
Title Maintaining temporal consistency of discrete objects in soft real-
time database systems

Author(s) Kao, B; Lam, KY; Adelberg, B; Cheng, R; Lee, T

Citation Ieee Transactions On Computers, 2003, v. 52 n. 3, p. 373-389

Issued Date 2003

URL http://hdl.handle.net/10722/43662

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37882953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Maintaining Temporal Consistency of Discrete
Objects in Soft Real-Time Database Systems

Ben Kao, Kam-Yiu Lam, Member, IEEE, Brad Adelberg,

Reynold Cheng, Student Member, IEEE, and Tony Lee

Abstract—A real-time database system contains base data items which record and model a physical, real-world environment. For

better decision support, base data items are summarized and correlated to derive views. These base data and views are accessed by

application transactions to generate the ultimate actions taken by the system. As the environment changes, updates are applied to

base data, which subsequently trigger view recomputations. There are thus three types of activities: base data update, view

recomputation, and transaction execution. In a real-time database system, two timing constraints need to be enforced. We require that

transactions meet their deadlines (transaction timeliness) and read fresh data (data timeliness). In this paper, we define the concept of

absolute and relative temporal consistency from the perspective of transactions for discrete data objects. We address the important

issue of transaction scheduling among the three types of activities such that the two timing requirements can be met. We also discuss

how a real-time database system should be designed to enforce different levels of temporal consistency.

Index Terms—Updates, view maintenance, transaction scheduling, temporal consistency, real-time database.

æ

1 INTRODUCTION

A real-time database system (RTDB) is often employed
in a dynamic environment to monitor the status of

real-world objects and to discover the occurrences of
“interesting” events [21], [13], [2], [3], [8]. As an example,
a program trading application monitors the prices of
various stocks, financial instruments, and currencies, look-
ing for trading opportunities. A typical transaction might
compare the price of German Marks in London to the price
in New York and, if there is a significant difference, the
system will rapidly perform a trade.

The state of a dynamic environment is often modeled
and captured by a set of base data items within the system.
Changes to the environment are represented by updates to
the base data. For example, a financial database refreshes its
state of the stock market by receiving a “ticker tape”—a
stream of price quote updates from the stock exchange. In a
dynamic environment, an entity changes its state in either a
continuous or a discrete fashion. Changes to an entity are
continuous if the state of the entity is constantly changing.
One example would be the altitude of a flying aircraft. Base
items that model continuous entities must be periodically
updated. On the other hand, changes to an entity are discrete
if the changes occur at distinct time instants. One example is
stock prices, which only change when trades are made. Base

items that model discrete entities are updated only when

changes occur.
To better support decision making, the large number of

base data items are often summarized into views. Some

example views in a financial database include composite

indices (e.g., S&P 500, Dow Jones Industrial Average, and

sectoral subindices), time-series data (e.g., 30-day moving

averages), and theoretical financial option prices, etc. For

better performance, these views are materialized. When a

base data item is updated to reflect certain external activity,

the related materialized views need to be updated or

recomputed as well.
Besides base item updates and view recomputations,

application transactions are executed to generate the

ultimate actions taken by the system. These transactions

read the base data and views to make their decisions. For

instance, application transactions may request the purchase

of stock, perform trend analysis, signal alerts, or even

trigger the execution of other transactions. Application

transactions may also read or write other static data, such as

a knowledge base capturing expert rules.
Fig. 1 shows the relationships among the various

activities in such a real-time database system. Notice that

updates to base data or recomputations for derived data

may also be run as transactions (e.g., with some of the ACID

properties). In those cases, we refer to them as update

transactions and recomputation transactions. When we use

the term transaction alone, we are referring to an applica-

tion transaction.
Application transactions can be associated with one or

two types of timing requirements: transaction timeliness

and data timeliness. Transaction timeliness refers to how

“fast” the system responds to a transaction request, while

data timeliness refers to how “fresh” the data read is or how

closely in time the data read by a transaction models the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003 373

. B. Kao is with the Department of Computer Science, University of Hong
Kong, Pokfulam Road, Hong Kong. E-mail: kao@csis.hku.hk.

. K.-Y. Lam and T. Lee are with the Department of Computer Science, City
University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong.
E-mail: cskylam@cs.cityu.edu.hk.

. B. Adelberg is with the Computer Science Department, Northwestern
University, Evanston, IL . E-mail: adelberg@cs.nwu.edu.

. R. Cheng is with the Department of Computer Science, Purdue University,
West Lafayette, IN 47907. E-mail: ckcheng@cs.purdue.edu.

Manuscript received 23 Oct. 2000; revised 1 Aug. 2001; accepted 24 Oct.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 113038.

0018-9340/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

environment. Stale data is considered less useful due to the
dynamic nature of the data.

Satisfying the two timeliness properties poses a major
challenge to the design of a scheduling algorithm for such a
database system. This is because the timing requirements
pose conflicting demands on the system resources. To keep
the data fresh, updates on base data should be applied
promptly. Also, whenever the value of a base data item
changes, affected derived views have to be recomputed
accordingly. The computational load of applying base
updates and performing recomputations can be extremely
high, causing critical delays to transactions, either because
there are not enough CPU cycles for them or because they
are delayed waiting for fresh data. Consequently, applica-
tion transactions may have a high probability of missing
their deadlines.

To make the right decision, application transactions need
to read fresh data that faithfully reflects the current state of
the environment. The most desirable situation is that all the
data items read by a transaction are fresh until the
transaction commits. This requirement, however, could be
difficult to meet. As a simple example, consider a transac-
tion whose execution time is 1 second which requires a data
item that is updated once every 0.1 seconds. The transaction
will hold the read lock on the data item for an extensive
period of time during which no new updates can acquire
the write lock and be installed. The data item will be stale
throughout most of the transaction’s execution and the
transaction cannot be committed without using outdated
data. A stringent data timing requirement also hurts the
chances of meeting transaction deadlines. Let us consider
our simple example again. Suppose the data update interval
is changed from 0.1 seconds to 2 seconds. In this scenario,
even though it is possible that the transaction completes
without reading stale data, there is a 50 percent chance that
a new update on the data arrives while the transaction is
executing. To insist on a no-stale-read system, the transac-
tion has to be aborted and restarted. The delay suffered by
transactions due to aborts and restarts and the subsequent
waste of system resources (CPU, data locks) are a serious

problem. The definition of data timeliness thus needs to be
relaxed to accommodate those difficult situations.

The issue of data timeliness has been previously studied.
However, most of these previous works focus on contin-
uous objects. They assume, for example, that updates to
base items arrive at regular, periodic intervals. Moreover, the
definition of staleness is time-based. That is to say, a base
item’s value is outdated and should not be used if a certain

predefined period of time has passed since the item’s last
update. For many applications, however, discrete objects
are the focus (such as stock quotes in a financial database).
As we will elaborate further in Sections 2 and 4, the
traditional way of enforcing data timeliness (for continuous
objects) does not apply naturally to applications with
discrete objects. For example, updates to data items that
model discrete objects are sporadic and unpredictable; the
definition of data staleness should be event-based, etc. All
these differences lead us to reexamine the issues of how

data timeliness should be defined and handled.
Given a data timeliness definition, we need a suitable

transaction scheduling policy to meet its requirements. For
example, a simple way to ensure data timeliness is to give
updates and recomputations higher priorities over applica-
tion transactions and to abort a transaction when it engages
in a data conflict with an update or recomputation. This
policy ensures that no transactions can commit using old
data. However, giving application transactions low priorities
severely lowers their chances of meeting deadlines. This is
especially true when updates (and, thus, recomputations)

arrive at a high rate. The challenge is therefore on how the
various activities should be scheduled so that the two timing
requirements (data and transaction) are satisfied.

To sum up, the goals of our study are:

. to define the temporal correctness of discrete objects
from the perspective of transactions;

. to investigate the performance of various transaction
scheduling policies in meeting the two timing
requirements of transactions under different correct-
ness criteria;

374 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 1. A real-time database system.

. to address the design issues of an RTDB such that
temporal correctness can be enforced.

The rest of this paper is organized as follows: In Section 2,
we discuss some related works. In Section 3, we discuss the
properties of updates, recomputations, and application
transactions. In particular, we will discuss the implications
of these properties on the design of a transaction scheduler
and a concurrency controller. Section 4 proposes three
temporal correctness criteria. In Section 5, we list out the
options of transaction scheduling and concurrency control
that support the different correctness criteria. In Section 6,
we define a simulation model to evaluate the performance
of the scheduling policies and present the simulation
results. Section 7 presents some further discussion on the
future works. We conclude the paper in Section 8.

2 RELATED WORKS

2.1 Temporal Correctness of Continuous Objects

As we have argued in the last section, data timeliness plays
a crucial role in an RTDB. A transaction can make a faulty
decision if the data supplied to it is not fresh enough. Here,
we briefly describe some previous works in the mainte-
nance of data timeliness for continuous objects in an RTDB.
We discuss the concept of temporal correctness, a formal
definition of data timeliness proposed by Ramamritham
[15]. We also describe some works on enforcing the
temporal correctness criteria. We then argue that the
traditional definition of temporal correctness, assuming a
continuous data model, is not suitable for some applica-
tions. A discrete data model is needed instead.

