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Adaptive Neuro-Fuzzy Modeling of Battery Residual
Capacity for Electric Vehicles

W. X. Shen, Student Member, IEEE, C. C. Chan, Fellow, IEEE, E. W. C. Lo, Member, IEEE, and
K. T. Chau, Member, IEEE

Abstract—This paper proposes and implements a new method
for the estimation of the battery residual capacity (BRC) for elec-
tric vehicles (EVs). The key of the proposed method is to model
the EV battery by using the adaptive neuro-fuzzy inference system.
Different operating profiles of the EV battery are investigated, in-
cluding the constant current discharge and the random current
discharge as well as the standard EV driving cycles in Europe, the
U.S., and Japan. The estimated BRCs are directly compared with
the actual BRCs, verifying the accuracy and effectiveness of the
proposed modeling method. Moreover, this method can be easily
implemented by a low-cost microcontroller and can readily be ex-
tended to the estimation of the BRC for other types of EV batteries.

Index Terms—Adaptive neuro-fuzzy inference system, battery
modeling, battery residual capacity, electric vehicles.

I. INTRODUCTION

W ITH ever-increasing concerns over environmental pro-
tection and energy conservation, research and develop-

ment on various electric vehicle (EV) technologies are being ac-
tively conducted [1], [2]. However, the application technology
of EV batteries, namely, the driving range indicator, cannot keep
pace with the development of other EV technologies. At present
and in the near future, batteries have been identified to be the
major energy source for EVs because of their technological ma-
turity and reasonable cost. Therefore, the key to the develop-
ment of the driving range indicator for EVs is to accurately es-
timate the battery residual capacity (BRC) [3].

Conventionally, the estimation of the BRC can be catego-
rized into three groups. The first group is based on the empir-
ical formula [4]–[7] and the mathematical model (or the equiv-
alent electric circuit) [8]–[10] through the analysis of battery
characteristics of the constant current discharge. The second
group is based on the coulometric measurement in which the
accumulated error is corrected by the stabilized open-circuit
voltage (OCV) [11]. The third group is based on the impedance
measurement [12], [13]. For the first group, the parameters of
the methods are generally obtained only from the steady state,
which cannot reflect the dynamic behavior of the battery in EVs.
Moreover, these methods highly depend on a particular type of
battery. It is not easy to extend them from one type of battery
to another. For the second group, the stabilized OCV refers to
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the battery terminal voltage measured after the battery is suf-
ficiently rested, for instance, 30 min [11]. However, practical
EV operation may not have much chance to stop for such a
long period that the stabilized OCV can be measured. For the
third group, a small amplitude signal of alternative current is
injected into the battery for the measurement of the internal
impedance. As a result, the impedance obtained does not in-
clude the dynamic characteristic of the large discharge current,
which is often exposed to the EV battery. Furthermore, the nec-
essary equipment to carry out such impedance measurement is
too expensive and bulky for EVs.

Different from the aforementioned methods, the application
of the artificial neural network (ANN) to the estimation of the
BRC under variable current discharge [14], [15] and constant
current discharge [16], [17] provides a tool to deal with the
above difficulties. This is due to two key features of the ANN.
First, the ANN does not rely on the explicitly expressed relation-
ship between input variables and the BRC. When using the ANN
for the BRC estimation, one needs to only consider the selection
of variables as the ANN inputs. The relationship between the
input variables and the BRC is formulated by a training process,
avoiding those difficulties in the modeling process. Second, the
adaptive algorithm is another attractive feature of the ANN. An
updated training data set can be used to retrain the ANN so that
the ANN can adapt the change of the BRC in the most recent
conditions. On the other hand, the fuzzy logic is also explored
in the estimation of the BRC [18]. This is due to the fact that the
fuzzy logic can handle uncertainties and imprecision in the real
battery system. Moreover, the parameters of the fuzzy system
have clear physical meanings so that rule-based and linguistic
information can be incorporated into the fuzzy system.

The ANN for the estimation of the BRC cannot provide
heuristic knowledge of the battery on the BRC estimation
process because of its black-box approach. On the other hand,
fuzzy logic is a tool that can easily implement and utilize
heuristic reasoning, but it is generally difficult to provide exact
solutions. With the integrated synergy of the ANN and the fuzzy
logic, the estimation of the BRC using adaptive neuro-fuzzy
inference system (ANFIS) can function to provide more
accurate solutions under different operating conditions and also
a better understanding of the estimation process. Therefore, the
purpose of this paper is to develop a new estimation approach
of the BRC by using the ANFIS. The idea behind the fusion
of the ANN and fuzzy logic is to use the learning ability of
the ANN to implement and automate the fuzzy system which
utilizes the high-level human-like reasoning capability. To
facilitate the application to EVs, the estimation of the BRC
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Fig. 1. ANFIS architecture.

is only based on those measurable variables, namely, the
battery terminal voltage, the discharge current, the discharged
capacity, and the battery surface temperature. Once the ANFIS
is formulated, the method can be easily implemented by a
low-cost microcontroller for the BRC estimation in EVs.

