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Abstract: The phylogenetic relationships of Pyricu-
laria species and species from related genera were
established from sequences of the internal tran-
scribed spacer ribosomal RNA gene. Phylogenetic
analysis disclosed a consistent correlation with spore
morphology. Most Pyricularia species studied, and
two species of Dactylaria that have obpyriform
conidia, fell within the Magnaporthaceae cluster with
high bootstrap support. Pyricularia variabilis was
more related to Dactylaria, Tumularia or Ochroconis
species than to the Magnaporthaceae. Dactylaria and
species of Nakataea, Ochroconis, Pyriculariopsis and
Tumularia were distinct from the Magnaporthaceae,
and the genus Dactylaria is polyphyletic. The combi-
nation of morphological and molecular characters,
such as spore morphology and ITS ribosomal DNA
sequences data, suggested that conidial shape could
be a primary character to distinguish Pyricularia from
related genera.
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INTRODUCTION

The genus Pyricularia (Cooke) Sacc. (anamorphic
Magnaporthaceae) was established by Saccardo
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(1880) with the type species, P. grisea (Cooke) Sacc.,
which originally was described from crabgrass (Digi-
taria sanguinalis L.). The name ‘‘Pyricularia’ refers
to the pyriform shape of the conidia. Cavara (1892)
subsequently described P. oryzae Cav. from rice (Oryza
sativa L.), a taxon with similar morphology to P.
grisea. Despite the lack of obvious morphological
differences, these two taxa have been maintained as
separate species. Rossman et al (1990) argued that P.
oryzae should be synonymized with P. grisea and
grouped these two anamorphs under the teleomorph
Magnaporthe grisea (Hebert) Barr. Recent molecular
genetic analyses, however, have indicated that Pyr
tcularia species isolated from different hosts are
genetically distinct (Borromeo et al 1993, Shull and
Hamer 1994, Kato et al 2000). Based on RFLP and
DNA sequence analysis, Borromeo et al (1993) and
Kato et al (2000) suggested that the Pyricularia
isolates from Digitaria sp. and rice represent distinct
species. Using a molecular approach based on three
genes (actin, beta-tubulin and calmodulin), Couch
and Kohn (2002) described the teleomorph Magna-
porthe oryzae B. Couch (associated with Oryza sativa
and other cultivated grasses) as a species distinct from
M. grisea (associated with the grass genus Digitaria
Haller).

Pyricularia has been well circumscribed (Ellis 1971,
1976), although the distinction between it and some
Dactylaria species is not always clear (Goh and Hyde
1997). The conidiogenous cells of Dactylaria and
Pyricularia are polyblastic, integrated on the conidio-
phores, and are sympodial, cylindrical, geniculate and
denticulate. The conidia are solitary, dry, acropleur-
ogenous, simple, variously shaped, and hyaline to pale
brown (Ellis 1971, 1976). In Pyricularia, however,
denticles usually are cut off by a septum to form
a separating cell (rhexolytic secession) and the
conidia are mostly obpyriform. In Dactylaria there is
no separating cell in the denticles (schizolytic
secession) and the conidia are of various shapes,
usually fusiform, naviculate or more or less cylindrical
(Ellis 1976). The presence of a separating cell and
cylindrical denticles in Pyricularia were characteristics
used by Ellis (1976) to delineate Pyricularia from
Dactylaria. Furthermore Pyricularia species are im-
portant pathogens, while Dactylaria species are
usually saprobes (Cai et al 2002, Ho et al 2002,
Bussaban et al 2003, Paulus et al 2003, Luo et al
2004).

Analysis of ribosomal DNA frequently has been
used in mycological investigations (Bruns et al 1991).
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TABLE I.  The sources of Pyricularia isolates and allied genera used for ITS1-5.8S-ITS2 rDNA sequence analysis
Genus and species Strain No.* Original substrate Habitat Geographic origin

Dactylaria ampulliformis (Tubaki) G.C. ICMP3660 Cocos nucifera leaf streak Japan

Bhatt & W.B. Kendr.
D. appendiculata Cazau, Aramb. & Cabello ICMP14617 Uncinia sp. dead culm New Zealand
D. purpurella (Sacc.) Sacc. NBRC9336 Castanopsis cuspidata submerged Japan

var. sieboldii balsa wood
Dactylaria sp. P24 Cortaderia sp. dead leaf New Zealand
Dactylaria sp. ICMP14618 Uncinia sp. dead culm New Zealand
Gaeumannomyces amomi Bussaban ICMP14650 Alpinia malaccensis healthy Thailand
pseudostem

