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Activity of the EBNA1 promoter associated with
lytic replication (Fp) in Epstein-Barr virus
associated disorders

A A T P Brink, C J L M Meijer, J M Nicholls, J M Middeldorp, A J C van den Brule

Abstract
Background/Aims—In Epstein-Barr
virus (EBV) positive cell lines that are sta-
bly infected, three diVerent promoters are
known to direct the transcription of EBV
nuclear antigen 1 (EBNA1). These are
located in the BamHI-C, BamHI-Q, and
BamHI-F regions of the viral genome
(Cp, Qp, and Fp, respectively). Fp is acti-
vated upon induction of the viral lytic
cycle. The aim of this study was to investi-
gate the activity of Fp in EBV associated
diseases.
Methods—Using reverse transcriptase
polymerase chain reaction, a qualitative
analysis of EBNA1 promoter usage in
various EBV associated diseases was per-
formed.
Results—Fp driven transcription was de-
tected in the context of primary infection
and/or lytic replication; at least a portion
of the Fp driven transcripts encoded
EBNA1. Qp driven EBNA1 transcripts
were detected in most samples across the
range of disorders tested. Cp driven
EBNA1 transcripts were detected in the
context of immune suppression and in
samples containing EBV positive (non-
neoplastic) lymphoid cells.

Conclusions—These results confirm the
previously proposed “housekeeping”
function of the Qp promoter.
(J Clin Pathol: Mol Pathol 2001;54:98–102)

Keywords: Epstein-Barr virus; Epstein-Barr virus
nuclear antigen 1; BamHI-F region

Epstein-Barr virus (EBV) is associated with
several lymphoid and epithelial malignancies.1

These are endemic Burkitt’s lymphomas, nasal
natural killer (NK)/T cell lymphomas, post-
transplant lymphoproliferative disorders,
AIDS related lymphomas, nasopharyngeal car-
cinomas, approximately 40% of cases of Hodg-
kin’s disease, and 8–10% of gastric carcino-
mas.2 In these malignancies, viral replication
rarely occurs. Instead, the virus is latently
present within the neoplastic cells (reviewed in
KieV3). The viral episome is maintained by the
expression of EBV nuclear antigen 1
(EBNA1),4 which interacts with the host cell
DNA and with the origin of replication (oriP)
in the viral genome.

The transcription of EBNA1 can be driven
by promoters located in the BamHI-W or
BamHI-C fragments of the EBV genome (Wp
and Cp, respectively; fig 1). Transcription from
Cp/Wp results in long polycistronic mRNAs
encoding not only EBNA1 but also one or
more of the other EBNAs.6 This situation
results in the extensive gene expression pattern
(latency type III) that is found in lymphoblast-
oid cell lines (LCLs) and lymphomas of the
immunocompromised: EBNA1, EBNA2,
EBNA3a, EBNA3b, EBNA3c, and EBNA4;
together with the latent membrane proteins
(LMPs) LMP1, LMP2a, and LMP2b; the
small non-coding RNAs, EBER-1 and
EBER-2; and rightward transcripts driven
from the BamHI-A region of the viral genome
(BARTs).

Alternatively, EBNA1 can be transcribed
from a promoter in the BamHI Q fragment of
the viral genome (Qp; fig 1). This is a
TATA-less promoter that resembles house-
keeping gene promoters and thus guarantees
EBNA1 expression in all EBV positive cells.7 In
Burkitt’s lymphomas, Hodgkin’s disease, naso-
pharyngeal carcinomas, gastric carcinomas,
and non-Hodgkin lymphomas of immuno-
competent patients, Cp and Wp are inactive as
a result of methylation8 and EBNA1 transcrip-
tion is Qp driven.7 9 This results in the expres-
sion of EBNA1 but none of the other EBNAs.
In addition, EBERs and BARTs are detected in
Burkitt’s lymphomas (latency type I). Hodg-
kin’s disease, nasopharyngeal carcinomas, gas-
tric carcinomas, and non-Hodgkin lymphomas

Figure 1 Schematic representation of Epstein-Barr virus (EBV) nuclear antigen 1
(EBNA1) transcripts derived from the four diVerent promoters. Large open boxes represent
exons; small shaded bars represent reverse transcriptase polymerase chain reaction
(RT-PCR) primers. Genomic coordinates given are those of the B95-8 prototype strain.5
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express EBNA1, EBERs, BARTs, and LMPs
(latency type II).

