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Since the emergence and rapid spread of the
etiologic agent of severe acute respiratory syn-
drome (SARS)—SARS coronavirus (SARS-
CoV)—in late 2002 and during the first
6 months of 2003, great progress has been
made in understanding the biology, pathogen-
esis, and epidemiology of both the disease and
the virus (SARS-CoV). Much remains to be
done, however, including the development of
effective therapeutic interventions and diag-
nostic tools with high sensitivity and specificity
soon after the onset of clinical symptoms. The
evaluation of key epidemiologic parameters
and the impact of different public health inter-
ventions in the various settings that experi-
enced minor or major epidemics is also needed
(Affonso et al. 2004; Cui et al. 2003; Lau et al.
2004; Leung et al., in press). In terms of out-
break control on the population level, many
questions about “superspreading events”
(SSEs) remain to be investigated. Such an SSE
was responsible for > 300 cases (out of a total
of 1,755) in the Amoy Garden Housing Estate
(AMOY) in the Hong Kong epidemic.
Moreover, Donnelly et al. (2003) have demon-
strated that there were clear geographic con-
centrations of microclusters of SARS cases
where the density of infection varied widely
between different districts.

The application of geographic information
system (GIS) methods in health and health care
is a relatively new approach that started to gain
acceptance a decade ago (Higgs and Gould
2001; Meade and Earickson 2000). In particu-
lar, a wide variety of cartographic methods have

become available for the mapping and analysis
of communicable disease data since the defin-
ing work of Cliff and Haggett (1988) and
Haggett (1994). Advances in new technologies
enable the application of GIS to examine spa-
tially related problems from different perspec-
tives. In addition to the descriptive mapping
function, GIS possesses capabilities of data
manipulation and geostatistical analysis.

In the present study, we applied GIS tech-
nology in mapping and visualizing the SARS
outbreak in Hong Kong. In this article we
focus on cartographic and geostatistical meth-
ods in representing and analyzing the patterns
of disease spread during the 2003 outbreak.
We also address the utility and limitations of
GIS as a real-time disease surveillance tool.

Materials and Methods

Data sources. We used spatial and nonspatial
data in this study. Spatial data are geographic
in nature and have a physical dimension or
location in the real world. These are repre-
sented as points, lines, or area symbols, and
they form the map base upon which SARS
occurrences are depicted. Data on SARS inci-
dence were derived from case-contact inter-
views that are text based; associated residential
address data were first cleaned, checked for
completeness and accuracy (e.g., Chinese-
English transliteration of building and street
names), and then geo-referenced to enable
mapping.

We analyzed the SARSID integrated data-
base (coordinated by the Department of

Community Medicine, University of Hong
Kong, on behalf of the Health, Welfare and
Food Bureau—derived from the Hong Kong
Hospital Authority eSARS system and the
Department of Health’s Master List), which
contained details on all patients confirmed to
have SARS and admitted to hospitals in Hong
Kong throughout the entire epidemic, that is,
from 15 February to 22 June 2003. The criteria
for inclusion in the SARSID were radiographic
evidence of infiltrates consistent with pneumo-
nia, fever ≥ 38°C or history of such at any time
in the past 2 days, and at least two of the fol-
lowing: a) history of chills in the past 2 days;
b) cough (new or increased cough) or breathing
difficulty; c) general malaise or myalgia; and
d) known history of exposure. However,
patients were excluded if an alternative diagno-
sis could fully explain their illness. Moreover,
each case classified as confirmed SARS was veri-
fied by the Hong Kong Department of Health
according to World Health Organization
(WHO) guidelines on case definitions (WHO
2003). Eighty-two percent of the 1,755 cases
listed as confirmed SARS had either reverse
transcription–polymerase chain reaction results
positive for SARS-CoV or a 4-fold increase in
IgG antibodies in paired sera (at admission and
21 or 28 days after symptom onset). Two
questionnaires (case questionnaire and case-
contact survey) were administered, mostly
through telephone interviews, to all SARS
cases confirmed by the Department of Health,
initially by four regional field offices and later
by a central interviewing team of nurses, to
record symptoms at presentation to the hospi-
tal and to identify contacts and events of
probable significance to transmission.
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A total of 1,709 confirmed cases (out of
1,755 total cases) were extracted for the analy-
sis. Forty-six cases (i.e., 2.6% of the total)
could not be pinpointed at an exact location
because of inconsistencies in the address
entries (So 2002).

