<table>
<thead>
<tr>
<th>Title</th>
<th>Relative risks are inflated in published literature [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lam, TH</td>
</tr>
<tr>
<td>Citation</td>
<td>British Medical Journal, 1997, v. 315 n. 7112, p. 880</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1997</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/53541</td>
</tr>
<tr>
<td>Rights</td>
<td>Creative Commons: Attribution 3.0 Hong Kong License</td>
</tr>
</tbody>
</table>
Abandoning treatments that you have used for years is difficult

Editor—Why is it so difficult to put research findings into practice, especially when a traditional treatment is shown to be of little value? Christopher Del Mar and colleagues report their meta-analysis of antibiotic treatment for children with acute otitis media.1 Three days later a general practitioner colleague brought her family to see me in the evening. Her 10 month old daughter had had four infections in total; the first two she had diagnosed as acute otitis media and treated with erythromycin, the third was a mild gastroenteritis, and the last was thought to be another ear infection worthy of antibiotic treatment. By the fourth day of the illness, however, when the child was brought to my surgery, a rash had developed, parotid enlargement, and the viral nature of the infection. The reason for the consultation was that the child's father, having just returned from the United States, where “putting tabs in is routine,” was concerned that the child might need antibiotics to prevent further ear infections and deafness. I pointed out that the evidence for benefit from this operation was weak and heard myself saying to the parents, “I think you're doing the right thing by simply treating each infection as it arises.” Then I remembered the paper I had just read, clearly showing that antibiotic treatment conferred no benefit in treating the risk of future infections or in an ear term deafness; only marginal benefit in terms of the control of symptoms; and a doubling of the chance of vomiting, diarrhoea, or rashes. The mother had also read the paper but, like me, had assumed that we would go on treating her child with antibiotics for any acute ear infection. Why? While I avidly take up new treatments with proved benefits, such as the eradication of Helicobacter pylori or anticoagulation in arterial fibrillation, when years of practice are overturned and shown to be of little value it is all but impossible to switch to doing nothing. My perception of what my patients have come to expect will play a major part.

If we could remove the obstruction to implementing research which shows that a treatment can be safely abandoned, then we could reduce unnecessary side effects and consultations and save money for more effective treatments as well. It seems a crucial step. A radical suggestion would be to exclude from the NHS any treatments proved to have no benefit; patients could still have them if they wished, but it would seem reasonable to ask them to foot the bill for expensive placebo.

Ian Hill-Smith
General practitioner
Georgetown Group Practice, Wigan Lane Health Centre, Upton, Bedfordshire LU7 9BG

Authors' reply

As the Cochrane version of our review of antibiotics and otitis media will be continuously improved and updated, we are pleased to receive comment.1 In answer to Helle Krogh Johnsen and Peter C Gatzchke, we identified eight (not six) trials of antibiotics versus no antibiotics (as shown in our Table 1). Only six of these studies reported clinically relevant outcomes. Rosenfield et al's meta-analysis identified four trials of antibiotics versus no antibiotics and 29 comparing different antibiotics.2 Because we identified twice as many studies for the principal question and our principal outcomes were patient-centred (rather than microbiological), we believed that an update was required. Only seven of the 29 trials have a control group of children with acute otitis media, and 28 have delay in treatment of more than 24 hours.24 We argue that the difference in the number of studies (5 versus 19) is not a reflection of the quality of the evidence; the lack of treatment delay may have accounted for the large difference in the number of studies.22

Relative risks are inflated in published literature

Editor—Relative risks are often reported incorrectly in medical journals. In a paper in the BMJ, Jian-Min Yuan and colleagues describe a relative risk of 3.72 for the relation between cancer of the upper aerodigestive tract and heavy drinking as a "3.7-fold increased risk"; this description is incorrect. They also describe a relative risk of 1.30 for total mortality and heavy drinking as a "30% excess risk"; this description is correct. They also write that "heavy drinking was associated with a significant 1.7-fold excess in risk of death from stroke"; the excess is 70%.

In an earlier paper by the same authors in JAMA there were similar problems? A relative risk of 1.6 was correctly described as a "60% greater risk," while a relative risk of 2.5 was incorrectly described as a "2.5-fold excess risk". The paper also stated that "rates in Shanghai Chinese were 2-fold to 8-fold higher than in Los Angeles whites," but the rates in Shanghai were actually two to eight times those in Los Angeles whites. Such problems were not confined to the interpretation of relative risks. The sentence "In China, the yearly per capita consumption of cigarettes has increased 3-fold between the 1950s and 1987, from about 500 to 1748" is incorrect; the increase is actually twofold or 200%.

Peto et al, in an accompanying editorial, stated "that heart attack mortality is five times lower, and that stroke mortality is five times higher." This was a problem because the authors were referring to the ratio of 5.3 (366/69) and 1:42 (48/201) respectively.

I have found similar problems in reports by American, British, and Chinese authors (in alphabetical order). This problem is important when relative risks or differences of two measures are described. We have to be cautious about the confusing meaning of the suffix "fold"; n-fold is equal to n times, and is equal to n×100%. Therefore, a relative risk of 3.5 is 2.5-fold, or 2.5 times, or a 250% increase or excess in risk, not 3.5-fold or a 350% increase or excess. I wonder how long a 30% excess risk lasts, or how such inadvertent inflation of relative risks in the literature.

T H Lam
Professor of General Practice
Department of Community Medicine and Unit for Behavioural Sciences, University of Hong Kong, Hong Kong