In the last section, we used an example to illustrate that
maintaining data timeliness is nontrivial. It often leads to
transaction aborts and restarts, wastes system resources,
and hurts the chances of meeting transaction deadlines. To
address these problems, some researchers assert that the
data timeliness requirement should be relaxed. In [11], Kuo
and Mok propose the concept of data similarity, which
allows a transaction to read a slightly outdated data object
within a predefined tolerance level. The value of the
outdated object should be “similar” to the most updated
value in the sense that its use will not yield any adverse
results. This technique saves a transaction from being
aborted, even if the data the transaction has read have
become stale. In so doing, hopefully, a transaction would
have a higher chance of committing before its deadline.

The data timeliness constraint is more formally defined
in [15]. In that paper, Ramamritham defines data temporal
correctness as how well the data maintained by an RTDB
models the actual state of the environment. A continuous
data model is assumed in which the state of an object is
constantly changing. Each data object is associated with an
age. As time passes, an object ages and, if its age is larger
than a predefined threshold, the object becomes outdated
and needs to be refreshed. Based on this assumption, two
correctness constraints, namely, absolute consistency and
relative consistency, are defined. These constraints are used
to ensure that data read by a transaction are fresh and
temporally correlated. A data item obeys absolute consis-
tency when its value is updated within a predefined time

interval (called the absolute validity interval (avi)). A set of
data items are relatively consistent when their values are
updated within a certain time interval, called the relative
validity interval (rvi). In Section 4.1.1, we will discuss the
absolute and relative consistency constraints for continuous
objects in more detail.

The temporal correctness criteria can be too strict for
some real-time database systems where the update rates of
data items are high. Enforcing these constraints can lead to
frequent transaction aborts and restarts, undermining an
RTDB’s ability of meeting transaction deadlines. As an
example, suppose a transaction T whose remaining execu-
tion time is 1 second has just read a data item d with an avi
of 0.1 seconds. To enforce absolute consistency, d has to be
updated within 0.1 seconds. Once d is updated, the value of
d held by T becomes stale and T has to be aborted and
restarted. To resolve this problem, different correctness
criteria and scheduling methods have been proposed. In [7],
DiPippo and Wolfe relax the stringent requirements of
temporal correctness by proposing an object-based semantic
concurrency control protocol. This protocol allows a
transaction to read stale data based on the semantics of
objects, such as “imprecision” values. Similar to Kuo and
Mok’s data similarity concept [11], a transaction is saved
from being aborted due to stale data. It is worth noting that
the semantic information required in this protocol may not
be available in some RTDBs.

Ahmed and Vrbsky suggest another policy for balancing
temporal correctness and transaction timeliness by using
on-demand (triggered) updates [4]. In their model, there are
three types of transactions: sensor transactions, which
update base data items, update transactions, which refresh
derived items, and user transactions, which read data items.
When a user transaction finds that a data item it intends to
read is outdated, the system generates an update transac-
tion (called triggered update) to refresh the item. The user
transaction waits until the triggered update finishes so that
it is given the most recent value of the item and temporal
consistency is enforced. The drawback of producing on-
demand updates is that a transaction will be forced to wait.
This increases the chance of missing transaction deadlines.
In particular, if a transaction does not have enough slack
time to wait for a triggered update, it had better not
generate the update. The time saved can be used to serve
the transaction, increasing its chance to commit before its
deadline. The authors propose an algorithm which uses the
information of a transaction, including the slack time and
the execution time, to decide whether an update should be
triggered. Although it is shown that the algorithm can
balance data freshness and deadline miss rates, such
information is often unavailable in practical RTDBs.

Notice that the works we have mentioned assume a
continuous data model. In this model, the states of the
entities in the external environment change continuously.
To reflect these changes, the data objects that model the
entities need to be updated according to the absolute and
relative consistency requirements. In many situations,
however, it can be difficult to assign suitable values of avi
and rvi to the data objects. For example, the price of a stock
remains unchanged until an update that changes its value

KAO ET AL.: MAINTAINING TEMPORAL CONSISTENCY OF DISCRETE OBJECTS IN SOFT REAL-TIME DATABASE SYSTEMS 375

arrives. Since the arrival time of an update is unpredictable,
we cannot assign reasonable values of avi and rvi to the
stock price. A small avi may result in many unnecessary
updates, while a large avi can cause the price to be stale for
an extensive period of time. To cope with situations where
avi and rvi are not readily known, we need to consider the
discrete data model [2], [16]. In this model, a data object’s
value remains unchanged until an update arrives. Also, the
definitions of absolute consistency and relative consistency
constraints are no longer based on avi and rvi values. We
will discuss the temporal correctness criteria for discrete
objects in more detail in Section 4.1.2.

In this paper, we propose new transaction scheduling
algorithms which ensure that transactions comply with the
temporal constraints of discrete data objects. Our new
scheduling algorithms do not make use of the auxiliary
information required by other papers, which is not always
available. We will explain the various definitions of
temporal correctness for continuous and discrete data
objects in Section 4 and propose several transaction
scheduling algorithms for discrete data objects in Section 5.

2.2 Scheduling Updates, Recomputations, and
Transactions

Adelberg et al. study the load balancing problems of
updates, recomputations, and application transactions [2],
[3]. In [2], they study the load balancing issues between
updates and transactions in an RTDB. In their system
model, updates come at a very high rate and transactions
must be committed before their deadlines. The authors
point out that updates need not be executed with full
transactional support; they can be applied to data by using
a single update process, which results in great improvement
in system performance. The authors also propose several
heuristics and examine their effectiveness in maintaining
data freshness and transaction timeliness. They find out that
the On-Demand strategy, with which updates are only
applied when required by transactions, gives the best
overall performance. In another study [3], they investigate
the balancing problems between derived data (views)1

updates and transactions. They observe that recomputa-
tions often come in bursts, obeying the principle of update
locality. They propose the Forced Delay approach to delay the
triggering of a recomputation for a short period so that
recomputations on the same view object can be batched into
a single computation. Their study shows that batching
significantly improves the performance of an RTDB.

The two papers of Adelberg et al. ([2] and [3]) are very
closely related. The former investigates the scheduling
issues of updates and transactions, while the latter exam-
ines the balancing problems of recomputations and transac-
tions. They do not, however, examine a system in which all
three activities—updates, recomputations, and transactions
—are present. Also, both studies report how likely temporal
consistency is maintained under different scheduling
policies, but do not discuss how to enforce the consistency
constraints. For example, [3] uses the percentage of
transactions that read stale data to quantify how well

absolute consistency (a kind of temporal consistency
constraint) is maintained by the scheduling algorithms. It
does not, however, discuss how a scheduling policy should
be designed to ensure that transactions can always read
absolutely consistent data. In this paper, we consider
various scheduling policies for enforcing temporal consis-
tency in an RTDB in which updates, recomputations, and
transactions coexist.

2.3 Multiversion Concurrency Control

In [17], Song and Liu discuss data temporal consistency in a
real-time system that executes periodic tasks. In their model,
tasks are either sensor (write-only) transactions, read-only
transactions, or update (read-and-write) transactions.
Transactions must read temporally consistent data (abso-
lutely or relatively) in order to deliver correct results. Since
multiversion databases have been shown to offer a
significant performance gain over single-version ones, the
authors propose and evaluate two multiversion concur-
rency control algorithms (lock-based and optimistic) in their
studies.

In multiversion locking concurrency control, two-phase
locking is used to serialize the read/write operations of
update transactions, while timestamps are used to locate
the appropriate versions to be read by read-only transac-
tions. In multiversion optimistic concurrency control, an
update goes through three phases: a read phase, a
validation phase, and a possible write phase. During the
read phase, a transaction reads and writes the most recent
versions of data in its own workspace without locking the
data. When it is ready to commit, the transaction enters the
validation phase. Any conflicting update transactions found
are immediately aborted and restarted. If a transaction passes
its validation phase, it enters the write phase in which the new
version of each object in the transaction’s local workspace
becomes permanent in the system. Read-only transactions
will read the most recent and committed version of data and
go through only one phase—the read phase.

The use of multiversion techniques in both algorithms
serves the common purpose of eliminating the conflicts
between read-only and update transactions. This is because
read-only transactions can always read the committed
versions without contending for resources with write
operations. Hence, read-only transactions are never re-
started and the costs of concurrency control and restart can
be significantly reduced.

The concurrency control protocol described later on in
this paper also adapts a multiversion database. However,
our protocol is different from the algorithms discussed
above. In our model, application transactions are allowed to
read old and committed versions of data items. There is no
read-write conflict between application transactions and
updates/recomputations and an application transaction
need not be aborted because of an update/recomputation.
Also, application transactions do not write any base items/
views and, so, no write-write conflict occurs between
application transactions and updates/recomputations. Our
multiversion protocols, therefore, do not need a locking/
restart mechanism. A more detailed discussion of our
protocols is presented in Section 5.

376 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

1. In this paper, we use the terms “views” and “derived items”
interchangeably.

3 UPDATES, RECOMPUTATIONS, AND

TRANSACTIONS

For many real-time database applications, managing the
data input streams and applying the corresponding
database updates represents a nontrivial load to the system.
For example, a financial database for program trading
applications needs to keep track of more than three
hundred thousand financial instruments. To handle the
US markets alone, the system needs to process more than
500 updates per second [6]. An update usually affects a
single base data item (plus a number of related views).