Geostatistical analyses. We carried out
three levels of analysis: a) an elementary
analysis involving simple visual inspection of
a geographic phenomenon; b) a cluster analy-
sis attempting the identification of possible
“hot spots,” and c) a contextual analysis aim-
ing to explain relationships among geographic
phenomena (Bailey and Gatrell 1995; Olson
1976).

At the elementary level, the spread of a dis-
ease in a community is revealed through the
plotting of disease occurrences at residential
addresses of the patients enabled with the
address matching function in a GIS. Point by
point is the simplest form of mapping disease
occurrences without accounting for the magni-
tude at each location, but the sheer number
and spread of points could have impeded effec-
tive reading of the event. A map of cumulative
counts collapses the numerous observations
into circles of varying sizes to signify differ-
ences in the magnitude of disease occurrences
in the community. The circles are proportion-
ally sized to reflect the number of occurrences
at the sites, and geographic clustering of disease
infection can then be clearly identified.

We also examined the spread of SARS over
time on the basis of point patterns. Each dis-
ease occurrence was plotted spatially and the
spread or dispersion of disease incidence was
examined using nearest neighbor analysis based
on the R scale. The nearest neighbor analysis is
an accepted spatial statistical analysis used by
environmental scientists to study species distri-
bution (Krebs 1989) and by crime analysts to
explain the levels of dispersion in crime and
disorder data (Eck and Weisburd 1995). The
R scale assumes that events will be randomly
spaced unless something influences the distri-
bution. Three different patterns are possible:
clustered (0 ≤ R < 0.8), distributed randomly
(0.8 ≤ R < 1.8), or with uniform spacing
(1.8 ≤ R ≤ 2.149). A contagious process will
give rise to a clustered pattern with near-zero
R values.

Cluster analysis involves statistical map-
ping that generalizes the numerous observa-
tions into a statistical surface to highlight
spatial variation. A 5-day incubation period,
consistent with a previous gamma distribu-
tion parameter estimation exercise (Leung et
al., in press), was used to restructure the data
for a time-series study. A statistical surface
was created by the kernel method (Bailey and
Gatrell 1995) for each day to reveal daily
changes of disease hot spots. A kernel size of
300 × 300 m2 was used to reconstruct the ter-
ritory of Hong Kong into a gridded surface of

208 columns and 151 rows. The kernel size
was 300 × 300 m2, and disease occurrences
within a bandwidth of 600 m from the kernel
were summarized to yield density measures in
terms of number of SARS cases per square
meter. Each grid was then designated either as
urban or suburban based upon land use classi-
fication, and its associated density measure
was adjusted for the underlying variation in
population density (i.e., kernel density × pop-
ulation density × grid cell size/1,000) to yield
infection rates per 1,000 population. We
adopted the approach by Kafadar (1996) but
modified it to account for variation between

urban or suburban population densities within
a given district in Hong Kong (Table 1). Each
urban or suburban grid was considered a
homogeneous unit wherein its population den-
sity was apportioned according to the propor-
tion of residents in the employed labor force.

We created 12 kernel maps adjusted for
population at risk to characterize changes in
disease hot spots on 12 prototypical days over
16 weeks in a chronologic sequence. The infec-
tion rates, which span across a wide range, were
collapsed into 15 classes to reduce the com-
plexity of map representation. Each of the
15 classes was assigned a shade in proportion
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Table 1. Urban area and population data of Hong Kong by districts.

18 Districts Total Total working Percent urban Percent urban
plus marine population populationa landb allocationc

Central and western 261,884 144,824 29 99.9
Eastern 616,199 314,674 27 99.7
Islands 86,667 43,201 1 97.8
Kowloon City 381,352 185,553 82 99.9
Kwai Tsing 477,092 218,291 44 99.9
Kwun Tong 562,427 226,062 76 99.9
North 298,657 133,767 12 99.1
Sai Kung 327,689 165,219 3 99.8
Shatin 628,634 265,473 17 99.9
Sham Shui Po 353,550 159,861 53 99.9
Southern 290,240 145,086 9 98.9
Tai Po 310,879 145,520 6 99.6
Tsuen Wan 275,527 140,011 8 99.9
Tuen Mun 488,831 210,115 17 99.6
Wan Chai 167,146 93,365 33 99.9
Wong Tai Sin 444,630 200,265 47 99.9
Yau Tsim Mong 282,020 137,765 64 99.9
Yuen Long 449,070 180,198 21 99.1
Marined 5,895 4,629 0 20.7
Total 6,708,389 3,113,879