G. amomi ICMP14648 Amomum siamense healthy leaf Thailand
Nakataea fusispora (Matsush.) Matsush. MUCL39228  Myricus sp. — Cuba
N. fusispora MUCL40987 — decaying leaf Venezuela
Ochroconis humicola (G.L. Barron & ICMP14434 Cryptocarya decaying leaves  Australia

L.V. Busch) de Hoog & Arx mackionianna
Pyricularia angulata Hashioka NBRC9625 Musa sapientum rotten leaf Japan
P. costina Sarbajna ICMP14436 Am. siamense healthy leaf Thailand
P. costina ICMP14437 Al. malaccensis healthy leaf Thailand
P. costina ICMP14609 Al. malccensis leaf spot Thailand
P. higginsii Luttr. ICMP14707 Microleana avenacea leaf spot New Zealand
P. higginsii ICMP14620 M. avenacea dead leaf New Zealand
P. juncicola MacGravie ICMP14625 Carex sp. dead leaf New Zealand
P. juncicola P17 Uncinia sp. dead panicle New Zealand
P. longispora Bussaban ICMP14608 Am. siamense healthy leaf Thailand
P. variabilis Bussaban ICMP14487 Am. siamense healthy leaf Thailand
P. zingiberis Nishik. NBRC9624 Zingiber mioga — Japan
P. zingiberis MUCL9449 Z. officinale — Japan
Pyricularia sp. ICMP14468 Stenotaphrum leaf spot New Zealand

secundatum

Pyricularia sp. ICMP14469 Digitaria sanguinalis leaf spot New Zealand
Pyriculariopsis parasitica (Sacc. & Berl.) MUCL9450 Phyllachora graminis — USA

M.B. Ellis
Tumularia aquatica (Ingold) Marvanova & MUCL28096  Quercus sp. — UK

Descals

*ICMP: International Collection of Microorganisms from Plants, Landcare Research, Auckland, New Zealand; NBRC:
National Institute of Technology and Evaluation Biological Resource Center, Osaka, Japan; MUCL: Mycotheque de T’

Universite Catholique de Louvain, Belgium.

In this study the phylogenetic relationships among 41
isolates of Pyricularia and related genera were de-
termined by analyzing complete sequences of the ITS
regions (including 5.8S rRNA gene). The aims were
to determine whether the morphological characters
used to distinguish between Dactylaria and Pyricularia
are supported by molecular data and also to establish
relationships with Nakataea, Pyriculariopsis and Tu-
mularia, whose species originally were described in or
transferred to Pyricularia. The potential of rDNA
sequences in the analysis of anamorph-teleomorph
relationships at the generic level or using sequence
analysis of rDNA combined with PCR-fingerprinting
to prove the connection between an anamorph
species and an ascomycete has been demonstrated
(Guadet et al 1989, Rehner and Samuels 1994, 1995,
Kuhls et al 1997). A further aim of this study,

therefore, was to establish whether molecular tech-
niques can determine anamorph-teleomorph rela-
tionships of species of Dactylaria or Pyricularia.

MATERIALS AND METHODS

Fungal isolates and morphology.—Fungal isolates used in
this study are listed (TABLE I). They were obtained from
culture collections (International Collection of Micro-
organisms from Plants, Landcare Research, Auckland,
New Zealand, ICMP; Mycotheque de 1’ Université
Catholique de Louvain, Louvain-la-Neuve, Belgium,
MUCL; National Institute of Technology and Evalua-
tion Biological Resource Center, Osaka, Japan, NBRC)
or from case studies (Bussaban et al 2001a, b, ¢, 2003).
These isolates were recovered from healthy plants, dead
or decaying plant tissues, or those exhibiting symptoms
of leaf blast, leaf spot, or leaf streak. For morphological
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study, mounts were prepared in lactophenol, examined
with both differential interference phase contrast and
bright field phase contrast microscopy.

