<table>
<thead>
<tr>
<th>Title</th>
<th>Virus pathogens suggest an autumn return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Abdullah, ASM</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Epidemiology & Community Health, 2003, v. 57 n. 10, p. 770-771</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2003</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/53532</td>
</tr>
</tbody>
</table>
Virus pathogens suggest an autumn return

A S M Abdullah

J. Epidemiol. Community Health 2003;57;770-771
doi:10.1136/jech.57.10.770-a

Updated information and services can be found at:
http://jech.bmj.com/cgi/content/full/57/10/770-a

References
This article cites 3 articles, 1 of which can be accessed free at:
http://jech.bmj.com/cgi/content/full/57/10/770-a#BIBL

4 online articles that cite this article can be accessed at:
http://jech.bmj.com/cgi/content/full/57/10/770-a#BIBL

Rapid responses
You can respond to this article at:
http://jech.bmj.com/cgi/eletter-submit/57/10/770-a

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the
top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

- Environmental Issues (707 articles)
- Other Epidemiology (1676 articles)
- Other Public Health (2631 articles)
- Other respiratory infections (615 articles)

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to Journal of Epidemiology and Community Health go to:
http://www.bmjournals.com/subscriptions/
WILL THE SARS EPIDEMIC RECUR?

Host and environment are key factors

A Lee

On 5 July 2003, the WHO removed Taiwan from its list of areas with recent local transmission of SARS meaning that all known chains of person to person transmission of the severe acute respiratory syndrome (SARS) virus have now been broken. However, the WHO executive director for communicable diseases advised that public health should not let down its guard, as more cases could still surface somewhere in the world. It is therefore an important public health issue whether the SARS epidemics will recur.

If you had a crystal ball to view the future, this question would be answered. We would make some prediction based on the epidemiological triangle (fig 1) recognising the three main factors—agent, environment, and host in the pathogenesis of disease. If we can control any two of the main factors, we would prevent the occurrence of a communicable diseases.

Coronavirus has been identified in playing an aetiological part of SARS. A lot of work has been done to understand the genome of the virus that would lead to development of vaccine and treatment, but time is needed for such development. To prevent the recurrence of epidemics we should look at the host and environmental factors.

The agent must be capable of infecting the host for infection to develop. This depends on whether the environment is favourable for its survival and transmission, and also the susceptibility of the host. The susceptibility of the host depends on its ability to fight off the infection, which can be a disease specific defence mechanism such as vaccine, or non-specific defence mechanism. The ability of non-defence mechanism to fight off infectious disease will depend on the host’s general health status, nutritional status, age, coexisting chronic illness, etc. If you have a population that is healthy, fit, and well nourished, the chance of infection would be low.

Epidemics are an increase in the frequency of occurrence of a disease in a population above its baseline level for a specified period of time. To calculate this, estimate the basic reproductive number that is defined as the expected number of new infectious hosts that one infectious host will produce during the period of infectiousness in a population that is susceptible. It depends on number of contacts per unit time, transmission probability, and duration of infectiousness. Apart from infectivity of the agent and host suscepti-

Virus pathogens suggest an autumn return

A S M Abdullah

SARS is one of the deadly new emerging infectious diseases identified in the 21st century. Since its emergence in November 2002, SARS has created public panic and raised many issues among healthcare workers and policy makers around the world. Although
healthcare communities together with public
vigilance around the world seem to have
halted the SARS outbreak, at least for the
time being, the question remains to be answered
whether the infection will reappear? I
believe if SARS follows the pattern of other
respiratory viruses, it is probable that it will
reappear next autumn during the influenza season. I have the following explanations in
support of my opinion.
The causative agent of SARS is a novel
coronavirus—a virus of the corona family.
About one third of all common colds are caused
by viruses from the same family and these show
a winter and spring seasonality.1 The emergence
of SARS outbreak in China and Hong Kong
during the influenza season (December–March)
suggests that possible common environmental
and hygiene factors may influence transmission. Some
human pathogens such as influenza, measles,
and rotavirus follow a cyclical pattern, waxing in
colder and drier months and waning when
weather turns warmer,2 which may also be the
case for the SARS virus. While the importance of
effective quarantine and preventive measures
cannot be ignored, the decline in the SARS
prevalence with increasingly warmer weather
supports that seasonality may be a contributing
factor. This may explain the limited spread of the
SARS virus in the rural areas of Guangdong,
which has only basic medical facilities and lower
public preparedness. For instance, environmen-
tal temperature may influence the trends of
SARS outbreak. Outbreaks of respiratory syncy-
tial virus infections were associated with higher
environmental temperature, lower relative
humidity, and higher maximum day to day
temperature variations.3 During the Amoy gar-
den outbreak in Hong Kong, external tempera-
ture ranged between 18–22°C, which has been
proposed as permissive temperature enabling
transmission of the SARS coronavirus. It is
unconvincing that Vietnam and Guangzhou
controlled SARS by better medical facilities and
hygienic standard. Anecdotal reports suggest
that the changes in temperature might have
limited the outbreak of SARS in Vietnam and
Guangzhou earlier than Hong Kong. The wider
use of heaters in Toronto and air conditioning in
Hong Kong and Singapore, usually to keep the
room temperature within 18–22°C, might have
contributed to the long lasting outbreak in these
developed cities. It would be useful to examine
the relationship between temperature change
and the occurrence of SARS in the future.
Consistent with other infectious diseases,2
changes in atmospheric conditions, the preva-
ience of virulence of the pathogen and the
behaviour of the host could also contribute to
the recurrence of SARS. It is possible that the
virus is being slowly transmitted among
people who remain asymptomatic or the virus
is surviving in the environment and will reappear
when favourable conditions return. Although
the source of the coronavirus remains to be
confirmed, civet cats and other wild animals
sold in food markets in southern China are
believed to be the source. If confirmed the
animals will be a reservoir in ready contact with
humans that could initiate a second SARS
epidemic.

Finally, whether or not SARS reappears,
lessons learned from the recent outbreak such
as greater vigilance about health and hygiene
and the open sharing of medical information
should be a norm in future. In the absence
of any effective vaccine or treatment, the
only way to combat SARS is to limit its spread.
We should also be aware that if SARS does
return in autumn its epidemiology could be
different. In the recent outbreak, most of the
SARS cases with the exception of Amoy Garden
outbreak in Hong Kong were confined to the
healthcare workers indicating limited commu-
nity spread. Given the high case fatality rate,
if the rate of transmission should increase in
the community the consequences could be
devastating.

ACKNOWLEDGEMENTS
I thank Dr G N Thomas (Department of Community
Medicine, The University of Hong Kong) for his helpful
comments on this paper.

REFERENCES
1 Chilvers MA, McKean M, Rutman A, et al. The effects of
coronavirus on human nasal ciliated respiratory epithelium.
2 Chew FT, Doraisingham S, Ling AE, et al. Seasonal trends of
3 Dowell SF. Seasonal variation in host susceptibility and cycles of