Data from Hong Kong Census and Statistics Department (2002).
aSum of employed labor force. bTotal urban areas within each district divided by district area. cComputed from urban-
related occupation in employed labor force, defined as follows: rural-related occupation (includes agriculture and fish-
ing); mining and quarrying; urban-related occupation (includes community, social, and personal services); construction;
electricity, gas, and water; financing; insurance, real estates and business services; manufacturing; transport, storage,
and communications; wholesale, retail, and import/export trades; restaurants and hotels; unclassified. dMarine data were
not land based and thus were excluded from the study.

Figure 1. A summary map of SARS-infected cases in Hong Kong (February–June 2003). Data from the SARSID
integrated database.
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to the magnitudes, with darker shades repre-
senting higher densities of infection. Two
kinds of indexes were employed to assess the
extent of disease clustering: R scale and
Moran’s I coefficient for more highly con-
nected grids of the queen’s case that considers
a neighborhood of eight cells in a 3 × 3
matrix. Moran’s I coefficient ranges between
–1 and 1 and is interpreted as regionalized or
juxtaposition of similar values (0.6 ≤ I ≤ 1
indicating positive spatial autocorrelation),
lack of autocorrelation, or the actual arrange-
ment of values as one that we would expect
from a random distribution (–0.6 < I < 0.6
indicating no spatial correlation), and either
contrasting or tendency for dissimilar values to
cluster (–1 ≤ I ≤ –0.6 indicating negative spa-
tial correlation). Although R scale is a global
measure for the spread or dispersion of disease
incidence for point data based on nearest
neighbor distance (Eck and Weisburd 1995;
Krebs 1989; Taylor 1977), Moran’s coeffi-
cient measures local spatial autocorrelation for
area data (Getis and Ord 1992; Sawada 2001).
A comparison of the power evaluation of dis-
ease clustering tests has been described by
Song and Kulldorff (2003).

For contextual analysis, histograms of the
kernel data for 12 prototypical days were
drawn to highlight variation in infection
rates. Also, we replaced mean and SDs of the
classed density data with their natural loga-
rithm functions to accentuate the effect of
change between near-zero values; we then
graphed the values.

We also established a breakdown of dis-
ease occurrences by recognized clusters (e.g.,
SSEs) for contextual analysis. Three disease
clusters each with > 30 observations were
extracted: AMOY, Prince of Wales Hospital
(PWH), and Lower Ngau Tau Kok Housing
Estate (NTKLOW). These data were used to
derive origin-and-destination (OD) plots or

flow diagrams. Lines were drawn to connect
an origin location where the flow started (e.g.,
index source of infection) with related desti-
nations where the flow ended (e.g., residences
of secondary contacts). The OD plots are an
established methodology employed by trans-
port professionals and human geographers to

examine the extent of spatial interaction and
human settlement, as well as the modeling of
commodity flows (Batten and Boyce 1986).
The flow data themselves can be people,
goods, telecommunications, and so on. The
lines help to delimit the spatial coverage
revealing the extent or degree of spread. SD
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Table 2. A frequency breakdown of SARS-infected
buildings (February–June 2003).

No. of SARS cases No. of Total no. of
in a building buildings SARS cases

136 1 136
47 1 47
46 1 46
43 1 43
20 1 20
18 1 18
11 1 11
10 3 30
9 1 9
8 3 24
7 2 14
6 6 36
5 3 15
4 12 48
3 47 141
2 156 312
1 759 759

Total 1,709

Figure 2. Time sequence of the spatial spread of SARS in Hong Kong (by date of onset with 5-day incubation
period and weighted by population density), February–June 2003. Abbreviations: n, number of SARS
patients; NA, not computed because of insufficient sample size (n < 25). An animated series is available
online (Lai and Chan 2004). 
*p < 0.01, which indicates a tendency toward clumping of disease incidence. **p < 0.001, which implies that spatial auto-
correlation exists and that similar values on the map tend to cluster together.

