-Efficient Algorithms for BGP
Route Configuration,” Proceedings of IEEE ICC, June 2004.

[7] C. Chekuri, S. Khanna and F. B. Shepherd, “The All-or-Nothing
Multicommodity Flow Problem,” Proceedings of ACM STOC, pp. 156 –
165, June 2004.

[8] E. Rosen, A. Viswanathan and R. Callon, “Multiprotocol Label
Switching Architecture,” Internet-Draft (RFC3031), January 2001.

[9] J. L. Sobrinho, “Algebra and Algorithms for QoS Path Computation and
Hop-by-Hop Routing in the Internet,” IEEE/ACM Transactions on
Networking, vol. 10, no. 4, August 2002.

[10] http://www.cs.bu.edu/brite/
[11] D. B. Shymoys and E. Tardos, “An approximation algorithm for the

generalized assinment problem,” Mathematical Programming A, vol. 62,
pp. 461 – 474. 1993.

390