Extraction of genomic DNA.—Genomic DNA was extracted
by a SDS-CTAB (sodium dodecyl sulfate-cetyltrimethyl-
ammonium bromide) method (Kim et al 1990). All
isolates were grown in Nobles broth (1.2% malt extract)
at 22 C for 10 d. Mycelia including conidia were
harvested, freeze dried, frozen in liquid nitrogen and
ground into a fine powder with a mortar and pestle.
About 15 mg of powdered mycelia including conidia
were suspended in 1 mL of ice-cold lysis buffer
(150 mM NaCl, 50 mM EDTA, 10 mM Tris-HCI,
pH 7.4, 30 pg/mL proteinase K), transferred into
1.5 mL Eppendorf tube and kept at 4 C to prevent
endonuclease activity during rehydration of the sample.
SDS was added to a final concentration of 2%, vortexed
and incubated 30 min at 65 C. After centrifugation for
15 min at 14 000 rpm, the supernatant was transferred
to a new sterile 1.5 mL. Eppendorf tube. The volume of
supernatant was measured and the NaCl concentration
was adjusted to 1.4 M and one-tenth volume of 10%
CTAB buffer (10% CTAB, 500 mM Tris-HCI, 100 mM
EDTA, pH 8.0) was added. The solution was thoroughly
mixed and incubated 10 min at 65 C. After cooling
2 min at 15 C, an equal volume of chloroform isoamyl
alcohol (24:1 v/v) was added, thoroughly mixed and
the tube was centrifuged 15 min at 14 000 rpm. The
extraction was repeated until the interface was clear.
The supernatant was removed to a new Eppendorf tube,
containing 2 volumes of cold 100% ethanol. After DNA
precipitation, the pellet was centrifuged 15 min at 14
000 rpm, 4 C. Then the pellet was washed with 70%
ethanol and dried at room temperature. It was
resuspended in 100 uL. of 0.002% RNase (5 ug/mlL)
in TE buffer and incubated 1 h at 37 C (Liou and Tzean
1997). The suspension was stored at —20 C pending use
for PCR amplification.

PCR amplification and sequencing.—The internal tran-
scribed spacer (ITS) regions 1 and 2, including 5.8S
rDNA, were amplified in a 25 pul. reaction on a Gen-
eAmp 9700 thermal cycler (Applied Biosystems) under
these reaction conditions: 1 uL. of template DNA at
a 1:20 dilution of the DNA extraction, 0.2 mM each
dNTP, 0.2 uL of FastTaq (Applied Biosystems), 0.2 uM
each of primers ITS1 and ITS4, 2.5 uL of the supplied
10X PCR buffer with MgCls, and sterile water to bring
volume to 25 ul. Thermal cycling was initiated by
denaturation at 95 C for 4 min. This was followed by 35
cycles of denaturation at 94 C for 1 min, annealing at
45 C for 1 min, and extension at 72 C for 1 min, with
a final extension at 72 C for 7 min. PCR products were
analyzed by electrophoresis on 1% agarose gels in TAE
buffer (20 mM Tris-Acetate, 1 mM EDTA, pH 8.0)
(Sambrook et al 1989) and viewed by staining with
ethidium bromide. Residual nucleotides and primers
were removed with High Pure PCR Product Kit (Roche
Molecular Biochemicals) according to the manufac-
turer’s instructions. Amplified products were sequenced

with BigDye Terminator Cycle Sequencing Ready Re-
action Kit (Applied Biosystems) on an ABI PRISM 310
or ABI PRISM 377 automated DNA sequencer. Se-
quences were determined on both strands with
sequencing primers, ITS1 forward and ITS4 reverse
(White et al 1990).