Land area = 1,094,956,123 = 12,182 grids
Water area = 1,728,059,536 = 19,226 grids

Total area = 2,823,015,659 = 31,408 grids

Grid size: 208 columns × 151 rows
Grid cell size: 300 × 300 m2 = 89,882.057 m2 = 0.090 km2
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ellipses centered on the geometric mean of all
locations were drawn to provide a summary
trend of the dispersion and to examine
whether a distribution has a directional bias.
The major axis is the direction of maximum
spread of the point events, and the minor axis
is the direction of minimum spread.

All analyses were carried out using
ArcGIS software and its extension modules
(Environmental Systems Research Institute,
Redlands, CA, USA).

Results

Elementary analysis. Figure 1 illustrates geo-
graphic locations of SARS infection by resi-
dential address in Hong Kong. The size of the
circle corresponds to the density of cases in a
particular location. There was clear clustering
of cases in certain districts of the Kowloon
peninsula (Kwun Tong, in which AMOY is
located) and the New Territories (including
Shatin, Tai Po), but Hong Kong Island was
relatively spared. Table 2 supports this obser-
vation: most affected buildings or apartment
blocks had very few cases, whereas seven
buildings had > 10 SARS-affected patients.

Cluster analysis. A series of 12 kernel
maps based on date of symptom onset and
accounting for a 5-day incubation period of
SARS is presented in Figure 2. Each kernel
map shows the density of SARS patients
adjusted for underlying population density
(i.e., SARS infection rate per 1,000 popula-
tion) on a prototypical day over 16 weeks,
with darker zones emphasizing disease hot
spots [see also daily animated series by Lai
and Chan (2004)]. A few disease hot spots
were shown to be developing in the Kowloon
peninsula and southeast New Territories (i.e.,
Ma On Shan and Shatin) by 10 March,
which was followed later by a heavy concen-
tration at the AMOY by 28 March. By early
April, the AMOY case load began to dissipate
and a new hot spot emerged in Tai Po (north-
east New Territories). There is clear evidence
of varying degrees of clustering as the epi-
demic progressed over time based on the low
R values. The low R values signify substantial
degrees of clustering (significant at 99% confi-
dence level), with higher degrees of clustering
occurring around the peak of the infection
and relatively small divergences from random
distribution at the beginning of the outbreak.
High Moran’s I coefficients of ≥ 0.6 indicate
that similar values tend to cluster together,
which confirms the geospatial clustering and
thus infectious nature of the disease, based on
rates that were adjusted for the underlying
population density. Figure 3 summarizes
SARS hot spots in Hong Kong considering
cumulative disease occurrences from February
through June 2003. The map shows that the
urban population was at higher risk of con-
tracting SARS (Moran’s I = 0.78, p < 0.001),

having already accounted for variation in
population density.

Contextual analysis. Daily histograms of
the number of observations by 15 classes of
infection rates, primarily composed of inverse
J-shaped curves, show an increased concentra-
tion of SARS occurrences toward the end of

March (Figure 4). Figure 5 is a logarithmic
plot of the mean and SD of the infection rates
of the 12 prototypical days representing dif-
ferent stages of the epidemic; values for indi-
vidual days are presented in Table 3. Pairwise
comparisons between each of the prototypical
days and day 1 (or the day of indifference) of
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Figure 3. SARS hot spots based on cumulative disease occurrences from February through June 2003.
Moran’s I = 0.78 (p < 0.001). 
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the epidemic demonstrated no detectable dif-
ference between the mean infection rates
throughout the epidemic. However, there
were statistically significant differences, by the
F-test at a 0.01 significance level, in the SDs
of the middle 10 prototypical days compared
to day 1, suggesting unequal population vari-
ances during much of the outbreak. Higher
F-values indicate more unequal variance.
Given that the SD is a measure of geographic
dispersion, we can infer that a larger SD signi-
fies a wider spread of the disease over the ter-
ritory. The crossover points of the mean and
SD curves in Figure 5 indicate, on the one
end, the beginning of substantial disease
spread across the territory, and on the other
end, the subsidence of the epidemic.
Therefore, the time from day 1 (18 February)
through day 16 (6 March) was the prodrome
of the epidemic, whereas days 86 (15 May)
through 106 (4 June) marked the declining
phase of the outbreak.