II. ANFIS MODELING

A. ANFIS Architecture

The ANFIS is a fuzzy Sugeno model put in the framework
of adaptive systems to facilitate learning and adaptation [19].
Such a framework makes the ANFIS modeling more system-
atic and less reliant on expert knowledge. To present the ANFIS
architecture, the following two fuzzy if–then rules based on a
first-order Sugeno model are considered:

• Rule 1:if ( is ) and ( is ) then
• Rule 2:if ( is ) and ( is ) then

where and are the inputs, and are the fuzzy sets, are
the outputs within the fuzzy region specified by the fuzzy rule,
and , , and are the design parameters to be determined
during the training process. Thus, the possible ANFIS architec-
ture to implement these two rules is shown in Fig. 1. Note that a
circle indicates a fixed node while a square indicates an adaptive
node (the parameters are changed during adaptation or training).

In this five-layered architecture, all the nodes in Layer 1 are
adaptive nodes. The output of each nodeis the degree of mem-
bership of the input represented by

(1)

where , can be adopted by any fuzzy member-
ship function (MF). For example, if the bell MF is used, it yields

(2)

where , , and are the parameters that change the shape of
the MF.

In Layer 2, each node is a fixed node. They are labeled “M”
to indicate that they play the role of a simple multiplier. The
outputs of these nodes are given by:

(3)

The output of each node in this layer represents the firing
strength of the rule.

Each node in the Layer 3 is also a fixed node. They are labeled
“N” to indicate that they perform a normalization of the firing
strength from the previous layer. The output of each node in this
layer is given by

(4)

where refers to the normalized firing strength.
In Layer 4, each node is an adaptive node. The output of each

node in this layer is simply the product of the normalized firing
strength and a first-order polynomial (for the first-order Sugeno
model)

(5)

Only one node labeled “S” is in Layer 5. It performs the func-
tion of a simple summer. The output of this single node is given
by

(6)

From this ANFIS architecture, it is observed that there are two
adaptive layers (Layer 1 and Layer 4). Layer 1 has three modi-
fiable parameters related to the input MFs. These pa-
rameters are called premise parameters. Layer 4 also has three
modifiable parameters pertaining to the first-order
polynomial. These parameters are called consequent parame-
ters. The task of the learning algorithm for this architecture is
to tune all the modifiable parameters to make the ANFIS output
match the training data. Note that if the parameters, , and

of the bell MFs are fixed, the output of the ANFIS becomes

(7)

which is a linear combination of the modifiable parameters,
, and . Therefore, the least-square method (LSM) can easily

identify the optimal values for these parameters. However, if
the MFs are not fixed and are allowed to vary, then the search
space becomes larger and, consequently, the convergence of
the training algorithm becomes slower. In such case, a hybrid
learning algorithm combining the LSM with the gradient de-
scent is adopted, which is composed of a forward pass and a
backward pass. In the forward pass, the premise parameters are
fixed and the vector of the outputs, corresponding to input
samples , can be deduced from (7) and
written in the following matrix form:

(8)

where is
the coefficient matrix and is the
vector of the consequent parameters. Then, (8) is solved using
the LSM to determine the consequent parameters. Once the op-
timal consequent parameters are found, the backward pass stage
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Fig. 2. ANFIS model for BRC estimation.

starts. In this stage, the gradient descent is used to optimally
adjust the premise parameters corresponding to the fuzzy sets
in the input domain. The output of the ANFIS is calculated by
fixing the consequent parameters to the values found in the for-
ward pass. By comparing the estimated output with the actual
output, the output error of the ANFIS is then propagated from
the output to the input to adapt the premise parameters using the
standard backpropagation algorithm. It has been proven that the
ANFIS can be used as a universal approximator [20] and the hy-
brid learning algorithm is highly efficient in training this ANFIS
[21].

B. ANFIS Model Formulation

The ANFIS model for the estimation of the BRC is a FIS im-
plemented on an adaptive ANN structure. The battery terminal
voltage , the discharge current, the discharged capacity,
and the battery surface temperatureare used as the inputs of
the ANFIS model while the BRC value is used as the single
output of the ANFIS model.

