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ABSTRACT

We calculate the radiation spectrum, characteristic frequency, and power emitted by a relativistic
charged particle moving in curved magnetic field lines with arbitrary pitch angle, which can be approx-
imated by a curved spiral trajectory. We obtain some universal formulae which can be identical to either
synchrotron radiation or curvature radiation in certain parametric regions, but in general the radiation
features of this new mechanism can significantly differ from those of these two known mechanisms. Since
magnetic field lines are generally curved in many real systems (e.g., a pulsar magnetosphere), this new
mechanism can more realistically describe the radiation from relativistic charged particles in these
systems. We also find that the degree of polarization is the best quantity to differentiate this new mecha-
nism from the other two mechanisms.

Subject headings: polarization — radiation mechanisms: nonthermal — relativity

1. INTRODUCTION

Among all the radiation mechanisms in pulsars, synchrotron and curvature radiations are the most important (for a general
review of pulsar radiation mechanisms seee Michel 1991 and Mészaros 1992). In previous discussions, they have been treated
as two independent mechanisms. The synchrotron radiation formula is derived assuming a uniform and straight magnetic
field, while the formula for curvature radation assumes that the charged particle moves along a curved field line with similar
results for the characteristic frequency, radiation, power, and frequency distribution, except that the cyclotron radius is
replaced by the radius of curvature. In the magnetosphere of a pulsar charged particles are moving in curved magnetic lines.
Their trajectories are likely to be spiral curves along the curved field lines. It is obvious that the radiation from charged
particles with this type of trajectory cannot be described by either the simple synchrotron radiation or the curvature radiation
theories. In calculating the radio emission from Jupiter, many authors (Chang & Davis 1962; Field 1961; Korchak 1962;
Thorne 1963; Ortwein, Chang, & Davis 1966) have considered radiation from charged particles moving in dipolar field lines.
However, they still used the synchrotron radiation formula for charged particles moving in uniform and straight magnetic
field lines, which may or may not be correct. Nevertheless, justification for using this formula seems necessary. We want to
remark that radiation from charged particles in this kind of trajectory is still synchrotron radiation in origin, like that of
curvature radiation, but its radiation properties have obvious differences from those of simple synchrotron radiation. In order
to differentiate between synchrotron radiation from charged particles in straight field lines and that from charged particles in
curved field lines, we call the former simple synchrotron radiation and the latter synchro-curvature radiation. In this paper,
we will deal with the following questions. What is the general formula to describe the radiation from charged particles with
this type of motion, namely, a curved spiral motion? Under what conditions are simple synchrotron radiation and curvature
radiation still valid? What are the implications of this new mechanism?

For simplicity, we will not consider the real shape of the magnetic field, e.g., dipolar field, etc. Instead, we will assume a
rather simple situation: a circular magnetic field. Furthermore, the guiding center is assumed to be moving along the magnetic
field lines. Under these approximations, particles will exhibit a circular motion around the guiding center, which is moving
with a constant speed along the magnetic field lines. Of course, we have ignored the decrease in velocity caused by the
radiation. We need to emphasize again that the magnetic field and particle trajectory are only an approximation of the real
situation. This circular field approximation should be valid as long as the radius of the curvature of the magnetic field does
not change significantly over a distance roughly equal to ¢ T, where T,,. is the cyclotron period.

2. EQUATION OF MOTION

Let us consider a charged particle with mass m and charge e that is moving within a circular magnetic field. In the (x, y)
coordinate plane, we use the polar coordinate system (p, ¢). The equation for the magnetic field can be expressed as

B = B, ¢° = By(cos ¢j° — sin ¢i°) (2.1

where B is assumed to be a constant for the convenience of later quantitative estimation. The velocity of the guiding center in
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this type of field structure can be expressed as

2
ymo,v,c\ ,  ymic ,
v = — + . 2.2
¢ (U"’ eB,p )e"’ eByp ¢z (22)

