<table>
<thead>
<tr>
<th>Title</th>
<th>Stability of tooth minerals in plaque fluid and saliva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Leung, VWH; Darvell, BW</td>
</tr>
<tr>
<td>Citation</td>
<td>75th General Session and Exhibition of the International Association for Dental Research, Orlando, Florida, USA, 19-23 March 1997, v. 76 n. Sp, p. 47</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1997</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/53656</td>
</tr>
<tr>
<td>Rights</td>
<td>Creative Commons: Attribution 3.0 Hong Kong License</td>
</tr>
</tbody>
</table>
265 Stability of Tooth Minerals in Peaceful Fluid and Saliva.

Previous studies have shown that the rate of demineralization of hydroxyapatite could vary significantly under different conditions. Saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyapatite (HA) and tricalcium phosphate (TCP). The study was conducted on three enamel samples, based on the principle that changes in saliva flow and saliva composition may differ among individuals, and the aim of the present study is to investigate, numerically, the stability of tooth minerals, i.e., hydroxyap...