The high volume of updates and their special properties
(such as write-only or append-only) warrants special
treatment in an RTDB. In particular, they should not be
executed with full transactional support. If each update is
treated as a separate transaction, the number of transactions
will be too large for the system to handle. Application
transactions will also be adversely affected because of
resource conflicts against updates. As is proposed in [3], a
better approach is to apply the update stream using a single
update process. Depending on the scheduling policy em-
ployed, the update process installs updates in a specific
order. It could be linear in a first-come-first-served manner
or on-demand upon application transactions’ requests.

When a base data item is updated, the views which
depend on the base item have to be updated or recomputed
as well. The system load due to view recomputations can be
even higher than that required to install updates. While an
update involves a simple write operation, recomputing a
view may require reading a large number of base data items
(high fan-in)2 and complex operations. 3 Also, an update can
trigger multiple recomputations if the updated base item is
used to derive a number of views (high fan-out).

One way to reduce the load due to updates and
recomputations is to avoid useless work. An update is
useful only if the value it writes is read by a transaction. So,
if updates are done in-place, an update to a base item b need
not be executed if no transactions request b before another
update on b arrives. Similarly, a recomputation on a view
need not be executed if no transactions read the view before
the view is recomputed again. This savings, however, can
only be realized if successive updates or recomputations on
the same data or view occur closely in time. We call this
property update locality [3].

Fortunately, many applications that deal with derived
data exhibit such a property. Locality occurs in two forms:
time and space. Updates exhibit time locality if updates on
the same item occur in bursts. Space locality refers to the
phenomenon that, when a base item b, which affects a
derived item d, is updated, it is very likely that a related set
of base items, affecting d, will be updated soon. For
example, changes in a bank’s stock price may indicate that
a certain event (such as an interest rate hike) affecting bank
stocks has occurred. It is thus likely that other banks’ stock

prices will change too. Each of these updates could trigger
the same recomputation, say for the finance sectoral index.

Update locality implies that recomputations for derived
data occur in bursts. Recomputing the affected derived data
on every single update is probably very wasteful because
the same derived data will be recomputed very soon, often
before any application transaction has a chance to read the
derived data for any useful work. Instead of recomputing
immediately, a better strategy is to defer recomputations by
a certain amount of time and to batch or coalesce the same
recomputation requests into a single computation. We call
this technique recomputation batching.

Application transactions may read both base data and
derived views. One very important design issue in the
RTDB system is whether to guarantee consistency between
base data and the views. To achieve consistency, recompu-
tations for derived data are folded into the triggering
updates. Unfortunately, running updates and recomputa-
tions as coupled transactions is not desirable in a high
performance, real-time environment. It makes updates run
longer, blocking other transactions that need to access the
same data. Indeed, [5] shows that transaction response time
is much improved when events and actions (in our case,
updates and recomputations) are decoupled into separate
transactions. Thus, we assume that recomputations are
decoupled from updates. We will discuss how consistency
can be maintained in Section 5.

Besides consistency constraints, application transactions
are associated with deadlines. We assume a firm real-time
system. That is, missing a transaction’s deadline makes the
transaction useless, but it is not detrimental to the system.
In arbitrage trading, for example, it is better not to commit a
tardy transaction since the short-lived price discrepancies
which trigger trading actions disappear quickly in today’s
efficient markets. Occasional losses of opportunity are not
catastrophic to the system. The most important perfor-
mance metric is thus the fraction of deadlines the RTDBS
meets. In Section 5, we will study a number of scheduling
policies and, in Section 6, we evaluate their performance in
meeting deadlines.

4 TEMPORAL CORRECTNESS

4.1 Temporal Consistency

Temporal Consistency refers to how well the data maintained
by an RTDB models the actual state of the environment [15],
[17], [14], [9], [11], [18], [19], [10]. Basically, temporal
consistency consists of two components: absolute consis-
tency (or external consistency) and relative consistency. A
data item is absolutely consistent (fresh) if it timely reflects
the state of an external object that the data item models. A
set of data items are relatively consistent if they are
temporally correlated to each other.

The formal definitions of absolute and relative consis-
tency depend on the type of temporal objects in the system.
A data object is temporal if its value changes with time.
Based on how the value changes, we can classify temporal
data objects as continuous objects or discrete objects [10].
Most of the previous studies on temporal consistency
maintenance concentrate on systems with continuous

KAO ET AL.: MAINTAINING TEMPORAL CONSISTENCY OF DISCRETE OBJECTS IN SOFT REAL-TIME DATABASE SYSTEMS 377

2. For example, the S&P 500 index is derived from a set of 500 stocks; a
summary of a stock’s price in a one hour interval could involve hundreds of
data points.

3. For example, computing the theoretical value of a financial option
price requires computing some cumulative distributions.

objects. In the next two subsections, we will explain the
nature of these two types of objects and the definitions of
absolute and relative consistency for each of them. New
correctness criteria are then defined for discrete objects.

4.1.1 Continuous Objects

A continuous object represents an entity whose value
changes continuously with time in the external environ-
ment. The arrival pattern of updates for these objects is
usually periodic. They can usually be found in a plant
control system, which has sensors to monitor the state of the
environment, and in a military system, where positions of
aircraft are tracked and reported. The absolute and relative
consistencies of a continuous object can be defined as
follows:

. Absolute Consistency. The current time is compared
with an update’s arrival time, which is an indication
of which snapshot of the external object the update is
representing. A data item is absolutely consistent if
the difference of its last update’s timestamp and the
current time is smaller than some predefined
maximum age T . (The value T is also called the
absolute validity interval, avi.) We call this definition
Maximum Age (MA) [2]. Notice that, with MA, even if
a data object does not change value, it must still be
periodically updated or else it will become stale.

. Relative Consistency. For a set of data items used to
derive a view, arrival times should be reasonably
close to each other. To define relative consistency
formally, consider a set of base items, R, which is
used to derive a view. R is called a relative consistent
set and is associated with a relative validity interval
(Rrvi). Denote the timestamp (arrival time) of a
temporal item d by timestampd, then R is relatively
consistent iff

8X;Y 2 R; jtimestampX ÿ timestampY j � Rrvi:

That is to say, the timestamp difference between
any two objects in R is not larger than Rrvi [20],
[9], [10], [14].

Fig. 2 illustrates the concepts of absolute and relative
consistency for continuous objects. Suppose the maximum
ages of x and y are 8 and 7, respectively, and they form a
relative consistent set R, with Rrvi � 5. We observe that x is
absolutely consistent in the time interval �0; 8�, while y is

absolutely consistent in �6; 13�. R is not relatively consistent
b e c a u s e jtimestampx ÿ timestampyj � j0ÿ 6j � 6 > Rrvi.
Note that the definitions of MA for a continuous object
and Rrvi for a set of related continuous objects are based on
the maximum rate of changes of the objects and the
correctness requirements of the application transactions.

4.1.2 Discrete Objects

With discrete objects, the value of an entity remains un-
changed until the next update arrives. The update can arrive
at any discrete point in time and the arrival pattern is
sporadic. As an example, a cellular phone network maintains
a database that keeps track of the locations of its mobile phone
users. The cell that is handling a user’s connection remains
unchanged until the user of the phone travels to another cell.
The data objects that record the locations of users are thus
discrete. Unlike continuous objects, it is difficult to define a
suitable MA for a discrete object since the object changes its
state at an unpredictable rate.

To formally define the notion of temporal consistency for
discrete objects, we introduce the concepts of version and
validity interval.

Definition 1 (version). A version x of a data item d is a value

of the external object that d models. Every time the external

object changes its value, a new version of d is generated. Each

version x is thus associated with a time interval that specifies

when the version is valid. We call this time interval the

validity interval of x (denoted by V I�x�). A validity interval

V I�x� consists of a lower time bound (LTB�x�) and an upper

time bound (UTB�x�). We consider LTB�x� to be the time

instant at which an update of d with x’s value arrives. We

consider UTB�x� to be the time instant at which the next

update of d arrives.

The value of a data object thus goes through a series of
versions. For notational convenience, we use a numeric
subscript to enumerate the versions of an item. For
example, xi represents the ith version of the data item x.

Definition 2 (current version). The current version of an item

is a version xi such that its validity interval contains the

current time instant tc, i.e., tc 2 V I�xi�.

Definition 3 (absolute consistency). A discrete data item d is

absolutely consistent if, at any time instant, a current

version for d can be found in the system.

To illustrate the above definition, let us consider the
following scenario: Suppose xi is the current version. After
an update u for x arrives, xi is no longer the current version.
This is because UTB�xi� has been set to the arrival time of u
and the current time instant is not contained in V I�xi�
anymore. To ensure that x is absolutely consistent, the
system has to create a current version for x immediately.
This current version is xi�1, which has the data value of u
and an LTB equal to the arrival time of u.

Definition 4 (Relative consistency). Given a set of item

versions R, the versions in R are said to be relatively
consistent if

T
fV I�xi�jxi 2 Rg 6� ;.

378 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 2. Absolute and relative consistency.