This shows that the guiding center can only have drift velocity transverse to the magnetic field line in the z-direction. In the
p-direction, the drift velocity is zero. In one cyclotron period, v, alternates direction and thus <v,v,> = 0. Therefore, in the
@°-direction, the guiding center will move with nearly uniform velocity v, = v cos a. The drift velocity in the z-direction is
given by

v0) ymvic  v® cos® a
D, = = .
@ eByp g p

where « is the angle between B and v and wp = eBy/(ymc). We can see that the particle will drift with a uniform velocity (vg),
along the z-direction. As the magnetic field, p, and « increase, the drift velocity decreases. For example, in the outer
magnetosphere of a young pulsar, where the typical values of the parameters are B = 10° G,y = 107, v ~ ¢, and p ~ 108 cm,
(vg), < 10% cm s ™! < c. Such a velocity will only allow the guiding center to drift away a distance less than 10* cm or cause a
fractional change in magnetic field less than 10~4. In the main text, we will not consider this drift velocity when we are
calculating the frequency distribution. Also, we will assume that the particle exhibits circular motion around the guiding
center, which is moving along the magnetic field lines with a uniform velocity. We want to emphasize that the drift velocity of
the guiding center does not change our general results; it causes a minor modification of the characteristic frequency,
spectrum, and total radiation power loss, but the forms of these quantities remain unchanged (for details see Appendix C).

In order to describe circular motion of a particle within the magnetic field lines, we choose a coordinate system 0’, X', Y', Z’
whose center coincides with the guiding center of the particle. Let £ coincide with p° and § coincide with ¢°, then?’ coincides
with z°. The particle will rotate within the magnetic field lines on the (X', Z’)-plane. Let r; = c sin a/wy, be its cyclotron radius;
then

(2.3)

¥ =rg cos wptp® + rp sin wytz° . (2.4

The motion of the guiding center along the magnetic field line can be described by the variation of p° and ¢°. Suppose we
assume that initially, when ¢t = 0, the guiding center is on the y-axis, and let Q, be its angular velocity. Obviously,

p° = —sin Qyt i°® + cos Qyt j°, (2.5
0% = —cos Q,ti® —sin Q,t j°, (2.6)

where Q, = v,/p. Hence the position vector of the particle at a particular instant can be expressed as

r=p+r= —{p sin Qqt + %B [sin (Qq + wp)t + sin (Qy — wB)t]}io
+ {p cos Qyt + %B [cos (Qy — wg)t + cos (Qy + coB)t]}j" + rp sin wgt k° . 2.7

3. RADIATION SPECTRUM

In order to simplify the calculation of the spectrum, which is measured by a distant observer, we will assume that the
magnetic field lines are uniform in the length scale ~ 2r*/y, in which the light pulse is formed. Here r* is the effective radius of
curvature, which will be defined later. Without loss of generality, we can assume that the observer is located on the (X, Z)-
plane. Also we let 6, be the angle between the position vector of the observer and (—x°). Therefore, the unit position vector
pointing to the observer is given by

n= —cos 0,i° + sin 6, k° . (3.1

The spectral energy density for an arbitrary accelerated particle in the range of solid angles between Q, and Q, + dQ,, and
in the frequency range between w and @ + dw is given by (Peratt 1991)

d*E 4 e*w?
dodQ = 4n’c

In order to obtain the observed spectrum, we need to calculate the above integral. After using some common approx-
imations for calculating the synchrotron radiation (for details see Appendix A), we obtain

2

(32)

T2
J euo[t—(”"/c)][n x (n x B)]dt

-T/2

d’E, *0?A?| (= Y U B SN SR g )
doda ™ arc |} OR[N\ HIT) | =T KT G
and
d2E” e2w2A2 0 . ) 1 N 2 e2w2Aﬁ Q% ) 2
dodQ  4n’c _wexp Qi+ 3" de| = 3n%c Kiss 3 ) (34)
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where

02=1+ 2y2[2 sin® (a _29°> - % COS & €OSs OO:I , (3.5

r3 + prg — 3p? 3 1. ) 1
Qi =\———7F5—cos® acos B, + = cos a cos O, + — sin® « sin 6, | —, (3.6

P P s Tp

1 o
=2 (3.7)
/=270
1
A= 03 e :
[(p+rB) 0+rBwB] C6Qg._y4a (38)
. 1
Af = [(p + rp)Q sin 0, — rgwp cos 01° 55— - (3.9)
03y