Recently, another promoter for EBNA1
transcription was discovered. This promoter
(Fp; fig 1) is localised 100–200 bp upstream of
Qp,9–11 and was found to be active in cell lines
after the induction of the viral lytic cycle.9 11 12

Originally, Fp was erroneously thought to be
the promoter used for EBNA1 transcription
during type I latency, but this misinterpretation
was based on experiments in which part of the
cells underwent spontaneous activation of the
lytic cycle.13 14 Recent studies have shown that
Fp and Qp driven transcripts can be dis-
tinguished in reverse transcriptase polymerase
chain reaction (RT-PCR) assays simply by
using specific primers.7 10 15 However, these
studies were all performed on EBV positive cell
lines, whereas the presence and importance of
Fp driven EBNA1 transcripts in EBV associ-
ated malignancies remained unknown. There-
fore, we have designed an RT-PCR assay using
a forward primer (Flyt) in combination with an
EBNA1 specific antisense primer as described
previously (table 1; primer K),16 17 or with an
antisense primer located in the U exon (table 1;
fig 1). This primer enables the distinction
between Fp and Qp driven transcripts using
total RNA from clinical material and cell lines
without the need for nested PCRs. Transcripts
derived from Cp and Qp can be detected using

the Y3 and Q sense primers, respectively, in
combination with the U or K antisense primers
(table 1).16

Materials and methods
SELECTION OF CLINICAL MATERIAL

All neoplasms tested in our study (table 2),
with the exception of three nodal peripheral T
cell lymphomas not otherwise specified, were
associated with EBV (EBER1/2 RNA in situ
hybridisation performed as described previ-
ously20 showed that most neoplastic cells
contained EBV). The three nodal peripheral T
cell lymphomas not otherwise specified were
considered not “EBV associated”; that is, sam-
ples contained EBV positive cells but these
were relatively few and non-neoplastic. The
definition of EBV associated lymphomas was
discussed previously.21 C15 is an nasopharyn-
geal carcinoma derived xenotransplant propa-
gated in mice.22 The JY lymphoblastoid cell
line23 was used as a positive control; the EBV
negative Burkitt’s lymphoma cell line Ramos
was used as a negative control.

PREPARATION OF RNA

RNA was isolated from 5 × 106 cultured EBV
positive JY and EBV negative Ramos cells and
from 10 cryosections, 5 µm thick, of biopsy
samples using 1 ml of RNAzolTM (Biotecx
Laboratories, Houston, Texas, USA). RNA was
stored as an isopropanol precipitate at −80°C.
Because the detectability of EBNA1 transcripts
relies strongly upon the quality of the RNA,17

the integrity of the RNA was checked by gel
electrophoresis; the presence of 28S/18S ribos-
omal bands was used as an indication of high
quality RNA. Only samples that showed ribos-
omal bands on the gel were included in our
study. As an additional quality control, RT-
PCRs for the housekeeping gene U1A were
performed.24 To check for the presence of
amplifiable EBV mRNA in the preparations, we
performed RT-PCR for BARTs, which are
expressed in all types of latency.25

RT-PCR CONDITIONS

Multiprimed reverse transcription followed by
single specific RT-PCR was performed as
described previously.17 An amount of RNA
equivalent to 1.5 cryosections, 5 µm thick, of
the biopsies or to 100 000 cultured cells was
reverse transcribed in a 20 µl reaction volume
containing 10 pmol each of primer K, ASU,
A4, and U1A2; subsequently, 1.5 µl of the gen-
erated cDNA was subjected to PCR. PCR
products were analysed by gel electrophoresis,
transferred to nylon filters (Qiabrane; Qiagen,
Chatsworth, California, USA) by alkaline blot-
ting, and hybridised with 32P labelled specific
oligonucleotide probes (table 1).16 18 19 Films
were exposed to these blots for four hours or
overnight.