OD plots of disease clusters were obtained
by linking patients’ places of residence with the
likely or probable locations of index cases or
environmental sources of infection as defined
through contact tracing by public health
authorities (Figure 6). PWH is a tertiary teach-
ing hospital and the site of the first SSE and
nosocomial cluster in the Hong Kong epi-
demic, whereas AMOY and NTKLOW were
subsequent community SSE clusters that had a
strong putative environmental etiology (viz.,
sewage pipes, building design, and poor envi-
ronmental hygiene) in addition to human-to-
human transmission [Hong Kong Special
Administrative Region (HKSAR) 2003; Wong

and Hui 2004]. As would be expected because
of a large patient catchment area, the PWH
cluster was more geographically widespread (as
supported by the SD ellipses in Figure 6D)
compared with the AMOY cluster (Figure
6B), the sample size of which was one-third
larger. The SD ellipses of the PWH cluster
(Figure 6D) reveal a northwest–southeast
directional trend of disease spread that extends
over most of Hong Kong. The AMOY cluster
was comparatively more localized, and the
map had to be be enlarged to show the stan-
dard ellipses that exhibit an almost east–west
directional trend of disease transmission
(Figure 6B). The NTKLOW cluster (Figure
6F) was the least geographically widespread of
the three SSEs, where the very compact spatial
distribution must be magnified to visualize
details of the SD ellipses.

Figure 7 and Table 4 show low R scores (a
measure to inform the extent of disease spread)
indicating a high degree of clustering for all
three SSEs. The R values were significant at the
0.001 level, confirming that the point patterns
exhibited a tendency toward clustering.
Figure 7 also shows that block E of AMOY (the
epicenter of the AMOY SSE), with a lower
R score, exhibited a more compact geospatial
arrangement in SARS infection than did other
apartment blocks within AMOY. Visitors of
ward 8A (the epicenter of the PWH SSE
where the index patient of the cluster stayed)
of the PWH were found to spread the disease
farthest from its source of all the three clusters
examined here, as would be expected for such
a nosocomial outbreak at a tertiary referral
hospital where SARS patients were densely

aggregated on the ward but visiting relatives
and friends returned home situated in different
parts of Hong Kong (and not necessarily from
the immediate surrounding neighborhood,
given that the hospital is one of only two ter-
tiary referral centers in the territory with a very
wide catchment area). The NTKLOW cluster
recorded the lowest R score, substantiating
earlier observations from Figure 6.

Discussion

Our findings show that GIS methods can be
usefully employed during an acute infectious
disease outbreak to reveal new geospatial
information in addition to standard field epi-
demiologic analyses. This mapping and carto-
graphic technique can provide visual display
of information in both space and time simul-
taneously. When applied in real time during
the onset and evolution of an epidemic, it can
monitor and enhance understanding of the
transmission dynamics of an infectious agent,
thereby facilitating the design, implementa-
tion, and evaluation of potential intervention
strategies. GIS can offer quantitative and sta-
tistical measures along with visualization tools
to examine patterns of disease spread with
respect to disease clusters. Disease mapping is
a first step toward understanding spatial
aspects of health-related problems, as particu-
lar kinds of information are highlighted in
maps. Various cartographic symbolizations (as
points, lines, or areal patterns) can show the
distribution of diseases. Disease clusters and
other associations can then be deduced statisti-
cally and visually after examining the disease
maps. In Chomsky’s (1965) terms, analyses at
the first two levels concern the surface struc-
ture of an event, whereas the third level seeks
to extract deep structure information. Surface
structure information is simple and immedi-
ately perceptible to a user, whereas deep struc-
ture information is content-specific knowledge
needed for problem solving (Nyerges 1991).

In the case of SARS in Hong Kong, our
study, first and foremost, demonstrates excep-
tional spatial clustering of the cases. The kernel
method adjusted for population density pro-
vided a means of highlighting population at
risk, whereas the use of R values and Moran’s
coefficients in conjunction with map displays
enhanced the analytical context of the point
pattern distributions. In fact, such geospatial
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Figure 5. A logarithmic plot of mean and SD of infection rates of 12 prototypical days throughout the epidemic. 
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Table 3. Mean and SD of infection rates of 12 prototypical days.