Before we calculate the average radiation power spectrum, we need to point out that 6, is practically very close to o. This is
because the phase factor in equations (3.3) and (3.5) is related to Q%, which has a large value unless {2 sin? [(x — 6,)/2]
— (rg/p) cos a cos B} — 0. Otherwise, the phase factor oscillates rapidly and makes the positive and negative shifts cancel
each other. Furthermore, we will show that the angle y between n and v satisfies cos y = 1 — {2 sin’ [(« — 6,/2] — (r5/p) cos &
cos 0,}. Therefore, the dominant contribution of the integral in equation (3.2) is when cos x ~ 1, which implies « ~ 6, or
0, =~ 1. In other words, the radiation is concentrated within a narrow cone centered in the direction of motion, and the
characteristic frequency can be estimated by (4/3) f = w/w, or

3 1 3 2 _ 3 2 3 2 ) 1/2
o, ==7y%~ [(rB + Pri 5 1) cos* o + 2P cos? o + p_z sin* a . (3.10)
27 p Pra s I's

We will have the following limiting cases:
1. When p = o0, a # 0, the characteristic frequency becomes the characteristic frequency of synchrotron radiation, namely,

3 ,sinfa 3 , sina 3, .
2 — = _Z . 3.11
2 s 2yccs1nac/w3 2 esSInY 3.11)
2. When a = 0, so ry = 0, the situation is similar to the curvature radiation. In this case,
3,1 3p 3p\? 3 .¢
=2 (122 2F =432 3.12
o, 2”,,( rs+r3 27 (3.12)

To calculate the distribution of the radiation power, we will first show that {2 sin? [(« + 60,)/2] — (rs/p) cos a cos 0} is
related to the inclination angle y between v and » when ¢t ~ 0. We have

v= —rpwgsin wgt p° + (p + r5 cos wzt)Qy @° + rywy cos wyt k° (3.13)
and
n = cos 0, sin Qqt p° + cos 0, cos Qyt @° + sin O, k° . (3.14)
Therefore y must satisfy the following relation:
VCOS X =n*v=rzwgcos O, sin wgt sin Qut + (p + rg cos wgt)Q, cos O, cos Qyt + rpwg cos wgt sin O, .  (3.15)
Using rg = (v sin 0)/wg and p = (v cos «)/Q,, we obtain
. . . Q, . . .
cos x = sin & cos 6, sin wyt sin Qyt + cos « cos O, cos Qyt + —> sin & cos O, cos wyt cos Q¢ + sin & cos wyt sin G, .
Wpg
(3.16)
Initially, y clearly satisfies

cos y=1— [2 sin? (a_TBO> — % COS & COS 00] . (3.17)

We have argued that the main contribution to the radiation power appears when {2 sin® [(« — 6.)/2] — (rg/p) cos «
cos 0} — 0, which means that the velocity is pointing toward the observer, namely, y ~ 0, and within the range of
Ay ~ 1/y. Therefore,

0% = {1 + 2y2[2 sin? (a—TOO> - %B COS o COS 00]} ~ 14932 (3.18)
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On the other hand, from equation (3.15) we can approximate
1 .
cos x ~ [(rg + p) cos By + rgwg sin 0,] (3.19)

or
. 1 .
sin y & p [(rs + p)Q sin 8, — rgwg cos B,] . (3.20)

Therefore we can rewrite equation (A14) as

{nx(nxv)},.~cy. (3.21)

Iw yX €xp {if[(l + 92 + % t{l}d‘c
Jw T exp {if[(l + 2% + % 173]}d1

Since equations (3.22) and (3.23) contain the radiation angle y between » and v explicitly, after integrating over the radiation
angle, we will find dP,/dw and dP/dw. Strictly speaking, when we integrate the radiation angle, we should consider the
functional relationship between Q, and y. But we have shown that the radiation is concentrated in the y ~ 0 direction.
Therefore, we can replace 6, by « in the expression of Q,, and the error caused will not be significant.