Results
ANALYSIS OF EBNA1 TRANSCRIPTION IN EBV

POSITIVE CELL LINES

In the JY cell line, Cp/Wp driven EBNA1 tran-
scripts were detected; Qp driven EBNA1 tran-
scripts were detected to a lesser extent (fig 2A,

Table 1 Oligonucleotide primers and probes used in RT-PCR analysis

Target
transcript Oligo

B95.8 genomic
coordinates Sequence

EBNA1* Y3 (s) 48397–48416 TGGCGTGTGACGTGGTGTAA
Q (s) 62440–62457 GTGCGCTACCGGATGGCG
Flyt (s) 62336–62355 GACCACTGAGGGAGTGTTCC
K (as) 107986–107967 CATTTCCAGGTCCTGTACCT
ASU (as) 67610–67589 TCTACTGGCGGTGTATCATGCG
PU (probe) 67544–67563 AGAGAGTAGTCTCAGGGCAT

BARTs A3 (s) 157154–157173 AGAGACCAGGCTGCTAAACA
A4 (as) 159194–159175 AACCAGCTTTCCTTTCCGAG
AP (probe) 157359–157378 AAGACGTTGGAGGCACGCTG

U1A U1A1 (s) – CAGTATGCCAAGACCGACTCAGA
U1A2 (as) – GGCCCGGCATGTGGTGCATAA
U1A3 (probe) – AGAAGAGGAAGCCCAAGAGCCA

*All EBNA116 primers except Flyt, and all BART primers18 were described previously. We also
used BLZF1 and BHRF1 specific primers as described previously.19

as, antisense; BARTs, BamH1A region driven transcripts; EBNA, Epstein-Barr virus nuclear
antigen; RT-PCR, reverse transcription polymerase chain reaction; s, sense.

Table 2 Analysis of EBNA1 promoter usage in Epstein-Barr virus (EBV) associated
disorders

Sample type Qp Cp Fp* BARTs

In vitro systems
JY cells23 + + + +
C15 tumours22 + – + +

In vivo disorders
Infectious mononucleosis (n = 1) 1/1 1/1 1/1 1/1
Reactive node, EBV positive cells (n = 1) 1/1 0/1 ND 1/1
Nasopharyngeal carcinoma (n = 15) 15/15 5/15 0/5 15/15

Lymphomas in patients without overt immunodeficiency
Hodgkin’s disease (n = 19) 14/19 4/19 0/13 19/19
Burkitt’s lymphoma (n = 4) 3/4 0/2 1/2 4/4
Anaplastic large cell lymphoma (n = 1) 1/1 0/1 0/1 1/1
Nasal T/NK cell lymphoma (n = 6) 6/6 0/5 0/2 6/6
B non-Hodgkin’s lymphoma (n = 4) 2/4 1/4 ND 4/4
Nodal PTCL NOS (n = 3) 2/3 1/3 0/2 3/3

Lymphomas in immunocompromised patients
AIDS related lymphoma (n = 2) 2/2 1/2 0/2 2/2
Post-transplant LPD (n = 7) 6/7 7/7 3/6 7/7

*Some cases could not be tested owing to lack of material.
BARTs, BamH1-A region driven transcripts; EBNA1, EBV nuclear antigen 1; LPD, lymphopro-
liferative disease; ND, not done; NK, natural killer; PTCL NOS, peripheral T cell lymphomas not
otherwise specified.
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upper and middle panel, respectively). Fp
driven transcripts (Fp-U spliced) were also
detected (fig 2B, second panel), indicating that
at least in a proportion of cultured JY cells,

EBV has entered into the lytic state. Moreover,
using the Flyt and K primer pair, a signal was
detected (fig 2B, upper panel), indicating that
(part of) the detected Fp driven transcripts
encode EBNA1 in JY cells.

The C15 tumour showed clear expression of
Qp driven but not Cp driven EBNA1 tran-
scripts (not shown). After overnight exposure
of the PCR blot, a faint signal for Fp driven
EBNA1 transcripts (Fp-U-K spliced; fig 2B,
upper panel) was seen in the C15 tumour; as in
the JY cells and the clinical samples, Fp-U
spliced transcripts were also detected (fig 2B,
second panel) and this signal was stronger than
the Fp-U-K signal.

ANALYSIS OF EBNA1 TRANSCRIPTION IN BIOPSIES

FROM EBV ASSOCIATED DISEASES (TABLE 2)
Fp-U spliced transcripts
Fp-U spliced transcripts were only detected in
post-transplant lymphoproliferative disorders
(half of the cases tested), the infectious mono-
nucleosis sample (not shown), and one of the
two Burkitt’s lymphoma samples tested (fig 2B,
second panel). We also assessed the presence of
Fp-U-K spliced transcripts and found signals
in the same samples that were positive for Fp-U
spliced transcripts (fig 2B, upper panel).