Day 1 Day 16 Day 20 Day 22 Day 28 Day 38 Day 40 Day 48 Day 56 Day 67 Day 79 Day 106
(18 Feb) (6 Mar) (10 Mar) (12 Mar) (18 Mar) (28 Mar) (30 Mar) (7 Apr) (15 Apr) (26 Apr) (8 May) (4 Jun)

No. of patients 1 15 107 120 126 421 276 187 129 67 29 2
Mean 0.020 0.023 0.041 0.046 0.047 0.151 0.108 0.066 0.046 0.031 0.026 0.020
z0.01 = 2.33 0.00000 0.43580 0.75503 0.73118 0.74243 0.22811 0.24205 0.64763 0.70296 0.63733 0.52928 0.09170
SD 0.009 0.023 0.106 0.138 0.137 1.852 1.202 0.279 0.129 0.057 0.047 0.003
F0.01(14,14) = 3.6 1.00 20.00* 503.86* 703.10* 759.91* 102817.04* 38521.60* 2277.52* 873.57* 250.41* 58.85* 2.05

*p < 0.001 indicates that the null hypothesis is rejected and that the SD is significantly different from or greater than that of day 1. z = 2.33 and F(14,14) = 3.6 at the 0.01 level of significance
for one-tailed tests.
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intelligence gathered from examining statistical
surfaces and disease clusters provided the basis
for the formulation of our transmission dynam-
ics model (Riley et al. 2003). More specifically,
choice of a suitable framework was not straight-
forward in constructing the transmission
dynamics model where a variety of approaches
were possible, ranging from a simple determin-
istic compartmental approach to a spatially
explicit, individual-based simulation. Given the
data available for Hong Kong, we based our
analyses on a stochastic metapopulation com-
partmental model. A metapopulation approach
was appropriate because the incidence of SARS
varied substantially by geographical district, as
the GIS analyses have shown.

Second, the simultaneous geospatial–
temporal approach to modeling the SARS 

outbreak revealed complementary additional
information that would otherwise not be avail-
able from the traditional epidemic curve
method (a standard public health outbreak
investigative approach) in identifying the mode
of spread. The daily animated series of kernel
maps clearly shows that SARS was a highly
localized disease; thus, its route of transmission
was unlikely to be through casual contact, as it
is for influenza and measles, but more compat-
ible with close contact via heavy respiratory
droplets and fomites. This confirms that SARS
is only a moderately transmissible condition
with a basic reproduction number of about 3
(Riley et al. 2003), in contrast to measles and
influenza, which have basic reproduction num-
bers of about 13 and 5, respectively (Anderson
and May 1991; Ferguson et al. 2003). An

alternative interpretation of the observed high
degree of geospatial clustering would be that
SARS was due to an environmental point
source outbreak. Indeed, faulty sewage systems
and the “chimney effect” is the leading
hypothesis explaining the AMOY SSE (espe-
cially block E), although some have suggested
roof rats as a vector (Ng 2004). Although it is
difficult to gauge retrospectively, had the GIS
system we implemented in this report been
available for near real-time analysis, it would
likely have detected the highly unusual cluster-
ing of cases in SSEs such as the PWH and
AMOY outbreaks much sooner, as they
evolved. This in turn could have resulted in
more rapid contact tracing and public health
intervention, thus perhaps mitigating the
extent of spread substantially in the case of
person-to-person transmission events and pre-
venting further large-scale environmental
point source outbreaks in residential apart-
ment blocks (although it would not have
made a difference to AMOY itself given the
temporally abrupt and short-lived environ-
mental release of viral particles).

Third, contextual analysis of mean and SD
values of different density classes, particularly
after logarithmic transformation to accentuate
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Figure 7. Spatial clusters of SARS patients
(February–June 2003) by nearest neighbor analysis.