To find the radiation power per unit frequency and per unit solid angle, we should divide the spectral energy density (eq.
[3.23]) by the pulse emitting time between two successive observations (i.e., the period of motion). For the synchrotron
radiation, this time interval is its rotation period T = 2n/wg. For the case when the magnetic field is curved, the time interval
between two pulses is not equal to T. We will denote it by T* = 2z/w*. Meanwhile, in the original flat magnetic field, the
radiation within a period should concentrate in a layer with an angular width 1/y of a cone with an opening angle a. For the
integrals about the solid angle dQ, we need only consider the contribution in this layer, i.e., dQ = 2z sin ady. For the case
when the magnetic field is curved, the opening angle of the cone will no longer be «. We will denote it by a*. We will determine
o* and w* later. From equations (3.22) and (3.23), we can obtain the spectra of the radiation power:

Therefore equation (A18) becomes

2

2 2.2
d°E, e‘w , (3.22)

dodQ  4n2c3Qiy*

and equation (A16) becomes
d’E,  o’[(rz + p)Q} + rpwi])’ 2

dodQ An2c’ Q% y*

(3.23)

P, oM+ P +rp0dl (= = fF 1 P
do 4204y o* sin o _wdx _001: exp {if| (1 + ¥%)r + 3T dt (3.24)
and
dP| S0 w*sina* [ | [ A+ +1 Ny Zd‘ is
do ~ 4n%c3Q2y° _wx _wt exp | (1 + 1) 7T T X (3.25)

where ¥ = yx. Here we have extended the integration range of ¥ to + oo (because y > 1).
Due to the Doppler shift, the spectra measured by an observer are not given by equations (3.24) and (3.25), which are the
emission spectra. Instead, we should replace T* by T’, which is given by

2 2 1 2
T = <1 —l—)cos a cos 0’)(77:‘%(1 —Zcos2 a)w—t ~ <2—y2+ sin? oc) a)_7:‘ (3.26)

However, we wish to point out that the above factor only occurs for the case of a single particle. An ensemble of particles will
smear out the above factor.

In order to calculate the emission spectrum given in equations (3.24) and (3.25), we need to express o* sin a* in an explicit
form. In the case of straight magnetic field lines, wg sin « = ¢/r,, where r. is the radius of curvature of the particle trajectory.
Since the radiation properties are solely determined by the radius of curvature and velocity (Ochelkov & Usov 1980), we can
identify w* sin a* = ¢/r¥, where r* is the instantaneous radius of curvature of the particle trajectory evaluated at the emission
point and can be expressed as

1 FXF
—=|—F. 32
TP G20
From equation (3.13) we obtain
C2

r¥x s
¢ [rpop + (p + Q%]
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where we have used | #| = c. Therefore, equations (3.24) and (3.25) can be written as

dP, e*o*[(rg+ p)Q2 +rgwi]® [ _|[® _ 1 2
il ; 1 2 — .3 X
1o 42508 _wdx _wr exp {if| (1 + x%)r + 37 dt (3.28)
and
dP, e*0*[(rg+ p)QE +rgw?] [ _,| [ _ _ 1 2
E)Ll = :n205Q§0y5 BB _wxz _wr exp Sif| (1 + )t + 3 3 |pdt| dy . (3.29)
After evaluating the above integrals (see Appendix B), we obtain
dP, \/Sez[(rB + p)Q% + rpwil?y (o ® ©
do 4nc“Q§ r* o, Ky o, + w/chS/a(y)dy > (3.30)

where we have used f = 3w/(4w,) = w/(2y>Q, ¢). Similarly, we obtain

dP ey 1 o [ ([= )
—JZ)H = — % I * {;c [I Ks3(y)dy — K2/3<Z):>:|} . (3:31)