DNA  sequence alignment and phylogenetic analysis.—Se-
quences were assembled with Sequencher 3.1.1 for
Macintosh (Applied Biosystems). Sequences were sub-
mitted to http://bioweb.pasteur.fr/seqanal/clustalw,
for multiple alignment with Clistal W 1.82 (Thompson
et al 1994) and manually adjusted with GeneDoc 2.6.002
(Nicholas and Nicholas 1997). Calculation of base pair
(bp) differences was carried out by pairwise comparison
of strains from the alignment. Twenty-six new sequences
were deposited in GenBank with accession numbers
AY265315-AY265340. Fifteen previously published se-
quences were obtained from GenBank for inclusion in
analyses (TABLE II). Phylogenetic trees were inferred
with PAUP*4.0b10 (Swofford 2002). Heuristic searches
were performed with the criterion of maximum
parsimony (MP) with tree-bisection-reconnection-
branch swapping algorithm. Starting trees were ob-
tained via stepwise addition with 100 random sequence
input orders. The parsimony tree scores, including tree
length and consistency, retention, rescaled consistency
and homoplasy indices (TL, CI, RI, RC and HI), also
were calculated. The neighbor joining (NJ) method
based on a Kimura two-parameter distance measure-
ment also was used to infer a phylogenetic tree. All
molecular characters were unordered and given equal
weight during analysis. Relative branch support was
estimated with 1000 bootstrap replications (Felsenstein
1985) for NJ and MP analyses. Anamorphic Orbiliaceae,
Arthrobotrys amerospora S. Schenck, W.B. Kendr. &
Pramer, A. musiformis Drechsler and Dactylella cylindros-
pora (R.C. Cooke) A. Rubner were used to root for
phylogenetic tree. DNA sequence alignment and trees
were deposited in TreeBase, accession number SN1368.

RESULTS

DNA extraction, sequencing and alignment.—The ITS
region (covering ITSI region, 5.8S gene and ITS2
region) were amplified from all Pyricularia and
related species, and the sizes of these regions are
listed (TABLE IT). Boundaries of the I'TS1 and I'TS2
regions were determined by comparison with
published sequences of the ITS region. ITS
regions varied in length from 402 to 623 bp. The
length of the 5.8S gene was consistent: 157(*1)
bp for strains investigated. No sequence variation
is detectable within species and low among species
within both the genera Pyricularia and Gaeuman-
nomyces.

Molecular phylogeny.— Of 680 total characters in
the aligned sequence data, maximum parsimony
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TABLE II. The PCR product size (bp) and GenBank sequence accession numbers of ITS1-5.8S-ITS2 of Pyricularia and

allied fungi

Genus and species ITS1 5.85 1TS2 Total GenBank accession no.
Arthrobotrys amerospora 214 156 193 563 AF106533
A. musiformis 203 157 167 527 U51948
Dactylaria ampulliformis ICMP3660 151 157 209 517 AY265336
D. appendiculata ICMP14617 220 158 230 608 AY265339
D. dimorphospora 159 157 147 463 U51980
D. lanosa 155 157 162 474 U51979
D. purpurella NBRC9336 242 156 225 623 AY265335
Dactylaria sp. P24 201 157 199 557 AY265332
Dactylaria sp. ICMP14618 220 158 230 608 AY265338
Dactylella cylindrospora 185 156 207 548 AF106538
D. cylindrospora 185 156 183 524 U51953
Gaeumannomyces amomi ICMP14648 142 157 185 484 AY265318
G. amomi ICMP14650 140 157 187 484 AY265317
G. caricis 164 157 174 495 AJ010030
G. cylindrosporus 174 157 174 505 AJ010029
G. oylindrosporus 175 157 174 506 U17211
G. graminis 137 157 172 466 AJ010034
G. graminis var. tritici 156 157 171 484 AF087684
Magnaporthe grisea 124 157 174 455 U17329
M. grisea 124 157 174 455 U17328
Nakataea fusispora MUCL39228 64 157 184 405 AY265330
N. fusispora MUCL40987 64 157 181 402 AY265331
Ochroconis humicola ICMP14434 248 156 214 618 AY265334
Phialophora graminicola 175 157 174 506 U17218
Pyricularia angulata NBRC9625 113 157 231 501 AY265322
P. costina ICMP14436 128 157 191 476 AY265327
P. costina ICMP14437 125 157 192 474 AY265328
P. costina ICMP14609 159 157 228 544 AY265329
P. higginsii ICMP14707 153 157 225 535 AY265326
P. higginsii ICMP14620 149 157 219 525 AY265325
P. juncicola ICMP14625 151 157 225 533 AY265320
P. juncicola P17 152 157 225 534 AY265321
P. longispora ICMP14608 195 157 186 538 AY265319
P. variabilis ICMP14487 180 157 182 519 AY265333
P. zingiberis MUCL9449 133 157 193 483 AY265315
P. zingiberis NBRC9624 129 157 186 472 AY265316
Pyricularia sp. ICMP14468 154 157 232 543 AY265323
Pyricularia sp. ICMP14469 157 157 236 550 AY265324
Pyriculariopsis parasitica MUCL9450 228 158 194 580 AY265340
Tumularia aquatica MUCL28096 165 157 208 530 AY265337
T. aquatica 134 157 149 440 AY148101