Definition 4 states that a set of relatively consistent item
versions should be able to reflect the states of the external

objects at the same time.
To illustrate the two consistency constraints for

discrete objects, let us consider Fig. 2 again. We assume

that x and y are discrete objects and their current versions
are xm and ym, respectively. If V I�xm� � �0; 8� and

V I�yn� � �6; 13�, then x is absolutely consistent during
[0, 8] and y is absolutely consistent within [6, 13]. We also

notice that xm and yn are relatively consistent in the time
interval �0; 8�

T
�6; 13� � �6; 8�.

Under our definitions of temporal consistency, if a set of

discrete data items D are absolutely consistent, then their
current versions must be relatively consistent. This is

because, by definition, all current versions of the items in D
are present in the system. All these versions, being current,

must have their validity intervals contain the current time.
Hence, the intersection of these intervals is nonnull. These

current versions are thus relatively consistent.
Notice that, since it may be difficult to achieve absolute

consistency for systems where the update rates of the

objects are very high, relaxing the correctness requirement
to relative consistency can increase the chances of transac-

tions reaching their commit states. This advantage, how-
ever, is obtained at the expense of data freshness provided

to the transactions.
Here, we would like to remind the reader that the reason

for defining discrete data objects and their temporal

correctness criteria is that the entities mentioned in this
subsection cannot be represented by continuous objects.

Specifically, we cannot find suitable values of the absolute
and relative validity intervals for these entities. For

example, we cannot assign avi to a stock price because we
do not know when it will become outdated. In this paper,

our focus is on the issue of temporal correctness for discrete
data objects. Unless stated otherwise, in the rest of this

paper, we assume that the definitions of absolute and
relative consistency are based on discrete objects.

4.2 Transaction Temporal Consistency

If a base data item is updated but its associated views are

not recomputed yet, the database is not relatively consis-
tent. We have already proven that an absolutely consistent

database must also be relatively consistent. However, the
converse is not true. For example, a relatively consistent

database that never installs updates remains relatively
consistent, even though its data are all stale. An ideal

system that performs updates and recomputations instan-
taneously would guarantee both absolute and relative

consistency. However, as we have argued, to improve
performance, updates and recomputations are decoupled,

and recomputations are batched. Hence, a real system is
often in a relatively inconsistent state. Fortunately, incon-
sistent data do no harm if no transactions read them. Hence,

we need to extend the concept of temporal consistency from
the perspective of transactions. Here, we formally define

our notion of transaction temporal consistency. We start
with the definition of an ideal system first, based on which

correctness and consistency of real systems are measured.

Definition 5 (instantaneous system (IS)). An instantaneous
system applies base data updates and performs all necessary
recomputations as soon as an update arrives, taking zero time
to do it.

Definition 6 (absolute consistent system (ACS). In an
absolute consistent system, an application transaction, with a
commit time t and a readset R, is given the values of all the
objects o 2 R such that this set of values can be found in an
instantaneous system at time t.

The last definition does not state that, in an absolute
consistent system, data can never be stale or inconsistent. It
only states that transactions must read absolutely consistent
data. It is clear that transactions are given a lower execution
priority comparing with updates and recomputations. For
example, if an update (or the recomputations it triggers)
conflicts with a transaction on certain data item, the
transaction has to be aborted. Maintaining an absolute
consistent system may thus compromise transaction time-
liness. To have a better chance of meeting transactions’
deadlines, we need to upgrade their priorities. A transac-
tion’s priority can be upgraded in two ways, with respect to
its accessibility to data and CPU. For the former, transac-
tions are not aborted by updates due to data conflicts,
while, for the latter, transactions are not always scheduled
to execute after updates and recomputations.

Definition 7 (weak absolute consistent system (weak
ACS)). In a weak absolute consistent system, an application
transaction, with a start time t and a readset R, is given the
values of all the objects o 2 R such that this set of values can
be found in an instantaneous system at time t1 and t1 � t.

A weak ACS is very similar to an ACS in that
transactions in both systems read relatively consistent data.
The major difference is that, in a weak ACS, the data that a
transaction reads need only be fresh to the point when the
transaction reads them, not when the transaction commits
(as in an ACS). The implication is that, once a transaction
successfully read-locks a set of relatively consistent data, it
need not be aborted by later updates due to data conflicts.
The transaction thus has a better chance of finishing before
its deadline.

We can further relax the requirement of data freshness
by allowing transactions to read slightly stale data.
Although this is not desirable with respect to the usefulness
of the information read by a transaction, this can improve
the probability of meeting transaction deadlines.

Definition 8 (relative consistent system (RCS)). In a relative
consistent system with a maximum staleness �, an application
transaction with a start time t and a readset R is given the
values of all the objects o 2 R such that this set of values can
be found in an instantaneous system at time t1 and
t1 � tÿ�.

Essentially, an RCS allows some updates and recompu-
tations to be withheld for the benefit of expediting
transaction execution. Data absolute consistency is compro-
mised, but relative consistency is maintained. Note that we
can consider weak ACS as a special case of RCS with a zero

KAO ET AL.: MAINTAINING TEMPORAL CONSISTENCY OF DISCRETE OBJECTS IN SOFT REAL-TIME DATABASE SYSTEMS 379

�. Fig. 3 illustrates the three correctness criteria, namely,
ACS, weak ACS, and RCS.

5 TRANSACTION SCHEDULING AND CONSISTENCY

ENFORCEMENT

In this section, we discuss different policies to schedule
updates, recomputations, and application transactions to
meet the different levels of temporal consistency require-
ments. As we have argued, data timeliness can best be
maintained if updates and recomputations are given higher
priorities than application transactions. We call this
scheduling policy URT (for update first, recomputation
second, transaction last). On the other hand, the On-Demand
(OD) strategy [2], with which updates and recomputations
are executed upon transactions’ requests, can better protect
transaction timeliness. We will therefore focus on these two
scheduling policies and compare their performance under
the different temporal consistency requirements. Later on,
we will discuss how URT and OD can be combined into a
hybrid policy called OD-H. In simple terms, OD-H switches
between URT and OD, depending on whether application
transactions are running in the system. We will show that
OD-H performs better than URT and OD in Section 6. In
these policies, we assume that the relative priorities among
application transactions are set using the traditional ear-
liest-deadline-first priority assignment. We start with a brief
reminder of the characteristics of the three types of
activities.

Updates. We assume that updates arrive as a single
stream. Under the URT policy, there is only one update
process in the system executing the updates in a FCFS
manner. For OD, there could be multiple update activities
running concurrently: one from the arrival of a new update
and others triggered by application transactions. We
distinguish the latter from the former by labeling them
“On-demand updates” (or OD-updates for short).

Recomputations. When an update arrives, it spawns
recomputations. Under URT, we assume that recomputation
batching is employed to reduce the system’s workload [3].
With batching, a triggered recomputation goes to sleep for a
short while, during which other newly triggered instances of

the same recomputation are ignored. Under OD, recomputa-
tions are only executed upon transactions’ requests and,
hence, batching is not applied. To ensure temporal consis-
tency, however, a recomputation induced by an update may
have to perform some bookkeeping processing, even though
the real recomputation process is not executed immediately.
We distinguish the recomputations that are triggered on-
demand by transactions from those bookkeeping recomputa-
tion activities by labeling them “On-demand recomputa-
tions” (or OD-recoms for short).

Application Transactions. Finally, we assume that
application transactions are associated with firm deadlines.
A tardy transaction is useless and, thus, should be aborted
by the system.

Scheduling involves “prioritizing” the three activities
with respect to their accesses to the CPU and data. We
assume that data accesses are controlled by a lock manager
employing the HP-2PL protocol (High Priority Two Phase
Locking) [1]. Under HP-2PL, a lock holder is aborted if it
conflicts with a lock requester that has a higher priority
than the holder. CPU scheduling is more complicated due
to the various batching/on-demand policies employed. We
now discuss the scheduling procedure for each activity
under four scenarios. These scenarios correspond to the use
of the URT/OD policy in an ACS/RCS. (We consider a
WACS as a special case of an RCS and, hence, do not
explicitly discuss it in this section.)

5.1 Policies for Ensuring Absolute Consistency

5.1.1 URT

Ensuring absolute consistency under URT represents the
simplest case among the four scenarios. Since the update
process and recomputations have higher priorities than
application transactions, in general, no transactions can be
executed unless all outstanding updates and recomputa-
tions are done. The only exception occurs when a
recomputation is forced-delayed (for batching). In this case,
the view to be updated by the recomputation is temporarily
outdated. To ensure that no transactions read the outdated
view, the recomputation should issue a write lock on the
view once it is spawned before it goes to sleep. Since
transactions are given the lowest priorities, an HP-2PL lock

380 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 3. This figure illustrates the differences between ACS, weak ACS, and RCS. Suppose a transaction T reads objects o1 and o2 during its
execution, with maximum staleness �. Let oij denote the jth version of object oi. In an ACS, the set of objects read by T must be (o12, o22) because
only this set of values can be found in an IS at the commit time of T . In a weak ACS, the object versions read can be (o11, o22) and (o12, o22) as they
can be found in an IS at a time not earlier than the start time of T . In an RCS, the object versions available to T are (o11, o21), (o11, o22), and (o12, o22)
as they can be found in an IS at a time not earlier than t0.

manager is sufficient to ensure that a transaction is restarted

(and, thus, cannot commit) if any data item (base data or

view) in the transaction’s read set is invalidated by the

arrival of a new update or recomputation.