Figure 6. Extent and trend of spatial spread of known disease clusters. (A) AMOY cluster (n = 335; R = 0.15;
p < 0.001); the null hypothesis of a random pattern is rejected and the point patterns exhibit a high ten-
dency toward clustering. (B) SD ellipses for AMOY cluster (ellipse 1: x-length = 869.87, y-length = 2044.20;
ellipse 2: x-length = 1739.74, y-length = 4088.40). (C) PWH cluster (n = 212; R = 0.45; p < 0.001); the null
hypothesis of a random pattern is rejected, and the point patterns exhibit a tendency toward clustering but
a more widespread distribution compared with the others. (D) SD ellipses for PWH cluster (ellipse 1:
x-length = 7889.94, y-length = 18541.37; ellipse 2: x-length = 15779.88, y-length = 37082.74). (E) NTKLOW
cluster (n = 38; R = 0.22; p < 0.001); the null hypothesis of a random pattern is rejected and the point pat-
terns exhibit a high degree of clustering. (F) SD ellipses for NTKLOW cluster (ellipse 1: x-length = 59.34,
y-length = 139.44; ellipse 2: x-length = 118.67, y-length = 278.88).

Table 4. Index of spatial spread by nearest neigh-
bor analysis.

Description R n

AMOY cluster 0.15* 335
AMOY block E residents 0.05* 132
AMOY block E visitors 3
Other block residents 0.06* 181
Other block visitors 5
Visited AMOY shopping mall 14

PWH cluster 0.45* 212
PWH 18
Ward 8A visitors 0.58* 58
Ward 8A patients 0.45* 25
PWH medical workers 0.49* 99
PWH other 12

NTKLOW cluster 0.02* 38

n, number of SARS patients.
*p < 0.001 indicates that the null hypothesis is rejected; a
tendency towards clustering exists.
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near zero values on a graph, provided a geo-
graphic approach to estimating the beginning
and subsidence of a large degree of spread of
SARS in the community. This is a useful
adjunct to the usual biomathematical modeling
approach using reproductive numbers at differ-
ent points in time, representing the average
number of infections, excluding SSEs, caused
by infected individuals in successive genera-
tions at time t throughout the SARS epidemic
(Riley et al. 2003).

Fourth, the SD ellipses from the OD
analysis, coupled with complementary results
from R and Moran’s I values, yielded infor-
mation on the direction of spread in a disease
cluster that can be used to inform contact
tracing and the design of quarantine meas-
ures. In the case of SARS in China, where
entire residential districts were cordoned off
for weeks at the height of the outbreak, the
selection of such districts for quarantine could
have been better informed by these ellipses
indicating directional bias and associated
physical distance in disease transmission.

There are, however, limitations and
caveats to the GIS technique in infectious dis-
ease epidemiology and outbreak investigation.
Howe (1963) argued that mapping of diseases
tended to expose the “where” but not “why
there” of the outbreak. Nevertheless, elemen-
tary descriptive analysis as an output of dis-
ease mapping can be a source of new leads for
further exploratory analyses. Map patterns
can provide stimuli for generating hypotheses
of disease causation (Lloyd and Yu 1994;
McKee et al. 2000). Moreover, newer devel-
opments that complement traditional map-
ping functions such as cluster and contextual
analyses can be very useful adjunct investiga-
tive tools in outbreak control, as our example
on SARS in Hong Kong has highlighted.

The completeness and availability of neces-
sary data are another area of potential concern
where conventional field epidemiologic data
collection forms rarely contain the full range of
variables that are required in a GIS analysis.
Data consistency and, in particular, the non-
standardization of patient address formats is
one such example. Field epidemiologists often
relegate certain personal particulars such as res-
idential and work addresses to a lower priority
in their data collection procedures, or at least
enter the information in a haphazard fashion,
rendering GIS analysis very difficult by dimin-
ishing the proportion of usable cases for analy-
ses. Similar generic problems that plague the
establishment of all information systems must

be resolved to enable real-time disease moni-
toring and surveillance. They include lack of
standardization for data capture documents,
procedures and protocols for information man-
agement, delays in transferring and updating
information, and a lack of rapid analysis and
audit of databases. The SARS epidemic is a
clear signal that Hong Kong needs much
greater and sustained investment in health
informatics, that is, public health information
systems, the skills to use them, and networks to
share them.

In summary, integration of GIS technol-
ogy into routine field epidemiologic surveil-
lance can offer a scientifically rigorous and
quantitative method for identification of
unusual disease patterns in real time, as our
example of SARS has shown. Its potential can
be synergistically maximized when linked
with clinical databases collecting data at the
point of care across the whole population as
well as environmental data sources (e.g.,
meteorologic, transportation, topographical
information) to rapidly recognize, locate, and
monitor disease outbreaks.
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