analysis was conducted for 442 potentially phylo-
genetically informative characters. Forty sites
ambiguously aligned were excluded from the
analysis to avoid fragmentary ambiguities. A total
of 90 equally most parsimonious trees (TL = 1967,
CI = 0.519, RI = 0.698, RC = 0.370 and HI =
0.481) were obtained and compared for the best
topology with the Kishino-Hasegawa test (FIG. 1).
Those parsimony informative characters in the
alignment also were analyzed by means of the NJ

method with the Kimura two-parameter distance
measurement, assuming equal base frequencies of
entire sequences across taxa, and unequal transi-
tion to transversion ratio. Supports for grouping
in NJ trees were evaluated with 1000 bootstrap
replications, which produced a similar tree topol-
ogy, giving high bootstrap values for the relevant
clades.

In the parsimony and distance analyses, most taxa
were sorted into a large cluster, belonging to the
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99 Magnaporthe grisea U17329

Magnaporthe grisea U17328
Pyricularia sp. ICMP14468
Pyricularia angulata NBRC9625
Pyricularia sp. ICMP14469
Pyricularia higginsii ICMP14620
1008 pyvicularia higginsii ICMP14707
100 | Pyricularia costina ICMP14436
Pyricularia costina ICMP 14437
Pyricularia costina ICMP 14609
Pyricularia juncicola ICMP14625
Pyricularia juncicola P17

Magnaporthe

Pyricularia zingiberis MUCL9449 N\
Pyricularia zingiberis NBRC9624

Gaeumannomyces amomi ICMP14648

Magnaporthaceae

Gaeumannomyces amomi ICMP14650
Gaeumannomyces graminis AJ010034
Gaeumannomyces graminis var. tritici AF087684
Gaeumannomyces caricis AJ010030

Phialophora graminicola U17218

Gaeumannomyces

Gaeumannomyces cylindrosporus U17211
Gaeumannomyces cylindrosporus AJ010029

Pyricularia longispora ICMP14608

100 l Nakataea fusispora MUCL39228

Nakataea fusispora MUCLA40987

Dactylaria lanosa U51979

100

100

Dactylaria dimorphospora U51980

100 | Dactylaria sp. ICMP14618

Dactylaria appendiculata ICMP14617
Pyriculariopsis parasitica MUCL9450

‘ 100 l Tumularia aquatica MUCL.28096

64

75

100 E

i_::-_‘ Dactylaria sp

100 1 Dactylella cylindrospora AF106538

Dactylella cylindrospora US1953

iEA rthrobotrys musiformis U51948

Tumularia aquatica AY 148101
Dactylaria ampulliformis ICMP3660
Ochroconis humicola 1ICMP14434

Dactylaria purpurella NBRC9336
. P24
Pyricularia variabile ICMP14487

Arthrobotrys amerospora AF 106533

— 10

FiG. 1.

One of 90 equally most parsimonious trees inferred from a heuristic search of the ITS1-5.85-1TS2 rDNA sequence

alignment of 41 isolates of Pyricularia and related genera. Dactylella and Arthrobotrys were used to root the tree. The size of the
branches is indicated with a scale bar. The bootstrap values representing 1000 bootstrap replications are given (when more
than 50%) above or below the branches. Branches =95% are strongly supported (Felsenstein 1985) and are shown in boldface.

family Magnaporthaceae with high bootstrap support
(MP = 99%, F1G. 1), while the remaining taxa were
basal to this group. With the exception of P. variabilis
Bussaban, all Pyricularia species studied fell within
the Magnaporthaceae. In the MP tree Nakataea