Q-U-K spliced EBNA1 transcripts
Q-U-K spliced EBNA1 transcripts were de-
tected across the range of diseases tested in
most samples, with the exception of five of the
19 Hodgkin’s disease samples (in which no
EBNA1 transcription was detectable), one of
four Burkitt’s lymphoma samples, two of four
B cell non-Hodgkin’s disease samples (of
which one expressed Cp driven EBNA1 only
and the other showed no detectable EBNA1
transcription), and one nodal peripheral T cell
lymphoma not otherwise specified sample that
contained < 10 EBV positive cells in each sec-
tion and showed a weak signal for BARTs.
Although the Q primer might also detect Fp
driven transcripts (fig 1), the absence of Fp
signals in all cases except the abovementioned
post-transplant lymphoproliferative disorders,
infectious mononucleosis, and Burkitt’s
lymphoma samples indicates that all signals
found with the Q-U and the Q-K primer pairs
are truly derived from Qp driven transcripts.

Q-U spliced transcripts
Q-U spliced transcripts were detected in the
samples that were also positive for Q-U-K
spliced transcripts (fig 2B, third panel). The
signals obtained with the Q-U primer pair were
stronger than those of the Q-U-K primer pair,
which might be because the amplimer gener-
ated with the Q-U primer pair is shorter; in fact,
one Hodgkin’s disease and one Burkitt’s
lymphoma sample, which were negative for
Q-U-K, did show a signal with the Q-U primer
pair and this was also true for the nodal peri-
pheral T cell lymphoma that remained negative
in the Q-U-K RT-PCR (fig 2B, third panel).

Cp driven EBNA1 transcription was clearly
detected in all post-transplant lymphoprolif-
erative disorders, the infectious mononucleosis

Figure 2 Reverse transcriptase polymerase chain reaction (RT-PCR) analysis of EBNA1
promoter usage in Epstein-Barr virus (EBV) associated disorders. (A) Analysis of Cp
(top) and Qp driven (middle) EBNA1 transcripts and BamHI-A rightward transcripts
(BARTs, bottom) in Hodgkin’s disease; (B) Analysis of Fp driven transcripts (Fp-U-K
spliced, top; and Fp-U spliced, second row), Qp driven transcripts (Q-U spliced, third row)
and BARTs in diVerent EBV associated disorders. BL, Burkitt’s lymphoma; c, C15
tumour; HD, Hodgkin’s disease; JY, lymphoblastoid cell line; nTCL, nodal T cell
lymphoma; PTCL, peripheral T cell lymphoma; PTLD, post-transplant lymphoproliferative
disorder; Ra/−, EBV negative Ramos cell line; w, water control.
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sample, and one of the two AIDS related lym-
phomas (not shown). Moreover, in five of 15
nasopharyngeal carcinoma samples a Cp signal
was observed, although these signals were rela-
tively weak compared with the positive controls
and the post-transplant lymphoproliferative
disorders. One B cell non-Hodgkin’s
lymphoma clearly expressed Cp driven
EBNA1 transcripts. In three of the 19 Hodg-
kin’s disease samples a faint signal was
observed after overnight exposure; only one of
the 19 Hodgkin’s disease samples clearly
expressed Cp driven EBNA1 transcripts. A
faint Cp signal was also observed in one nodal
peripheral T cell lymphoma not otherwise
specified.

Discussion
The detection of Fp driven EBNA1 transcrip-
tion in JY cells disagrees with the findings of
Schaefer et al,15 who detected Fp-U spliced
transcripts but not Fp-U-K spliced transcripts
in JY cells. This discrepancy might result from
interlaboratory diVerences in the JY cell
culture. Lytic reactivation in some of the JY
cells cultured in our laboratory has been dem-
onstrated in a previous study using immuno-
histochemistry for the BZLF1 lytic activator.26

The detection of Fp driven EBNA1 transcrip-
tion in the C15 tumour probably reflects viral
replication that occurs in nude mice in the
absence of a cytotoxic T cell response.