/e

The total radiation power spectrum is given by

ap_dp, dr,
do  do ' do
\/3etyo © » [(rp + P)R2 + rp2]? [ [ o
=t o oo ()| 2 B [ skt k2] 30

where r¥ = ¢*/[(rs + p)Qi + rzw3]. For the synchrotron radiation, Q, = 0, Q, = (sin? a)/rz, riw3=c? sin® o, we get
[(r5 + P + rpw3]?/(c*Q3) = 1and

dP 3e?ywpsina o [
- — = — —_\/— 05 — Ks/3(y)dy (3:33)
do 2nc O Jojo

For the curvature radiation, r; = 0,Q, = ¢/p,and Q, = 1/p, we find [(r5 + p)Q3 + rzw3]*/(c*Q3) = 1 again, and

r__fero |-

do Zp K5/3(y)dy . (3.34)

w/we

To find the total power of radiation, we integrate over all frequencies and obtain

_ 3B [f( | a 908 + ra i) (T\ (2 | (T + )O3 +rydl® ) (4) (2
P= 8nr, [H<l+ 02 }F<3>F<3>+{ 02 —1}1‘(3)r<3)]|, (3.35)

From equation (3.35) we can easily calculate the total power of the synchrotron and curvature radiations [N.B.
I'(7/3)I'(2/3) = 8r/9(3'/?)]. For the synchrotron radiation, we have

2¢*B? sin? o y?

Psyn - — —'W_ . (3.36)
For the curvature radiation, we have
2 2 ..,4
Pow=—3 epczy . (3.37)

4. DISCUSSION

We have derived a universal radiation formula for a charged particle moving in curved magnetic field lines with arbitrary
pitch angle, which can reduce to the formula for either synchrotron radiation or curvature radiation in appropriate limits.
Figures 1-5 show the comparison between synchro-curvature radiation (solid line), synchrotron radiation (dashed line), and
curvature radiation (dotted line) for different parameters. We can see that the synchro-curvature curves overlap with either
synchrotron curves for sin a > rp/p or curvature curves for sin a < rg/p as expected. However, they can differ from each other
significantly when sin a & rg/p. It is very important to note that there are regions in the pulsar magnetosphere where
parameters of charged particles can vary considerably from place to place. For example, charged particles in the acceleration
regions, i.e., polar gap (see Ruderman & Sutherland 1975) or outer gap (Cheng, Ho, & Ruderman 1986a, b), can start with a
large pitch angle and evolve to a very tiny pitch angle. Neither the simple synchrotron radiation nor the curvature radiation
theories can correctly describe this evolution of pitch angle, because they are only valid in the extreme limits of the pitch angle.
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synchro-curvature mechanism (solid curve), synchrotron mechanism (dashed line), and curvature mechanism (dotted line).

On the other hand, our formula can more consistently describe the radiation process for arbitrary pitch angle. Furthermore,
the pitch angle determines the characteristic energy of the emitted photons, which eventually controls the potential of the gap
via pair production (Sturrock 1971; Ruderman & Sutherland 1975; Arons & Scharleman 1979). This may also explain why
the spectra of six known gamma-ray pulsars can differ so much even though their underlying radiation and pair production
processes are so similar (Cheng & Zhang 1995; Zhang & Cheng 1995).
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The degree of polarization is defined as

_ (4. _ap\(dr,  dp,
@) = (dw dw )/( dow + dw) ’ 1)

which can be an important quantity to differentiate the synchro-curvature radiation from both sychrotron radiation and
curvature radiation, because the K, 3(v/v.) component in the expressions dP, /dw and dP /dw is not completely canceled. The
degree of polarization for synchrotron radiation and curvature radiation can be expressed as

o= [ K4 2)] [ Kastar]. “2)

where w, for synchrotron radiation and curvature radiation is given by equations (3.11) and (3.12), respectively. The degree of
polarization for synchro-curvature is

Q. m(w) + Q-
Q-_mw)+Q.’

where Q, = 1/(Q,r¥)? + 1, Q_ = 1/(Q,r¥?* — 1, and o, is given by equation (3.10). In Figure 6 we compare the degree of
polarization of these three mechanisms. At high frequencies, the polarization of all these meéchanisms approaches unity. This
is easily understood because K, 3(w/w,) = [&,,. Ks;3(y)dy for /w, > 1. At low frequencies, the polarization of synchrotron
radiation and curvature radiation both appraoch 50%, but the polarization of synchro-curvature radiation approaches 42%,
which is actually the numerical value of [3 — (Q,r¥)*1/[3 + (Q,r*)?]. Again, this results from the fact that 2K, (/o) =
|20, Ks/3(y)dy for w/w, < 1. Therefore, in principle we can differentiate the radiation resulting from each mechanism by
measuring the degree of polarization.