Jusispora (Matsush.) Matsush. formed a sister taxon
of the Magnaporthaceae with 82% bootstrap support
(F1G. 1). The Magnaporthaceae comprises two sister
taxa corresponding to the teleomorph genera Mag-
naporthe and Gaeumannomyces. The Magnaporthe
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clade included the type of the genus, M. grisea and
the anamorphic species, P. angulata Hashioka, P.
costina Sarbajna, Pyricularia higginsii Luttr., P.
Juncicola MacGarvie and Pyricularia sp. (1ICMP14468,
ICMP14469). The Gaeumannomyces clade comprised
four Gaeumannomyces species, Phialophora gramini-
cola (Deacon) J. Walker, Pyricularia zingiberis Nishik.
and P. longispora Bussaban with 90% bootstrap
support. Also in this clade, Gaeumannomyces amomi
Bussaban and Pyricularia zingiberis isolates from
Zingiberaceae plants were related closely with 100%
bootstrap support. The Gaeumannomyces isolates
from grass also were related closely to the Zingiber-
aceae isolates. Gaeumannomyces cylindrosporus D.
Hornby, Slope, Gutter. & Sivan. and Phialophora
graminicola clustered with 100% bootstrap support,
and Pyricularia longispora occurred separately.

The remaining taxa were related distantly to the
Magnaporthaceae. In the MP analysis Pyriculariopsis
parasitica (Sacc. & Berl.) M.B. Ellis formed a closely
related cluster (100% bootstrap support) with Dacty-
laria appendiculata Cazau, Aramb. & Cabello and
Dactylaria sp. ICMP14618. Twmularia aquatica (In-
gold) Marvanova & Descals and D. ampulliformis
(Tubaki) G.C. Bhatt & W.B. Kendr. are clustered but
with low bootstrap support (64%). Ochroconis humi-
cola (G.L. Barron & L.V. Busch) de Hoog & von Arx
and D. purpurella (Sacc.) Sacc. are clustered with
100% bootstrap support and formed a sister cluster of
this former cluster with 75% bootstrap support.
Pyricularia variabilis seems to be a taxon different
from the other Pyricularia species studied. This
species clustered with Dactylaria sp. isolate P24
(89% bootstrap support). They showed 24.4% of
sequence variation and formed a sister group of
members including the type species of Dactylaria, D.
purpurella. However this branch lacked bootstrap
support. Similar clusters resulted in the NJ tree but
with differing bootstrap support.

DISCUSSION

Molecular phylogeny and velationships of Pyricularia
and related genera.—Species of the anamorphic
fungus Pyricularia are typically plant pathogens
(e.g., P. oryzae is a serious rice blast pathogen (Ou
1987)). Pyricularia grisea is the cause of gray leaf
spot of St Augustine grass (Malca and Owen 1957).
Other Pyricularia species cause diseases on mem-
bers of Cannaceae, Commelinaceae, Marantaceae,
Musaceae and Zingiberaceae (Meredith 1963;
Asuyama 1965; Hashioka 1971, 1973; Kotani and
Kurata 1992; Pappas and Paplomatas 1998).
Pyricularia penniseti Prasada & Goyal and P. setariae
Nishik., morphologically similar pathogens, have

been reported on cereals and grasses (Nishikado
1917, Sprague 1950, Malca and Owen 1957, Bailey
and van Eijnatten 1961, Asuyama 1965, Wells et al
1969, Prasada and Goyal 1970). Pyricularia zingi-
beris, P. costina, P. curcumae Rathaiah and P. distorta
Hashioka are pathogenic on Zingiberaceae (Nishi-
kado 1917, Hashioka 1971, Rathaiah 1980, Sar-
bajna 1990). Bussaban et al (200la, b, 2003)
reported several Pyricularia species, including P.
costina, living as endophytes in healthy wild ginger.

The criterion used by Ellis (1976) for separating
Pyricularia from Dactylaria is that the conidia of
Pyricularia secede in a rhexolytic manner, with the
denticle acting as a separating cell, and with a pro-
truding hilum on the conidia, whereas those of
Dactylaria secede in a schizolytic manner. However
subsequent revisions of Dactylaria (de Hoog 1985,
Goh and Hyde 1997) are not consistent with this
method of conidiogenesis in Dactylaria. Two species
originally described in Pyricularia (P. higginsii Luttr.
and P. juncicola MacGarvie) that secede in a schizoly-
tic manner, were transferred to Dactylaria (Ellis
1976). The name Dactylaria juncicola was occupied
already by a different fungus, D. juncicola (MacGar-
vie) G.C. Bhatt & W.B. Kendr., thus Ellis (1976)
proposed the new name D. junci. Nakataea fusispora
also was transferred to Pyricularia fusispora because of
its rhexolytic conidial secession (Zucconi et al 1984).
However the phylograms inferred from ITS sequence
data presented here did not disclose any consistent
correlation with the type of conidial secession.
Nonetheless it did reveal an interesting correlation
between this clade and conidial morphology. With
the exception of P. variabilis, all Pyricularia species
studied including two species of Pyricularia (P.
higginsii and P. juncicola, previously renamed Dacty-
laria) that have obpyriform conidia were grouped
within the family Magnaporthaceae with high boot-
strap support. This suggested the clade might
represent a monophyletic lineage of species with
obpyriform conidia. Following this conidial morphol-
ogy criterion, the originally named Pyricularia
higginsii and P. juncicola therefore should be main-
tained in Pyricularia. Likewise Nakataea fusispora also
should be maintained in Nakataea because this
species has distinctive, verrucose, fusiform conidia
and it formed a sister cluster of members in
Magnaporthaceae.