URT/ACS
Let u be a newly arrived update, x be the item to be updated

by u, r be a newly arrived recomputation, T be an

application transaction, and B be the batching delay time.

On arrival of u
For every view v derived from x

if v is not write-locked then
Trigger a recomputation for v

Execute u

On arrival of r
Issue write-lock to view v which will be written by r
Sleep for B time units

Execute r

On executing T
For every read/write request

Use HP-2PL protocol to serve the request

if T misses deadline then
Abort T

Commit T

5.1.2 OD

The idea of On-Demand is to defer most of the work on

updates and recomputations so that application transac-

tions get a bigger share of the CPU cycles. To implement

OD, the system needs an On-Demand Manager (ODM) to

keep track of the unapplied updates and recomputations.

Conceptually, the ODM maintains a set of data items x
(base or view) for which unapplied updates or recomputa-

tions exist (we call this set the unapplied set). For each such

x, the ODM associates with it the unapplied update/

recomputation and an OD bit signifying whether an OD-

update/OD-recom on x is currently executing. There are

five types of activities in an OD system, namely, update

arrival, recomputation arrival, OD-update, OD-recom, and

application transaction. We list the procedure for handling

each type of event as follows:

. On an update or recomputation arrival. Newly
arrived updates and recomputations are handled in
an FCFS manner and have higher priorities than
OD-updates, OD-recoms, and transactions. An
update/recomputation P on a base/view item x is
first sent to the OD Manager. The ODM checks if x is
in the unapplied set. If not, x is added to the set with
P associated with it and a write lock on x is
requested;4 otherwise, the OD bit is checked. If the
OD bit is “off,” the ODM simply associates P with x
(essentially replacing the old unapplied update/
recomputation by P); if the OD bit is “on,” it means

that an OD-update/OD-recom on x is currently
executing. The OD Manager aborts the running
OD-update/OD-recom and releases P for execution.
In the case of an update arrival, any view that is
based on x will have its corresponding recomputa-
tion spawned as a new arrival.

. On an application transaction read request. Before a
transaction reads a data item x, the read request is
first sent to the OD Manager. The ODM checks if x is
in the unapplied set. If so, and if the OD bit is “on”
(i.e., there is an OD-update/OD-recom being run),
the transaction waits; otherwise, the ODM sets the
OD bit “on” and releases the OD-update/OD-recom
associated with x. The OD-update/OD-recom inher-
its the priority of the reading transaction.

. On the release of an OD-update/OD-recom. An
OD-update/OD-recom executes as a usual update or
recomputation transaction. When it finishes, how-
ever, the OD Manager is notified to remove the
updated item from the unapplied set.

OD/ACS

Let P be an update/recomputation, and x be the base/view
item updated by P .

On arrival of P
Send P to ODM

if x is not in the unapplied set then
Add x to the unapplied set, associating x with P
Request write lock on x

else
if OD bit of x is off then

Associate P with x
else

Abort the currently executing OD-update/

OD-recom

Release P for execution

if P is an update then
Spawn recomputations for the views that are based onx

On read request from T
Send the read request to ODM

if x is in the unapplied set then
if OD bit of x is on then

Wait until the OD-update/OD-recom completes

else
Set OD-bit of x on
Release the OD-update/OD-recom associated with

x, inheriting T ’s priority

On release of OD-update/OD-recom
Notify ODM to remove the updated item from the

unapplied set

5.2 Policies for Ensuring Relative Consistency

The major difficulty in an ACS is that an application
transaction is easily restarted if some update or recomputa-
tion conflicts with the transaction. An RCS ameliorates this
difficulty by allowing transactions to read slightly outdated

KAO ET AL.: MAINTAINING TEMPORAL CONSISTENCY OF DISCRETE OBJECTS IN SOFT REAL-TIME DATABASE SYSTEMS 381

4. The write lock is set to ensure AC since any running transaction that
has read (an outdated) x will be restarted due to lock conflict.

(but relatively consistent) data. An RCS is thus meaningful
only if it can maintain multiple versions of a data item; each
version records the data value that is valid within a window
of time (its validity interval).

For notational convenience, we denote the arrival time of
an update u by ts�u�. Also, for a recomputation or an
application transaction T , we define its validity interval
V I�T � as the time interval such that all values read by T
must be valid within V I�T �.

Our RCS needs a Version Manager (VM) to handle the
multiple versions of data items. The function of the Version
Manager is twofold. First, it retrieves, given an item x and a
validity interval I, a value of a version of x that is valid
within I. Note that if there are multiple updates on x during
the interval I, the Version Manager would have a choice of
a valid version. We will discuss this version selection issue in
Section 7. Second, the VM keeps track of the validity
intervals of transactions and the data versions they read.
The VM is responsible for changing a transaction’s validity
interval if the validity interval of a data version read by the
transaction changes. We will discuss the VI management
shortly. Finally, we note that, since every write on a base
item or a view generates a new version, no locks need to be
set on item accesses. We will discuss how the “very-old”
versions are pruned away to keep the multiversion
database small at the end of this section.

5.2.1 URT

Similarly to an ACS, there are three types of activities under
URT in an RCS:

. On an update arrival. As mentioned, each version of a
data item in an RCS is associated with a validity
interval. When an update u on a data item version xi
arrives, the validity interval V I�xi� is set to �ts�u�;1�.
Also, the UTB of the previous version xiÿ1 is set to
ts�u�, signifying that the previous version is only valid
till the arrival time of the new update. The Version
Manager checks to see if there is any running
transaction T that has read the version xiÿ1. If so, it
sets UTB�V I�T �� � minfUTB�V I�T ��; ts�u�g.

. On a recomputation arrival. If an update u spawns a
recomputation r on a view item v whose latest
version is vj, the system first sets the UTB of vj to
ts�u�. That is, the version vj is no longer valid from
ts�u� onward. Similarly to the case of an update
arrival, the VM updates the validity interval of any
running transaction that has read vj. With batching,
the recomputation r is put to sleep (for a short
batching delay time), during which all other recom-
putations on v are ignored. A new version vj�1 is not
computed until r wakes up. During execution, r will
use the newest versions of the data in its read set.
The validity interval of r (V I�r�) and that of the new
view version (V I�vj�1�) are both equal to the
intersection of all the validity intervals of the data
items read by r.

. Running an application transaction. Given a transac-
tion T whose start time is ts�T �, we first set its
validity interval to �ts�T � ÿ�;1�.5 If T reads a data

item x, it consults the Version Manager. The VM
would select a version xi for T such that
V I�xi� \ V I�T � 6� ;. That is, the version xi is
relatively consistent with the other data already
read by T . V I�T � is then updated to V I�xi� \ V I�T �.
If the VM cannot find a consistent version (i.e.,
V I�xi� \ V I�T � � ; 8xi), T is aborted. Note that the
wider V I�T � is, the more likely it is that the VM is
able to find a version of x that is consistent with
what T has already read. Hence, in our study, we
always pick the version xi whose validity interval
has the biggest overlapping with that of T .

URT/RCS
On arrival of u

Set V I�xi� � �ts�u�;1�
Set UTB�xiÿ1� � ts�u�
For every T that has read xiÿ1

Set UTB�V I�T �� � min�UTB�V I�T ��; ts�u��
For every view v derived by x

if no recomputation for v is sleeping then
Trigger a recomputation for v

Execute u

On arrival of r

Set UTB�vj� to ts�u�
For every T that has read vj

Set UTB�V I�T �� � min�UTB�V I�T ��; UTB�vj��
Sleep for B time units

Set V I�r� � V I�vj�1� �
T
fV I�xi�jxi 2 readset of r and xi

is the newest version of xg
Execute r, using the newest versions in its readset

On executing T
Set V I�T � � �ts�T � ÿ�;1�
For every read request on data item x

Consult VM to select a version xi for T such that

V I�xi�
T
V I�T � 6� ;

Set V I�T � � V I�xi�
T
V I�T �

if V I�T � � ; or T misses deadline then
Abort T

Commit T

5.2.2 OD

Applying on-demand in an RCS requires both an

OD Manager and a Version Manager. The ODM and the

VM serve similar purposes, as described previously, with

the following modifications:

. Since multiple versions of data are maintained, the
OD Manager keeps, for each base item x in the
unapplied set, a list of unapplied updates of x.

. In an ACS (single version database), an unapplied
recomputation to a view item v is recorded in the ODM
so that a transaction that reads v knows that the
current database version of v is invalid. However, in
an RCS (multiversion database), the validity intervals
of data items already serve the purpose of identifying
the right version. If no such version can be found in the
database, the system knows that an OD-recom has to

382 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

5. Recall that � is the maximum staleness tolerable with reference to a
transaction’s start time.

be triggered. Therefore, the ODM in an RCS does not
maintain unapplied recomputations.

. In an ACS, an OD bit of a data item x is set if there is an
OD-update/OD-recom currently executing to update
x. The OD bit is used so that a new update/
recomputation arrival will immediately abort the
(useless) OD-update/OD-recom. In an RCS, since
multiple versions of data are kept, it is not necessary to
abort the (old but useful) OD-update/OD-recom.
Hence, the OD bits are not used.