The detection of Fp driven EBNA1 tran-
scription in infectious mononucleosis and in
post-transplant lymphoproliferative disorders
probably reflects the lytic replication of EBV.
Infectious mononucleosis is known as the
clinical manifestation of a primary EBV infec-
tion.27 Post-transplant lymphoproliferative dis-
orders, like infectious mononucleosis, usually
occur in patients not previously exposed to
EBV.28 Moreover, the expression of the lytic
replication activator BZLF1 was detected pre-
viously in infectious mononucleosis29 and post-
transplant lymphoproliferative disorders.26

This is also the case for Burkitt’s lymphoma30;
Burkitt’s lymphoma may even contain cells
entering the lytic phase,31 which was recently
shown to be related to a good response to
chemotherapy.32

We determined whether BZLF1 transcrip-
tion and/or protein synthesis coincided with Fp
activity, but we could not find a clear
correlation: the infectious mononucleosis sam-
ple and the three post-transplant lymphoprolif-
erative disorders that showed Fp activity also
showed BZLF1 mRNA (using RT-PCR) and
protein (by immunohistochemistry using the
BZ1 monoclonal antibody (Dako, Glostrup,
Denmark). However, the three post-transplant
lymphoproliferative disorders that did not
show Fp activity also showed BZLF1 mRNA
and protein expression. Moreover, all five
nasopharyngeal carcinoma samples that were
negative for Fp driven transcripts showed
BZLF1 transcription, but BZLF1 protein
could not be detected immunohistochemically.
It is not known whether BZLF1 protein
expression is necessary to induce Fp activity,
although it was shown previously11 that the

activation of Fp is dependent on de novo pro-
tein synthesis after the initiation of the lytic
cycle.

The detection of Fp-U-K spliced RT-PCR
products indicates that EBNA1 encoding tran-
scripts can be Fp driven in clinical material.
The same was shown recently for cell lines.33

However, the Fp-U RT-PCR signals were
clearly stronger than the Fp-U-K RT-PCR sig-
nals, indicating that a proportion of Fp driven
transcripts may encode proteins other than
EBNA1. This was also suggested for cell lines
in a previous study.33 Alternatively, RT-PCRs
with the U antisense primer might proceed
more eYciently than those with the K antisense
primer, because with the U antisense primer a
shorter amplimer is generated.

In a previous study,34 we showed that
lymphomas of immunocompromised patients
were positive in RT-PCR both with the Y3/K
and with the Q/K primer pair, but the latter
signals were ascribed to Fp activity because the
Q/K primer pair does not enable the distinction
between Fp and Qp driven EBNA1 transcripts
(fig 1). In our present study, we show that Qp
driven EBNA1 transcription in the absence of
Fp activity does occur in the lymphomas of
immunocompromised patients.

The ubiquitous expression of Qp driven
transcripts indicates that Qp can indeed be
considered a “housekeeping” promoter,7 which
ensures constant EBNA1 transcription and
thus maintenance of the viral episome in the
host cells. The absence of detectable Qp
transcripts in some of the samples might reflect
the number of EBV infected cells, as is
probably the case in the sample from the
peripheral T cell lymphoma not otherwise
specified (hence the weak BART signal found
in this sample). Alternatively, specific down-
regulation of Qp activity by EBNA1 protein
might occur.35 Recently, it was shown that this
eVect can be overcome by E2F36 and, therefore,
the ratio between EBNA1 and E2F in EBV
associated diseases is likely to determine Qp
activity.

The detection of Cp driven EBNA1 tran-
scription in post-transplant lymphoprolifera-
tive disorders, infectious mononucleosis, and
AIDS related lymphomas is in agreement with
the literature, Cp being the promoter that is
active during latency type III, which is
commonly found in these disorders.37–39 The
EBV gene expression pattern that prevails in
nasopharangeal carcinoma is latency type
II,16 40 but these tumours are known to contain
abundant reactive lymphoid infiltrate. It is not
unlikely that EBV infected B cells are present
and contribute to the Cp signals observed. The
same holds true for nodal peripheral T cell
lymphomas not otherwise specified that con-
tain EBV positive cells: we have shown that in
these lymphomas the EBV positive cells are
mostly (reactive) B cells41 and, in a previous
study, Cp driven BHRF1 transcription was
shown for this kind of lymphoma.19 Therefore,
Cp activity is associated not only with a latency
type III expression pattern but also with the
presence of EBV positive reactive B cells.

Fp driven EBNA1 transcription in EBV associated disorders 101
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