nsc(w) =

4.3)
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APPENDIX A

EVALUATION OF SPECTRAL ENERGY DENSITY

The spectral energy density for an arbitrary accelerated particle in the range of solid angle between Q, and Q, + dQ,, and
in the frequency range between w and @ + dw is given by (Peratt 1991)

d*E B e*w?
dwdQ ~ 4n’c

To evaluate the above integral, we first note that

T/2 2
j o= DIl x (n x P)lde| (A1)

-T1/2

§:}

2

Expanding the sine functions appearing in equation (A2) about ¢t = 0, we obtain

. r . . . .
n-r=pcosf,sin Qyt + -23 cos 0, sin (Q + w)t + = cos O, sin (, — w)t + g sin O, sin wgt . (A2)

3

. . t
n-r=_[(p+rsQ cos O, + rywg sin 0,1t — [(p + rg)Q3 cos O, + 3Q, wirg cos O, + rpw} sin 0,] 5 (A3)
From equation (2.2),
Q, =@=%= ymv,,,v,zc ,
p P eByp
and
Vo=V =UVCOS O, U,=TFgWpCOS Wt ="USin aCOS wpt,

we can show that the average value of v, v, over a period should be zero, i.e.,

V0,07 =0.
Hence, on average, we have

, (A4)

where a is the inclination angle between v and B. Therefore,

%r= [cos (x — 0) +%cos o cos Ho:lg-t— [@ cos® a cos 0, +pichos a sin? o cos 0, +r—112’sin 6, sin® a]v;% .
(A%)
The factor in equation (A1) can be expressed as
et~ 0 = exp [if (Qy 7 + 3271, (A6)
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where

0i=1- 2v2[2 sin’ <a 20") - %B Cos a Cos 90] , (A7)

2 — 3p2 3 1 1
0%= r,,-l—_pr,;_?f__ cos® o cos B, + = cos o cos O, + — sin® a sin 0, | —, (A8)

P p s s
T=cQ,0t, (A9)

1 o

_l o A10
4 2 '}’3Q2 c ( )

and when the integration variable is changed from ¢ to 7 oc yt, we can extend the upper and lower limits of the integral in
equation (A1) to + oo, because y is large enough. As a result, + yT/2is changed to + co. Next we consider

nx (nxv)=(—cos 0, i° + sin 0, k%) x (n x v)
= — (v, sin O, cos O, + v, sin? 8,)i°® — v,j° — (v, cos? O, + v, sin B, cos O)k° . (A11)

In order to consider the polarization of the radiation simultaneously, we use a coordinate plane X", Y” which is perpen-
dicular to the direction of n. Also we assume that p”|p, and express the inclination angle between x” and x as ©/2 — 6,. Then
the unit vector £” in the x"-direction can be expressed as

£ = cos <§ - 00>i° + cos 6, k°
= sin 0, i® + cos 0, k° . (A12)
We have
nx (nxv)=— (v, cos O, + v, sin B,)sin 0,i° + cos 0, k%) — v, j°
= — (v, cos Oy + v, sin O)X" — v, p" . (A13)
By putting the values for v,, v, and v, calculated from equation (2.7) into the above equation, we have
{n x n(n x v)},. = (p + rp)Q, sin 6, — rzwy cos B, (A14)
and
{n x (nxv)},, =[(p+rpQ + rzwzlt. (A15)