. Since different versions of a data item can appear in
the database as well as in the unapplied list, the
Version Manager needs to communicate with the
OD Manager to retrieve a right version either from
the database or by triggering an appropriate
OD-update from the unapplied lists.

Here, we summarize the key procedures for handling the

various activities in an OD-RCS system.

. On an update arrival. Newly arrived updates have
the highest priorities in the system and are handled
FCFS. An update u on a base item x is sent to the
OD Manager. Each unapplied update is associated
with a validity interval. The validity interval of u is
set to �ts�u�;1�. If there is a previously unapplied
update u0 on x in the ODM, the UTB of V I�u0� is set
to ts�u�; otherwise the latest version of x in the
database will have its UTB set to ts�u�. Similarly, for
any view item v that depends on x, if its latest version
in the database has an open UTB (i.e.,1), the UTB will
be updated to ts�u�. The changes to the data items’
UTBs may induce changes to some transactions’
validity intervals. The Version Manger is again
responsible for updating the transactions’ VIs.

. Running an application transaction. A transaction T
with a start time ts�T � has its validity interval
initialized to �ts�T � ÿ�;1�. If T reads a base item x,
the VM would select a version xi for T that is valid
within V I�T �. If such a version is unapplied, an
OD-update is triggered by the OD Manager. The
OD-update inherits the priority of T . After the
OD-update finishes, V I�T � is updated to
V I�xi� \ V I�T �. If T reads a view item v, the VM
would select a version vj for T that is valid within
V I�T �. If no such version in the database is found, an
OD-recom r to compute v is triggered. This
OD-recom inherits the priority and the validity
interval of T and is processed by the system in the
same way as for an application transaction. After the
OD-recom is completed, V I�T � is updated to
V I�vj� \ V I�T �.

OD/RCS

On arrival of u
Send u to ODM

Set V I�u� to �ts�u�;1�
if there exists a previous unapplied update u0 on x then

Set UTB�V I�u0�� � ts�u�
else

Set UTB�latest version of x� � ts�u�
For every T that has read the latest version of x

Set
UTB�V I�T �� � min�UTB�V I�T ��;
UTB�latest version of x��

For every view v that depends on x
if the latest version of v has UTB of 1 then

Set UTB�latest version of v� � ts�u�
For every T that has read the latest version of v,

Set

UTB�V I�T �� �
min�UTB�V I�T ��; UTB�latest version of v��

On executing T
Set V I�T � � �ts�T � ÿ�;1�
For every read request

if the read is base item x then
Consult VM to select a version xi such that

V I�xi�
T
V I�T � 6� ;

if xi is unapplied then
Trigger an OD-update for xi, inheriting the

priority of T
Wait for the OD-update of xi to complete

Set V I�T � � V I�xi�
T
V I�T �

if the read is view item v then
Consult the VM to select a version vj such that

V I�vj�
T
V I�T � <> ;

if vj is unapplied then

Trigger an OD-recom for vj, inheriting the

priority and the validity interval of T
Wait for the OD-recom of vj to complete

Update V I�T � to V I�vj�
T
V I�T �

if T misses deadline then
Abort T

Commit T

5.3 A Hybrid Approach

In OD, updates and recomputations are performed only
upon transactions’ requests. If the transaction load is low,
few OD-updates and OD-recoms are executed. Most of the
database is thus stale. Consequently, an application
transaction may have to materialize quite a number of
items it intends to read on-demand. This may cause severe
delay to the transaction’s execution and, thus, a missed
deadline. A simple modification to OD is to execute updates
and recomputations while the system is idling, in a way
similar to URT, and switch to OD when transactions arrive.
We call this hybrid strategy OD-H.

6 SIMULATION AND RESULTS

In our simulation model, we implemented all the necessary
components as described in Sections 3 and 5. These include
an HP-2PL lock manager, an update installer, a recomputa-
tion transaction pool, a disk manager, a buffer manager, an
OD manager (for the On-Demand policy), a version
manager (for RCS), and a transaction manager (which
handles priority assignment, transaction aborts and restarts,
recomputation batching, and transaction scheduling).

We simulate a disk-based database with Nb base items
and Nd derived items (views). The number of views that a

KAO ET AL.: MAINTAINING TEMPORAL CONSISTENCY OF DISCRETE OBJECTS IN SOFT REAL-TIME DATABASE SYSTEMS 383

base item derives (i.e., fan-out) is uniformly distributed in
the range �Fo min; Fo max�. Each derived item is derived from
a random set of base items. If the average values of fan-out
and fan-in are Fo and Fi, respectively, we have

Nb � Fo � Nd � Fi:

We assume the system caches its database accesses with a
cache hit rate pcache hit.

Updates are generated as a stream of update bursts.
Burst arrivals are modeled as Poisson processes with an
arrival rate �u. Each burst consists of burst_size updates.
The value burst_size is picked uniformly from the range
�BSmin; BSmax�. Within a burst, update arrivals are modeled
as Poisson processes with an arrival rate �b. To model
spatial locality, each update would have a probability of
pspace of triggering the same set of recomputations as those
triggered by the previous update. To model time locality,
each update would have a probability of ptime of being
generated again. Under the URT policy, recomputations are
batched. A recomputation is delayed tFD seconds before
execution, during which all instances of the same recom-
putation are ignored. Application transactions are gener-
ated as another stream of Poisson processes, with an arrival
rate �t. A transaction consists of a number of read/write
operations. Each database object has an equal probability of
being accessed by an operation. Each transaction performs
Nop database operations. Also, for each read/write opera-
tion, a transaction may have to search a number of versions
before it can find an appropriate one. To model this
searching overhead, we incorporate a penalty of tver ms in
processing each version during a search. Each transaction T
is associated with a deadline given by the following
formula:

dl�T � � ex�T � � slack� ar�T �;

where ex�T � is the expected execution time of the
transaction,6 ar�T � is the arrival time of T , and slack is the
slack factor. In the simulation, slack is uniformly chosen
from the range �Smin; Smax�.

The values of the simulation parameters were chosen as
reasonable values for a typical financial application. Where
possible, we have performed sensitivity analysis of key
parameter values. The simulator is written in CSIM 18 [12].
Each simulation run (generating one data point) processed
10,000 update bursts. The 95 percent confidence interval of
our baseline experiment is �0:69 percentage points. Table 1
shows the parameter settings of our baseline experiment.7

6.1 Results

In this section, we present some representative results
obtained from our simulation experiments. To aid our
discussion, we use the notation MDB

A to represent the
fraction of missed deadlines (or miss rate) of scheduling policy
A when applied to a B system. For example, MDAC

OD � 10%
means that 10 percent of the transactions miss their
deadlines when OD is used in an ACS. Also, in the graphs
presented below, we consistently use solid lines for ACS
and dotted lines for RCS. The three scheduling policies
(URT, OD, and OD-H) are associated with different line-
point symbols.

6.1.1 Absolute Consistent System

Effect of Transaction Arrival Rate. In our first experiment,
we vary the transaction arrival rate (�t) from 0.5 to 5 and
compare the performance of the three scheduling policies
(URT, OD, and OD-H) in an absolute consistent system.
Fig. 4 shows the result. From the figure, we see that, for a
large range of �t (�t > 1:0), URT performs the worst among
the three, missing 14 percent to 26 percent of the deadlines.
Three major factors account for URT’s high miss rate.

First, since transactions have the lowest priorities, their
executions are often blocked by updates and recomputa-
tions (in terms of both CPU and data accesses). This causes
severe delays and, thus, high miss rates to transactions. We
call this factor Low Priority. Second, under URT with
recomputation batching, a recomputation is not immedi-
ately executed on arrival. It is forced to sleep for a short
while, during which it holds a write lock on the derived
item (say, v) it updates. If a transaction requests item v, it
will experience an extended delay blocked by the sleeping
recomputation. We call this factor Batching Wait. Third, in
an ACS, a transaction is restarted by an update or a
recomputation whenever a data item that the transaction
has read gets a new value. A restarted transaction loses
some of its slack and risks missing its deadline. Similarly, a
recomputation can be restarted by an update if they engage
in a data conflict. Restarting recomputations means adding

384 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

TABLE 1
Baseline Settings

6. Calculated by multiplying the number of operations by the amount of
I/O and CPU time taken by each operation.

7. We chose a relatively small database (3,000 base items) to model “hot
items,” that is, those data items that are frequently updated and those that
cause recomputations. In practice, the database would have many other
“cold items” as well: those that get updated occasionally and do not trigger
recomputations. We have done experiments modeling “cold items.” Since
the results show similar conclusions as our simple model, we do not
explicitly model “cold items” in this paper. We assume a high-end disk,
such as Seagate ST39103LC. We choose a relative cache hit-rate (0.7) in our
experiments because, in practice, many RTDB applications, such as
financial databases, have relatively large cache memory. Sometimes, hot
items were chosen and are placed in memory for fast accesses. “CPU time
per operation” includes the time to perform data locking, memory accesses,
CPU computation. We assume transactions perform complex data analyses
such as those performed in a financial expert system.

extra high priority workload to the system under URT. This

intensifies the Low Priority factor, which causes missed

deadlines. We call this restart factor Transaction Restart.8

From our experiment results, we observe that the average

restart rate of transactions due to lock conflicts is about 2 to

3 percent, while that of recomputations is about 0.5 percent.

