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We report a theoretical investigation of dynamic conductanceG(v), for general ac frequencyv, of
two-dimensional mesoscopic waveguides whose transport is characterized by antiresonances. We
calculateG(v) by numerically evaluating nonequilibrium Green’s functions. By tuning the ac
frequency we observe photon-assisted resonant transport as well as a gradual smearing out of the
antiresonances. The antiresonance causes the dynamic response to vary between capacitive-like
behavior to that of the inductive-like behavior. ©2001 American Institute of Physics.
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I. INTRODUCTION

Transport properties of two-dimensional~2D! mesos-
copic electron waveguides have been studied extensi
since the development of controlled crystal growth and lith
graphic techniques.1–5 So far, coherent electron conductio
under a small dc bias is well understood both theoretic
and experimentally for these systems. However, trans
properties of mesoscopic conductors under an ac bias
present many open questions, and this subject is increas
attracting more attention.6–11 Under ac fields the dynami
conductanceG(v) consists not only of particle current, bu
also of displacement current.11 To incorporate this effect into
a quantum transport theory, one necessarily needs to s
the transport problem in conjunction with electrodynamics12

ac transport theory including electrodynamic effects has b
developed from a scattering matrix theory~SMT! point of
view11 and applied13 for analyzing 2D mesoscopic condu
tors to first order in ac frequencyv—a situation for whichv
is small. In order to gain physical insight into the dynam
response of mesoscopic waveguides at general ac frequ
v and to construct a general physical picture of quant
conduction under dynamic conditions, in this article we
port on investigations of dynamical conductance atfinite fre-
quency for a class of 2D electron waveguides, i.e., we re
the behavior ofG(v) beyond thev→0 limit.

To be specific, we have investigated dynamic cond
tance for two electron waveguides which are represented
the 2D model shown in the inset of Fig. 2. The width of lea
is W, and by adjusting the values of two potential barriersVa

and Vb , we obtain two different 2D wires:~1! Va5` and
Vb50; this corresponds to a T-shaped waveguide14 with the
length of stub equal to 2W; ~2! Va50 andVb5`; this cor-
responds to anL-shaped quantum dot.15 For these 2D open
waveguides, the electron scattering region is stron
coupled to the leads, thus they are usually transmissive
electrons coming from one lead and going to another. I

a!Electronic mail: jianwang@hkusub.hku.hk
1770021-8979/2001/89(3)/1777/6/$18.00
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known16 that there are quantum bound states localiz
around the scattering region of these systems. The exist
of potential barriers somewhat isolates the scattering reg
thereby pushing the quantum bound states into the c
tinuum and resulting in resonant tunneling.15 The quasi-
boundstates of these systems are also quite different fr
those of one-dimensional~1D! double-barrier resonant tun
neling structures: instead of a complete transmission at r
nances in 1D, 2D waveguides are characterized by an a
resonant state17,18 corresponding to a complete reflection
incoming electrons. Recently, a general theory has been
mulated to consider conductance of molecular wires an
type of antiresonance was predicted.19 We focus on the be-
havior of dynamic conductance G(v) both off and at anti-
resonance of these 2D waveguides. Our calculation is ba
on evaluating nonequilibrium Green’s functions~NEGF! us-
ing the ac transport theory of Ref. 20 which allows us
examine the importance of the displacement current. An a
lytic expression of dynamic conductance in the wideba
limit has been derived for the situation near an antireson
state. For more general situations we numerically comp
various quantities of interest. Due to the ac field, electro
traversing the scattering region can absorb and emit pho
leading to photon-assisted transport. By tuning the ac
quencyv we observe a gradual smearing out of the antire
nances. Interesting capacitive-like and inductive-like beh
ior is observed.

The article is organized as follows: the theoretical a
numerical methods used for this investigation are presen
in Sec. II, Sec. III presents results, and Sec. IV is a disc
sion and summary of results.

II. THEORETICAL AND NUMERICAL METHODS

Our investigation on the 2D waveguides is based on
theoretical formulation of NEGF,20 where the displacemen
current is partitioned among the leads through a gauge
variance condition.21 Since the details of this formalism ca
be found in Ref. 20, we refer interested readers to that
7 © 2001 American Institute of Physics

 license or copyright, see http://jap.aip.org/jap/copyright.jsp



ly
n

e

en

e
n
o

ss

an
u

on

he

ith
th
th
s
r
fre
is

i
tie

the
rd

s-
2D
bor
s to
he
n

g
-
. It
t
a

re-

is

itive
.

ng

-
be-
ting
a
ini-

nu-
est
site
lar

mes
e-
and
the
ed

de-
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erence for mathematical details. In the following we on
outline the necessary formulas which are needed for our
merical analysis of this work.

Within the NEGF formalism20 the dynamic conductanc
Gab(v) between leads labeled bya andb is

Gab5Gab
c 2Gb

d
(gGag

c

(gGg
d . ~1!