In both equations we have used sin Qg t &~ Q, t, noting that t = [1/(cQ, y)]t. From equation (A1), we obtain

d’E, e*w?A%| [~ . 1, 2
10d0 "~ drc _wr exp | if Q11+§1 dt| , (Al6)
where
1
AL =[(p +rp)Qf + r303)* 7 - (A17)
Q3
At the same time, we have
d2E|| ezszﬁ © . 1 3 2
d0d0~ e |) P\ QrH3T)d (A1%)
where
. 1
Af = [(p + rp)Qf sin 0, — rywg cos 6,]° 2017 (A19)
The integrals in equations (A16) and (A18) can be expressed in terms of the modified Bessel functions, i.e.,
© 1 2 2
J T eXp l:if<Q1’5 +3 13)]‘1"7 = 201 K3, (A20)
o 3 3
® 1 2
J xp [if(Ql T4 r3>]dr ~ ik, (a2)
- \/5
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where n = % f. Finally, we can calculate (d2E, /dw dQ) and (d*E i/dw dQ):
d’E, JFw’4} 0t

dw dQ - 37:26 %/3(") s (A22)
dZF e2w2A2 2
do dISII - 371?le1 Kialr) - (A23)

APPENDIX B

EVALUATION OF THE POWER SPECTRUM
In order to obtain an analytlc expression for dP/dw, we should not express the square of the modulus of the integrals in

equations (3.24) and (3.25) by using the modified Bessel functions. Let us rewrite the square of the modulus of the integrals as a
product of two self-conjugate complex numbers, namely,

J texp {if [(1 + ) + %r3l}dr = J dr, J 7172 exp {if (r; — ©)[(1 + X))t + 301 + 717, + 13)1}d7, . (BY)
If we rotate the axis of integration variables by =/2, i.e.,

=301, — 1)), (=301 +71), (B2)

we have
1+ =8 +30,

and after the transformation of variables, the Jacobian becomes

oty 15) } 11

=%e0 ~|-1 1

2.

Therefore,
2 2
=2 J d¢ exp {ZIf [+ e ] } J (€% — &) exp (2ifeL?at

r’ T exp {f[(l + 1%+ % T ]}dt
_) J ” (L)"Z mm( S ) ex {sz[(l + 7 + és]}ﬁ (B3)
VI af) P * ’

where s = +1 or —1, depending on the sign of ¢. Using the same approach, we can have

!

© 1 2 Y T 1/2 63
f_ X €Xp {if[(l + ¥ + 3 13]}(11: =2 J -2<2f|€|> "™+ exp {21f|:(1 + ¥HE+ ]} £. (B4

Substituting this into equation (3.37), we obtain

dP, Sa*[(rg+ p)Qd +rgwil® [ _| [ . =2 15
o= 450k _wdx Texp Sif| (1 + %)t + 3° dt

2

-

2,2 B+ Qz+322 ® 1/2tsn ‘ " X i
- [(ancféa‘(;sr;ﬁr = f—md5<2f1ltél> M( e 4}3” P {z’f[(l S ]}d" 5

f " exp {21‘1"[(1 N ﬁ]}dz = exp [Zif<£ + 5—)] Iw exp (—2if 129)dz = [2if(c + é—)]e/ i g
. 3 3)1)-. 3 2]

Therefore

dP,  Ea’[(rs + ) + rpwil* ., [* 2=n
o= awlgiyE o Lo 71¢] (‘52 7 él) P [z’f(é 3 53)]‘15
2 QZ 2 i ©
— [(rgn'szQ) y :;VB (DB] [ j & exp [2”‘(6 + = é )]dé +1i Jl -417é exp [21}”(6 + % €3>i|df] , (B7)
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where the integral is given by

" e [2if<6 +3 53)}1& .y f " zew [2if<é +3 53)]dc —2if Jw ¢ exp [2if<€ +3 53)]dc . B9

There are only two integrals we nieed to take care of, and they can be expressed as (Shu 1991)
I =-2f | Cexp [Zif(é +3 53)}15 = ﬁGG f) : (BY)
171 , 1, 4 4
I, = —2if P 2| E+3¢ d¢=—2ﬁG§f +\/§F§f , (B10)

where
F(x)=x j Ks;3(y)dy , (B11)
G(x) = xK3(x) . (B12)
Therefore,
AP, 3e[lrp+ P + rp03]Y (o o\ [*
do dnc Q2 rx o, Ko\, ) wlchs/s(y)dy , (B13)

where we have used f = 3w)/(4w,) = ©/(2y*Q, ¢). Similarly, we obtain
apr 3ey 1 (o[ [ )
== >2£ E {5 [ f Kss(y)dy — Km(;)]} : (B14)
c c w/we c
From equations (B13) and (B14), we can obtain the total radiation power, i.e.,
dp_dpy  dP,
do  do = do