Pyricularia variabilis was the only species of
Pyricularia studied that did not group in the
Magnaporthaceae. This taxon has swollen, terminal
and intercalary nodes on the conidiophores, and
variously shaped conidia. Analyses of ITS sequence
data showed that P. variabilis was unrelated phyloge-
netically to the other Pyricularia species studied but
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more closely related to Dactylaria, Tumularia or
Ochroconis species. Further work is needed to
establish the appropriate placement of this taxon
and determine its relationships.

Our results indicated that the rest of Dactylaria and
species of Pyriculariopsis, Tumularia and Ochroconis
were distinct from the Magnaporthaceae and that the
genus Dactylaria is polyphyletic. Dactylaria is a form
genus and includes species with many conidia born at
the apical region of conidiophores on cylindrical or
tapering denticles. Conidia, however, are shaped
variously and therefore taxa may be unrelated.
Furthermore this type of conidiogenesis might have
evolved more than once. Our results support this
conjecture.

Dactylaria purpurella is the type species of Dacty-
laria and has short conidiophores with cylindrical or
tapering denticles bearing navicular conidia. In the
ITS sequence analysis it was clustered with Ochroconis
humicola with 100% BS. Ochroconis humicola was
described originally as a species of Scolecobasidium
and subsequently included in Ochroconis (de Hoog
and von Arx 1973). Ochroconis and Scolecobasidium
are members of the Dactylaria complex characterized
by rhexolytic conidium secession and pale brown
conidia. Most species of Ochroconis have ellipsoidal,
clavate or fusiform conidia, while Scolecobasidium
species have trilobate conidia (de Hoog and von Arx
1973, de Hoog 1985). The other species of Dactylaria
appear to be unrelated to D. purpurella and further
work is needed to understand this genus complex.

Tumularia aquatica and Pyriculariopsis parasitica
originally were described in Pyricularia and later
accommodated in newly introduced genera (Ingold
1943, Hughes 1958, Ellis 1971, Marvanova and Descals
1987). Tumularia aquatica differs from Pyricularia in
lacking denticles and having lemon-shaped conidia.
Pyriculariopsis parasitica differs in having straight
or curved, obclavate and rostrate conidia. The
exclusion of these taxa from Pyricularia, therefore,
is justified and supported by morphological and
molecular data.

Anamorph-teleomorph  connections.—Anamorphic
fungi that have not been linked to any tele-
omorphs make up a large proportion of known
fungi. The inability to identify such links lies in
inherent difficulties in experimentally proving
anamorph-teleomorph connections and the fact
that many fungi will not sporulate in culture. The
present classification system for anamorphic gen-
era therefore uses three categories of information
to identify taxa (Kirk et al 2001): conidiomatal
types, Saccardo’s spore groups and conidiogenous
events. Relationships suggested by such informa-

tion, however, do not necessarily reflect evolution-
ary relationships (Hawksworth et al 1995), and the
need for identifying relationships of anamorphs
with their teleomorphs with molecular techniques
has been advocated by Rossman et al (2001).
Dactylaria and Pyricularia have similar types of
conidiogenesis and spore types and are hyphomy-
cetes (Ellis 1976). Species of Pyricularia have been
characterized by morphological, physiological or
molecular information (Ellis 1971, 1976; Mat-
suyama et al 1977; Kato et al 2000; Couch and
Kohn 2002) and have been linked to Magnaporthe
teleomorphs (Hebert 1971, Kato et al 1976).
Species of Dactylaria differ from Pyricularia in the
absence of a separating cell in the denticles, and
the conidia also are of various shapes, usually
fusiform, naviculate, or more or less cylindrical
(Ellis 1976). Teleomorphs of Dactylaria species
have not been reported commonly. Carmichael
et al (1980) mentioned the occurrence of an
anamorph for Acrospermum compressum Tode. This
anamorph bears some similarity to Subulispora
minima P.M. Kirk and to Dactylaria graminicola
Arsvoll. Sivichai et al (2002) reported a teleo-
morph-anamorph connection between an uniden-
tified teleomorph and Dactylaria.