We remark that, even though the restart rate of recomputa-

tions is not high, its effect could be significant, since

recomputations are in general numerous and long.
By using the On-Demand approach, transactions are

given their fair share of CPU cycles and disk services.

Hence, OD effectively eliminates the Low Priority factor.

Also, recomputations are executed on-demand, hence

Batching Wait does not exist. This results in a smaller miss

rate. In our baseline experiment (Fig. 4), we see that MDAC
OD

is smaller than MDAC
URT for �t > 1:0. The improvement

(about 5 percent for large �t) is good, but is lower than

expected. After all, we just argued that OD removes two of

the three adverse factors of URT. Moreover, it is interesting

to see that, when the transaction arrival rate is small

(�t < 1:0), reducing transaction workload (i.e., reducing �t)
actually increases MDAC

OD.
The reason for the anomaly and the lower-than-expected

improvement is that, under the pure OD policy, updates

and recomputations are executed only on transaction

requests. Hence, when �t is small, the total number of

on-demand requests are small. Many database items are

therefore stale. When a transaction executes, quite a few

items that it reads are outdated and, thus, OD-updates/

OD-recoms are triggered. The transaction is blocked wait-

ing for the on-demand requests to finish. This causes a long

response time and, thus, a high miss rate. As evidence,

Figs. 5 and 6 show the numbers of OD-updates and

OD-recoms per transaction, respectively. We see that as

many as 12 updates and 3.5 recomputations are triggered

by (and blocking) an average transaction under the

OD policy. We call this adverse factor OD Wait.

In order to improve OD’s performance, the database
should be kept fresh so that few on-demand requests are
issued. One simple approach is to apply updates and
recomputations (as in URT) when no transactions are
present. When a transaction arrives, however, all
updates/recomputations are suspended and the system
reverts to on-demand. We call this policy OD-H. OD-H can
thus be considered a hybrid of OD and URT. Fig. 4 shows
that OD-H greatly improves the performance of OD. In
particular, the anomaly of a higher miss rate at a lower
transaction arrival rate exhibited in OD vanishes in OD-H.
The improvement is attributable to a very small number of
on-demand requests (Figs. 5 and 6). The effect of OD Wait is
thus relatively mild. The problem of Transaction Restart,
however, still exists when OD-H is applied to an ACS.

6.1.2 Relative Consistent System

Our previous discussion illustrates that, in an ACS, URT
suffers from three adverse factors, namely Low Priority,
Batching Wait, and Transaction Restart. These three factors

KAO ET AL.: MAINTAINING TEMPORAL CONSISTENCY OF DISCRETE OBJECTS IN SOFT REAL-TIME DATABASE SYSTEMS 385

Fig. 4. Miss rate vs �t (ACS).

8. “Transaction and Recomputation Restart” would be a more precise
term. However, we use the shorter form to save space.

Fig. 5. Number of OD-updates per transaction (ACS).

Fig. 6. Number of OD-recoms per transaction (ACS).

lead to a high MDAC
URT . By switching from URT to OD, we

eliminate Low Priority and Batching Wait, but introduce OD
Wait. We then show that the hybrid approach, OD-H, can
greatly reduce the effect of OD Wait (see Figs. 5 and 6).
Hence, the only culprit left to tackle is Transaction Restart.

As mentioned in Section 5.2, an RCS uses a multiversion
database. Each update or recomputation creates a new data
item version and, thus, does not cause any write-read
conflicts with transactions. A transaction therefore never
gets restarted because of data conflict with updates/
recomputations. The only cases of transaction abort due to
data accesses occur under URT, when the version manager
could not find a materialized data version that is consistent
with the VI of a transaction that is requesting an item. From
our experiment, we observe that the chances of such aborts
are very small, e.g., only about 0.1 percent of transactions
are aborted in our baseline experiment under URT. The
on-demand strategies would not perform such aborts since
any data version can be materialized on-demand. As a
result, an RCS effectively eliminates the problem of
Transaction Restart.

Fig. 7 shows the miss rates of the three scheduling
policies in an RCS (dotted lines). For comparison, the miss
rates in an ACS (solid lines) are also shown. Fig. 8 magnifies
the part containing the curves for MDAC

ODÿH and MDRC
OD-H

for clarity.
From the figures, we see that fewer deadlines are missed

in an RCS than in an ACS across the board. This is because
the problem of Transaction Restart is eliminated in an RCS.
Among the three policies, URT registers the biggest
improvement. This is because a transaction that reads a
derived item can choose an old, but materialized version. It
thus never has to wait for any sleeping recomputation to
wake up and to calculate a new version of the item. Batching
Wait therefore does not exist in an RCS. Hence, two of the
three detrimental factors that plague URT are gone, leading
to a much smaller miss rate.

For OD, we see that the improvement achieved by an
RCS is not as big as in the case of URT. This is because,
although Transaction Restart is eliminated, the problem of
OD Wait is not fixed. Figs. 9 and 10 show the numbers of

OD-updates and OD-recoms per transaction, respectively,

in an RCS. If we compare the curves in Figs. 9 and 10 with
those in Figs. 5 and 6, we see that, under OD, an average

transaction triggers more or less the same number of OD

requests in the two systems. Recall that a transaction would
issue an OD request if it attempts to read a not-yet-

materialized data item. In an ACS, each item has only one
(the latest) version. A transaction is forced to issue an

OD request if the latest version is not yet updated. On the
other hand, in an RCS, each item has multiple versions. A

transaction can avoid issuing an OD request if it can find a

materialized version within the transaction’s validity inter-
val. So, in theory, fewer OD requests are issued in an RCS than

in an ACS. Unfortunately, the pure OD policy does not
actively perform updates and recomputations. Hence, few of

the data versions are materialized before transactions read
them. The effect of OD Wait, therefore, does not get improved.

As we have discussed, the effect of OD Wait is the strongest

when transactions are scarce. From Fig. 7, we see thatMDRC
OD

is much higher than MDRC
URT when �t is small.

386 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Fig. 7. Miss rate vs, �t (ACS and RCS). Fig. 8. Miss rate vs. �t (MDAC
OD-H and MDRC

OD-H).

Fig. 9. Number of OD-updates per transaction (RCS).

In the last subsection, we explained how OD-H reduces
the transaction miss rate by avoiding three of the four
adverse factors faced by URT and OD. Fig. 8 shows that the
performance of OD-H can be further improved in an RCS
by eliminating Transaction Restart. Essentially, by applying
OD-H to an RCS, the system is rid of any of the adverse
factors we discussed. MDRC

ODÿH is close to 0 except when �t
is big. When the transaction arrival rate is high, missed
deadlines are caused mainly by CPU and disk queuing
delays. From Fig. 8, we see that the improvement of
MDRC

ODÿH over MDAC
ODÿH is very significant. For example,

when �t � 5:0, about half of the deadlines missed in an ACS
are salvaged in an RCS. The percentage of saved deadlines
by an RCS is even more marked when �t is small.

We run the experiment again using a much smaller
update arrival rate (�u). Fig. 11 shows the miss rates of the
three scheduling policies with �u � 0:4=sec, one-third of the
value used in our previous experiment. We can see that the
trends of the performance of the scheduling policies are the
same as those observed in our previous experiment (Fig. 7).
We conclude that the comments made for the scheduling
policies are valid under a wide range of �u.

We also examine how � affects the transaction miss rates
of RCS. We notice that, as the value of � increases, the
transaction miss rates of all RCS policies are reduced. This
drop is attributed to the fact that a larger value of � allows
an application transaction to have a higher chance of
finding a materialized version that has a nonnull intersec-
tion with its validity interval. Since the relative performance
of the scheduling policies stays the same over a wide range
of � value, we do not show the result of the sensitivity
study in this paper.

7 FURTHER DISCUSSIONS

With our current RTDB model, we assume that the system
does not know what data items a transaction will read
before its execution. In certain RTDBs, however, some
transactions have fixed access patterns and the data they
read are already known before execution. this information

can be used to reduce the number of missed deadlines in

our scheduling protocols.

. OD/ACS. In an ACS, a transaction holds a lock on
any item it needs to read. When it triggers an
OD-update or OD-recom, the items locked by the
transaction before the OD request will be locked for
an extra amount of time—the execution time of an
OD request. If a transaction knows what items will
be required for materialization prior to its execution,
it can materialize those items first. The transaction
can then start its normal operations and the items
locked by the transaction will not suffer extra
locking time due to OD requests. As a result,
transaction blocking is less severe.

. URT/RCS. In our current URT/RCS protocol, a
transaction is aborted if the system fails to find a
valid materialized version to service its read request.
This situation can be improved if the readset of a
transaction is completely known before its execu-
tion. When a transaction starts, the system deter-
mines what versions of items to provide for the
transaction’s readset in order to minimize the
probability that the transaction is aborted. It tries
its best to provide a transaction with versions that
are all materialized and valid within the transac-
tion’s validity interval. The chance of a transaction
abort is thus reduced, resulting in a lower deadline
miss rate.