The universes of discourse of the battery terminal voltage,
the discharge current, the discharged capacity, and the battery
surface temperature are, respectively, defined as

(9)

where , , , , , and are the constants representing
the upper and lower bounds of the feasible operating ranges of
the battery terminal voltage, the discharge current, and the bat-
tery surface temperature, and is the upper limit of the fea-
sible operating range of the discharged capacity under consider-
ation. Three fuzzy sets are defined on each of the input spaces,
corresponding to low, medium, and high for each variable, and
labeled , , , and , respectively, with 1, 2, 3. The
input space is defined as the Cartesian product spaces of the

battery terminal voltage, the discharge current, the discharged
capacity, and the battery surface temperature

(10)

The output of the ANFIS model is the BRC, which refers to the
percentage of the battery available capacity (BAC). Thus, the
output space can be defined as

(11)

The BRC estimation process can be viewed as a mapping from
the input space into the output space, which maps the battery
terminal voltage, the discharge current, the discharged capacity,
and the battery surface temperature to the BRC. Fig. 2 shows
this ANFIS model for the BRC estimation in EVs.

III. EXPERIMENT

Battery testing plays an important role in evaluating the per-
formance of batteries, especially for those batteries used in EVs.
Fig. 3 shows the battery evaluation and testing system (BETS),
which was built at the International Research Center for Elec-
tric Vehicles, The University of Hong Kong, Hong Kong. This
system consists of the following four main parts:

• programmable charger in which almost any charging al-
gorithms can be performed;

• programmable electronic load in which flexible and vari-
able discharge regimes can be designed, such as the con-
stant current discharge, the constant power discharge, the
constant resistance discharge, and the variable current dis-
charge according to EV driving cycles;

• temperature-controlled chamber in which batteries can be
tested under any predefined air temperature over the range
from 20 C to 50 C;

• data acquisition subsystem in which the sampling time can
be preset as in the order of seconds, minutes, or hours
depending on the requirements of users.
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Fig. 3. Battery evaluation and testing system.

The lead acid battery with the nominal voltage of 12 V is used
for testing, whose rated capacity is 40 Ah at the 20-h discharge
rate, namely, Ah. However, the rated capacity for
EVs is only a reference value which cannot be considered as
the actual BAC because the discharge current in EVs is gener-
ally much higher than that corresponding to the rated capacity.
As a consequence, the BAC in EVs is generally much lower
than the rated capacity. Since the BAC varies with the change
of discharge current, it is defined as the quantity of electricity
that can be delivered by a fully charged battery at a certain dis-
charge current and temperature until the specified cutoff voltage
is reached. Mathematically, it can be written as

(12)

where is the BAC, is the instantaneous terminal voltage,
is the discharge current, is the battery surface tempera-

ture, and is the specified cutoff voltage. In accordance with
this definition, many experiments that simulate the battery oper-
ated in EVs are conducted on the BETS. They include the con-
stant current discharge (CCD) and the random current discharge
(RCD) as well as the variable current discharge corresponding
to the European reference driving cycle (ECE), the U.S. Federal
urban driving schedule (FUDS), and the Japanese mode 10.15
(JM10.15). The corresponding experimental data are automati-
cally recorded, with each row representing the battery terminal
voltage, the discharge current, the discharged capacity, and the
battery surface temperature as well as the BRC.

IV. DATA PROCESSING

A. Filtering Data

From the measured data, it is observed that the battery ter-
minal voltage varies significantly with the rapid change of the
discharge current, while the BRC decreases monotonically with
the increase of the discharged capacity. Thus, filtering is neces-
sary to extract the essential features of the battery for the BRC

Fig. 4. Comparison between actual BRC and estimated BRC for training data.

estimation. In this study, a simple-mean filter is used for con-
venient realization, which is given by

(13)

where is the original measured data and is
the filtered data. The stepcan be selected depending on the
changing frequency of the battery terminal voltage. In general,
the higher the frequency, the larger the stepis selected.

B. Selecting Data

The ANFIS model can make the estimation of the BRC only
based on the way that it is learned from the experimental data.
Thus, the selection of the training data from the numerous fil-
tered data significantly affects the estimation of the BRC. One
purpose of the data selection is to remove those data that are
correlated with other data, namely, when the experimental data
including the battery terminal voltage, the discharge current, the
discharged capacity, and the battery surface temperature have
no observable change within several samples, only one of them
needs to be included in the training data set. Another purpose of
the data selection is to keep the training data set as small as pos-
sible to reduce the training time for model construction. Similar
to the input selection of the ANFIS proposed in [22], the fol-
lowing procedure is used to select the training data.

Step 1) Set the value and use (13) to filter the measured
data for each test.

Step 2) Put all the filtered data into one data set and form the
whole data set.

Step 3) Assign the initial size of the training data set as small
as 5% of the whole data set.

Step 4) Select the training data from the whole data set ran-
domly.

Step 5) Train the ANFIS model using the training data and
then stop right after the first epoch is finished.
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Fig. 5. Comparison between actual BRC and estimated BRC for CCD
operation. (a) CCD profile. (b) BRC profiles.