3 2 © Qz 272 ©
I R [RTT AT

/e

APPENDIX C

MODIFICATION OF THE RADIATION FORMULA CAUSED BY THE PARTICLE DRIFT

We have shown that the drift velocity of a charged particle along the z-axis in constant circular magnetic lines is given by

2 2
o = 22 :01 z. (@)
B
Thetotal velocity is actually given by
v=v+0, (C2)

where v is the particle velocity used in the main text, which has ignored the drift velocity of the guiding center. We can
integrate the above equation and obtain

r=r+0v%t, (C3)

where r is given by equation (2.7). It is straightforward to show that

. . £
ner=1[(p+rpQ cos O, + rpwg sin 0, + v¢ cos 6,1t — [(p + rx)Q3 cos O, + 3Q, wEry cos O, + rywp sin 6,] r (C4)

and

_ ()
n-v= v{l — [2 sin? <a70°> _ sin & cos 0, — UeT sin 00]} . (C5)

@p
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Therefore, the angle between n and v” satisfies

-0 Q (©G)
cos ¥ = g {1 - [2 sin? (a 5 0) - w—:: sin a cos 6, — 027 sin 00]} . (C6)
Since v & v & ¢, we obtain
. -0 o
x? = 2[2 sin? <E‘_o) — B cos a cos 0, — % gin 90] . (cn
2 p v
Now we can express the phase factor as
] ner iw 202 y2t3
t—— )= — tlt CS
lw( C> 2v2(1+ 3 ) )
where Q2 = 1 + y?x'? and Q3 is defined in equation (3.6). We can rewrite the phase factor as
ettt =l = exp {if [(1 + y*x%)e + 37°1} , (C9)

where fis still defined by equation (3.7). The expression of the phase factor has a similar form as before, except that y is
replaced by x'. Furthermore,

nxnxv=—/[@,+vsin 0, cos 0, + v, sin? 6,1 — v, j* — [(v, + v’?) cos? O, + v, sin O, cos ,1k° . (C10)

The perpendicular and the parallel components are given by

nx(nxv),=(p+rgQ,sin 6, — <r,, wg + %) cos 6, (C11)
and
nx(nxv),,=—v,, (C12)
respectively. Using equation (C6), we can show that
(p + 1rp)Qq sin Oy — (rpwp + vi%) cos B, = ¢ sin ¥’ ~ cy’ . (C13)
Then we get
nx(@nxv =cy. (C14)

We can see that the expressions for the two polarized spectral energy densities remain unchanged

d*E ew? © ) , 1 2
dwdlsll = PR T f_ P €Xp {lfl:(l + 92Xt + 3 1:3]}d‘c (C15)
and
d’E, o*[(rg + p)Q3 + rywz]?| [ ) ) 1 2
dwd;) = B47'[2C7Q§'}’4 BB _ Texp ifl 1+ 92 +3 3 [pde| (C16)
except x is replaced by x'. Again, the direction of the strongest radiation is ¥’ ~ 0, when we have
(p + rp)Q sin 0, = (ry g + v'¥) cos 6, (C17)
or
(p + rp)
cot O, = m . (C18)
Since the drift velocity of the guiding center can be approximated by
2 2 Q Q
vﬁf’=w=——oecosaz—°cosa, (C19)
wpp wp € Wp
we have
Q
tan 0, = tan o + —> . (C20)
@p

From this we can see that 0, is not equal to a when the drift velocity is included. However, the correction is the very small
term Q,/wp. This also causes a small correction to the characteristic frequency, which is given by

3 5 1(r}+ pri—3rgp? 3 2 . 12
wc=—y3c—(3 sz 5P cos3acos@0+—pcosozcos(90+p—2s1n3ocsm@o . (C21)
2 p Prs g s
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Now 0, ~ a + Q,/wp for a relativistic charged particle. Therefore, this change only causes a minor modification to the
characteristic frequency, the radiation spectrum, and the power loss, but the forms of these quantities remain unchanged.
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