. OD/RCS. The system can make use of this
information to provide a transaction with versions
that require the minimum number of OD-updates
or OD-recoms. In general, an OD-recom, which
involves multiple reads (of base items) and single
write (of views), requires many more system
resources than an OD-update that only needs to
write to a base item. If the system determines that
at least one item of the transaction readset has to
be materialized anyway, it should try to minimize
the number of OD-recoms at the expense of more
OD-updates. By reducing the number of

KAO ET AL.: MAINTAINING TEMPORAL CONSISTENCY OF DISCRETE OBJECTS IN SOFT REAL-TIME DATABASE SYSTEMS 387

Fig. 10. Number of OD-recoms per transaction (RCS). Fig. 11. Miss rate vs. �t (�u � 0:4=sec).

OD-updates and OD-recoms, the OD Wait problem
is alleviated and the system performance can be
improved.

The schemes described above can only be useful in
reducing the number of missed deadlines if the overhead
for determining the versions of a transaction readset is
small. We may need to design special data structures and
efficient algorithms to support the new protocols.

8 CONCLUSIONS

Most of the previous studies on temporal consistency for
RTDBs concentrate on continuous data objects. Few studies
consider the temporal correctness requirements of discrete
data objects. In this paper, we defined temporal consistency
of discrete objects from the perspective of transactions. In an
absolute consistent system, a transaction cannot commit if
some data it reads become stale at the transaction’s commit
time. We showed that this consistency constraint is very
strict. It often results in a high transaction miss rate. If
transactions are allowed to read slightly stale data,
however, the system’s performance can be greatly im-
proved through the use of a multiversion database. We
defined a relative consistent system as one that allows a
transaction to read relatively consistent data items. The only
requirement is that those items are not older than the
transaction’s start time by a certain threshold value (�). We
argued that a relative consistent system has a higher
potential of meeting transaction deadlines.

We carried out an extensive simulation study on the
performance of the three scheduling policies: URT, OD, and
OD-H, under both an ACS and an RCS. We identified four
major factors that adversely affect the performance of the
policies. These factors are Low Priority, Batching Wait,
Transaction Restart, and OD Wait. Different policies coupled
with different consistency systems suffer from different
combinations of the factors. From the performance study,
we showed that OD-H when applied to an RCS results in
the smallest miss rate.

ACKNOWLEDGMENTS

The work described in this paper was partially supported
by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No.
CityU 1061/98E).

REFERENCES

[1] R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Transac-
tions: A Performance Evaluation,” Proc. 14th VLDB Conf., Aug.
1988.

[2] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying Update
Streams in a Soft Real-Time Database System,” Proc. 1995 ACM
SIGMOD, pp. 245-256, 1995.

[3] B. Adelberg, H. Garcia-Molina, and B. Kao, “Database Support for
Efficiently Maintaining Derived Data,” Advances in Database
Technology—EDBT 1996, pp. 223-240, 1996.

[4] Q.N. Ahmed and S.V. Vrbsky, “Triggered Updates for Temporal
Consistency in Real-Time Databases,” Int’l J. Time-Critical Comput-
ing Systems, vol. 19, no. 3, pp. 209-243, Nov. 2000.

[5] M. Carey, R. Jauhari, and M. Livny, “On Transaction Boundaries
in Active Databases: A Performance Perspective,” IEEE Trans.
Knowledge and Data Eng., vol. 3, no. 3, pp. 320-336, 1991.

[6] M. Cochinwala and J. Bradley, “A Multidatabase System for
Tracking and Retrieval of Financial Data,” Proc. 20th VLDB Conf.,
pp. 714-721, 1994.

[7] L.B.C. DiPippo and V.F. Wolfe, “Object-Based Semantic Real-Time
Concurrency Control,” Proc. IEEE 14th Real-Time Systems Symp.,
pp. 87-96, Dec. 1993.

[8] B. Kao, K.Y. Lam, B. Adelberg, R. Cheng, and T. Lee, “Updates
and View Maintenance in Soft Real-Time Database Systems,” Proc.
1999 ACM CIKM, pp. 300-307, 1999.

[9] Y.K. Kim and S.H. Son, “Predictability and Consistency in Real-
Time Database Systems,” Advances in Real-Time Systems, Prentice-
Hall, 1995.

[10] C.M. Krishna and K.G. Shin, “Real-Time Databases,” Real-Time
Systems, chapter 5, pp. 185-222, McGraw-Hill, 1997.

[11] T.W. Kuo and A.K. Mok, “SSP: A Semantics-Based Protocol for
Real-Time Data Access,” Proc. IEEE Real-Time Systems Symp.,
pp. 76-86, 1993.

[12] Mesquite Software, Inc., “CSIM 18 User Guide,”http://www.
mesquite.com, 2002.

[13] G. Ozsoyoglu and R. Snodgrass, “Temporal and Real-Time
Databases: A Survey,” IEEE Trans. Knowledge and Data Eng.,
vol. 7, no. 4, pp. 513-532, 1995.

[14] B. Purimetla, R. M. Sivasankaran, K. Ramamritham, and J.A.
Stankovic, “Real-Time Databases: Issues and Applications,”
Advances in Real-Time Systems, chapter 20, pp. 487-507, Prentice-
Hall, 1995.

[15] K. Ramamritham, “Real-Time Databases,” Distributed and Parallel
Databases, vol. 1, no. 2, pp. 199-226, 1993.

[16] A. Segev and A. Shoshani, “Logical Modeling of Temporal Data,”
Proc. ACM SIGMOD Ann. Conf. Management of Data, pp. 454-466,
1987.

[17] X. Song and J.W.S. Liu, “Maintaining Temporal Consistency:
Pessimistic vs. Optimistic Concurrency Control,” IEEE Trans.
Knowledge and Data Eng., pp. 787-796, Oct. 1995.

[18] M. Xiong, R. Sivasankaran, J. A. Stankovic, K. Ramamritham, and
D. Towsley, “Scheduling Transactions with Temporal Constraints:
Exploiting Data Semantics,” Proc. 1996 Real-Time Systems Symp.,
Dec. 1996.

[19] M. Xiong and K. Ramamritham, “Deriving Deadlines and Periods
for Update Transactions in Real-Time Databases,” Proc. 20th IEEE
Real-Time Systems Symp. (RTSS ’99), Dec. 1999.

[20] M. Xiong, R. Sivasankaran, J. A. Stankovic, K. Ramamritham, and
D. Towsley, “Scheduling Transactions with Temporal Constraints:
Exploiting Data Semantics,” Proc. 17th IEEE Real-Time Systems
Symp., Dec. 1996.

[21] P.S. Yu, K.L. Wu, K.J. Lin, and S.H. Son, “On Real-Time Databases:
Concurrency Control and Scheduling,” Proc. IEEE, vol. 82, no. 1,
pp. 140-157, 1994.

Ben Kao received the BSc degree in computer
science from the University of Hong Kong in
1989, the PhD degree in computer science from
Princeton University in 1995. He is an assistant
professor in the Department of Computer
Science and Information Systems at the Uni-
versity of Hong Kong. From 1989-1991, he was
a teaching and research assistant at Princeton
University. From 1992-1995, he was a research
fellow at Stanford University. His research

interests include database management systems, data mining, real-
time systems, and information retrieval systems. Dr. Kao has published
more than 50 technical research papers in various international journals,
conference proceedings, and books. He has also served as a program
committee member in a number of international computer conferences.
He is the principal investigator of a number of government-funded
research projects. He is currently also an adjunct fellow at the
E-Business Technology Institute (ETI), a research and development
institute jointly funded by IBM China/Hong Kong and the University of
Hong Kong.

388 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 3, MARCH 2003

Kam-Yiu Lam received the BSc (Hons) degree
in computer studies with distinction and the PhD
degree from the City University of Hong Kong in
1990 and 1994, respectively. He is currently an
associate professor in the Department of Com-
puter Science, City University of Hong Kong. He
has served as a paper reviewer for conferences
and journals on real-time systems and data-
bases, including SIGMOD, VLDB Conference,
RTSS, RTAS, IEEE Transactions on Knowledge

and Data Engineering, IEEE Transactions on Computers, IEEE
Transactions on Parallel and Distributed Systems, and Real-Time
Systems Journal. His current research interests are in location-
dependent services, continuous query processing, mobile real-time
information management, real-time mobile computing, sensor database,
and real-time database systems. Dr. Lam is a member of the IEEE,
ACM, and ACM SIGMOD.

Brad Adelberg Biography and photograph unavailable.

Reynold Cheng received the BEng degree in
computer engineering and the MPhil degree in
computer science from the University of Hong
Kong, in 1998 and 2000, respectively. He is
currently a PhD student at Purdue University.
His research interests are in the area of
transaction processing and concurrency control
in real-time database systems. He is a student
member of the IEEE and IEEE Computer
Society.

Tony Lee received the BS degree in computer
studies from the University of Hong Kong in
1990. He is currently an MPhil student in the City
University of Hong Kong. His research interests
are in the areas of transaction processing and
concurrency control in real-time system and time
critical applications.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

KAO ET AL.: MAINTAINING TEMPORAL CONSISTENCY OF DISCRETE OBJECTS IN SOFT REAL-TIME DATABASE SYSTEMS 389

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