Carbone and Kohn (1993) demonstrated the
confirmations of anamorph-teleomorph connection
by comparative sequence analysis of amplified prod-
ucts of Sclerotinia and Sclerotium, which showed 98%
sequence homology in the ITS region of rDNA. Kuhls
et al (1997) established the connection between
Trichoderma anamorphs and Hypocrea teleomorphs
where five Trichoderma-Hypocrea connections were
supported by 100% identity in ITS1 and ITS2
sequences. Egger and Sigler (1993) investigated the
ex type strains of the anamorph Seytalidium vaccinii
Dalpé, Litten & Sigler and the ascomycete Hymenos-
cyphus ericae (D.J. Read) Korf & Kernan. They found
1.2-3.5% divergence in the ITS1 and ITS2 regions
and concluded from these data and morphological
observations that S. wvaccinit and H. ericae are
anamorph and teleomorph of a single taxon. In our
study phylogenies showed Pyricularia zingiberis and
Geaumannomyces amomi isolated from Zingiberaceae
plants were grouped strongly and closely related to
other Gaeumannomyces species from grasses. Our
isolates from Zingiberaceae contained up to six
nucleotide differences in the entire ITS sequences,
while nucleotide sequences of P. zingiberis isolate
NBRC9624 and G. amomi isolate ICMP14648 were
identical. Geographical separation or host specializa-
tion (TABLE I) could be an explanation for the
nucleotide sequence differences present in P. zingi-
beris from Japan, isolates MUCL9449 (Zingiber
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officinale Rosc.) and NBRC9624 (Zingiber mioga
Rosc.), in comparison with G. amomi isolates
ICMP14650 (Alpinia malaccensis (Burm.) Rosc.) and
ICMP14648 (Amomum siamense Craib.) from Thai-
land. However information from a larger number of
isolates is required to confirm this. According to I'TS
sequences, and a distinct morphological character of
sickle-shaped conidia, Harpophora W. Gams, a genus
comprising phialidic anamorphs of the Magnaportha-
ceae was introduced with H. radicicola (Cain) W.
Gams (=Phialophora radicicola Cain) as type (Ward
and Bateman 1999, Gams 2000). A connection
between H. graminicola (Deacon) W. Gams (=P.
graminicola (Deacon) J. Walker) and Gaeumanno-
myces cylindrosporus also was supported by ITS
sequences similarity (Walker 1980, Bryan et al
1995). Likewise Couch and Kohn (2002) extracted
DNA directly from freeze dried perithecia of Magna-
porthe and mycelia of anamorphic Pyricularia isolates
and the result, based on three genes (actin, beta-
tubulin and calmodulin), supported the anamorph-
teleomorph connection demonstrated by Hebert
(1971) and Yaegashi (1977). Our results are consis-
tent with the possibility that heterogenous P.
zingiberis might be the anamorph state of Gaeuman-
nomyces amomi.

Molecular studies have suggested that Pyricularia
spp. isolated from different hosts are genetically
distinct (Borromeo et al 1993, Shull and Hamer
1994, Kato et al 2000, Couch and Kohn 2002,
Goodwin et al 2003) or provided information on
the genetic diversity among different population of
rice blast fungi, Pyricularia grisea or P. oryzae (Lebrun
et al 1991, Levy et al 1991, Zhu et al 1992, Chen et al
1995, George et al 1998). In our study the combina-
tion of morphological characters (e.g., spore mor-
phology) and molecular characters (ITS ribosomal
DNA sequences data) may confidently let us distin-
guish Pyricularia from Dactylaria species, especially if
sexual structures are not readily produced in culture.
We conclude that conidial shape can be used as
a primary character to distinguish Pyricularia species
from related genera such as Dactylaria.
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