Step 6) Check whether the predefined error criterion for the
whole data set is achieved for the trained ANFIS
model. If it is achieved, the selection procedure
stops and the corresponding data is recorded as the
training data set. Otherwise, go to Step 7).

Step 7) Increase the size of the training data set by 1%, and
then go back to Step 4).

As described previously, the ANFIS employs an efficient
hybrid learning algorithm that combines the gradient descent
and the LSM. In this learning algorithm, the LSM is the major
driving force that leads to fast training while the gradient
descent serves to slowly change the underlying MFs that
generate the basis functions for the LSM. Since the LSM is
computationally efficient, various combinations of the data can
be selected to train the ANFIS model with a single application
of the LSM, namely, right after the first epoch of training.
As a result, one data set with the smallest root-mean-squared
error will be selected as the training data set and proceeded for

Fig. 6. Comparison between actual BRC and estimated BRC for RCD
operation. (a) RCD profile. (b) BRC profiles.

further training. The whole data set composed of 17 data files
corresponding to 17 tests is involved in the selection procedure
with 26 822 records. Finally, the training data set contains 3500
data records, or 13% of the total number of the data records in
the whole data set.

V. EVALUATION AND RESULTS

After the data processing is finished, the training data set is
used to train the ANFIS model further with the hybird learning
algorithm, while the whole data set is used to verify the accu-
racy of the estimation of the BRC. To allow for comparison, the
average percentage error (APE) is adopted. It is defined as

(14)

where is the number of the training data set or the data set for
each test, and and refer to the estimated BRC from the



682 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 49, NO. 3, JUNE 2002

Fig. 7. Comparison between actual BRC and estimated BRC for ECE
operation. (a) ECE discharge profile. (b) BRC profiles.

trained ANFIS model and the actual BRC from the experimental
data, respectively. The APEs for both the training data set and
the data set of each test are calculated. Fig. 4 shows the estimated
BRC and the actual BRC for the training data set. It can be found
that the estimation is of high accuracy, and the corresponding
APE is only 0.53%.

To evaluate the trained ANFIS model for the estimation of the
BRC effectively, the 17 data sets for each test are used to verify
the trained model. The results corresponding to the aforemen-
tioned CCD, RCD, ECE, FUDS, and JM10.15 operations are
shown in Figs. 5–9, respectively. All these figures illustrate that
the proposed method provides highly accurate estimation of the
BRC for different operating profiles of EVs. It should be noted
that the APEs of the proposed ANFIS model are all within 2%,
which offers a significant improvement over the APE of 10% in
[15] in which the ANN model is adopted.

The ANFIS model can estimate the BRC accurately due to
two facts. First, the ANFIS model inherently offers a merit to ac-

Fig. 8. Comparison between actual BRC and estimated BRC for FUDS
operation. (a) FUDS discharge profile. (b) BRC profiles.

curately represent complex nonlinear mappings. The nonlinear
mapping from the battery terminal voltage, the discharge cur-
rent, the discharged capacity, and the battery surface tempera-
ture to the BRC under their practical operating ranges can fully
utilize this inherent merit. Second, the proposed data selection
procedure of the training data set can enable the ANFIS model
minimizing the error between the estimated BRC and the actual
BRC while maintaining its generality. Thus, it is expected that
the model can accurately represent the battery characteristics for
the purpose of BRC estimation. On the other hand, this ANFIS
model potentially offers high adaptability provided that it can be
regularly retrained by new training data sets. The keys are how
to extract the informative data from those new discharge cur-
rent profiles and how to identify the obsolete data from those
previous discharge current profiles so that the training data set
can be effectively updated. The corresponding investigation will
be our future work in the area of ANFIS modeling for the BRC
estimation.
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Fig. 9. Comparison between actual BRC and estimated BRC for JM10.15
operation. (a) JM10.15 discharge profile. (b) BRC profiles.

The proposed ANFIS model for the BRC estimation in EVs
can also be easily implemented by a low-cost microcontroller
(such as the 80C96), which is illustrated in Fig. 10. The reason is
that the BRC estimation only involves the basic operation of ad-
dition, subtraction, multiplication, and division after the premise
and consequent parameters of the ANFIS model are obtained.
In contrast, the implementation of the ANN model involves the
exponential calculation which is difficult to be realized by a
low-cost microcontroller.

VI. CONCLUSIONS

This paper has proposed and implemented the application of
the ANFIS model to the BRC estimation for EVs. Comparisons
between the estimated results from the proposed model and the
experimental data show good agreement, verifying its accuracy
and effectiveness for the estimation of the BRC. Also, this new
estimation method can easily be implemented by a low-cost mi-

Fig. 10. Implementation diagram of the BRC estimator.

crocontroller and readily be used for the BRC estimation in EVs.
Finally, the proposed method is so general that it can be ex-
tended to the BRC estimation for other types of EV batteries.
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