In this expression, the quantity with superscriptd is the con-
ductance coefficient contributed by the displacement curr
while that with superscriptc is contributed by the particle
current. The coefficients are given by20

Gb
d~v!52qvE dE

2p
Tr@ ḡb

,#, ~2!

and

Gab
c ~v!52qE dE

2p
Tr@ ḡb

,~(0a
a 2 (̄0a

r !1ḡb
r (0a

, 2 (̄0a
, ḡb

a

1~Ḡ0
r s̄a

,2s̄a
,G0

a1Ḡ0
,s̄a

a2s̄a
r G0

,!dab#, ~3!

where q is the electron charge. Before defining the oth
quantities in these equations, we emphasise that inclusio
the displacement current contribution preserves current c
servation under ac condition, and expression~1! also satisfies
gauge invariance. These facts are mathematically expre
as22 SaGab5SbGab50.

Quantitiessa
r ,a,, and ḡa

r ,a,, in Eq. ~3! are correction
terms toequilibrium quantitiesS0a

r ,a,, , andḠ0
r ,a,, , and su-

perscriptsr,a, , refer to retarded, advanced and lesser qu
tities in the usual language of Green’s functions. In o
notation20 g[g(E,E) and ḡ[ḡ(E1\v,E), which are
double time Fourier transforms of the Green’s functi
g(t,t8). The Green’s functions in Eqs.~2! and~3! are given
by20,23,24

ḡa
r ,a5Ḡ0

r ,as̄a
r ,aG0

r ,a , ~4!

ḡa
,5Ḡ0

r s̄a
,G0

a1Ḡ0
r s̄a

r G0
,1Ḡ0

,s̄a
aG0

a , ~5!

s̄a
r ,a,,5

q

v
@(0a

r ,a,,2 (̄0a
r ,a,,#. ~6!

In these equations,G0
,5G0

r S0
,G0

a is the equilibrium lesser
Green’s function andS0

,52 f @S r2Sa#[ i f G, where f is
the Fermi–Dirac distribution. Equation~5! is simply the gen-
eralization of the Langreth theorem while dealing with t
Dyson equation. The quantitys̄a

, in Eq. ~6! can be
rewritten20 as s̄a

,5( iq)@Ga f 2Ḡa f̄ #/v.
The earlier definitions of various quantities together w

Eq. ~1! give the necessary expressions for evaluation of
dynamic conductance of any mesoscopic conductor, and
formulation includes the contribution from electrodynamic
Furthermore, Eq.~1! is a general result: it is suitable fo
analyzing ac transport coefficients in general terms of
quencyv for systems far from equilibrium. In the rest of th
section, we briefly outline the numerical procedure which
used in this work to calculate the most essential quanti
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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r and S r . Once they are obtained, all expressions of

earlier formalism are then evaluated in a straightforwa
manner.

Following the tight-binding approach of Ref. 25, we di
cretize the waveguides of the inset of Fig. 2 using a
uniform mesh, in which hopping between nearest neigh
sites is considered. The effect of coupling the waveguide
semi-infinitely long leads is accounted for by introducing t
self-energyS r . The equilibrium retarded Green’s functio
G0

r is then calculated from its definition

G0
r 5@EI2Hc2( r #21, ~7!

whereHc is the tight-binding Hamiltonian of the scatterin
region. In our model~see inset of Fig. 2!, the leads are per
fect 2D wires which extend far away from the waveguides
is relatively easy to prove,25,26for this model of the lead, tha
the self-energyS r is just given by the Green’s function of
semi-infinite 2D pipe. For leadp, the self-energy is thus
given by26

(p
r ~ i , j !5t (

mPp
xm~pi !exp@ ikma#xm~pj !, ~8!

where i,j label lattice sites located inside the scattering
gion ~the waveguides of inset of Fig. 2! but adjacent to the
interface connecting to leadp. xm is the transverse wave
function of the leads of modem and for our model they are
simply sine functions;t denotes a coupling constant which
essentially given by the lattice constant.27 The sum is over all
states including evanescent states, out of which the pos
evanescent states~so thatikm,0! are used for convergence
After Sp

r is calculated, the total self-energy due to coupli
to all the leads is obtained byS r5SpSp

r .
In general,S r is a symmetric matrix with nonzero ele

ments at positions corresponding to the interface sites
tween a lead and the scattering region. Because evalua
G0

r from Eq. ~7! corresponds to the inversion of a matrix,
reasonable numbering scheme to the lattice sites is to m
mize the bandwidth of the matrix and thus reduce the
merical computation. For example, to obtain the narrow
bandwidth for the T-shaped waveguide we label each
sequentially along the transverse direction of a particu
probe. As a result, the self-energy due to this probe beco
a block diagonal matrix. All nonzero matrix elements corr
spond to the sites along the interface of the waveguide
the lead. For a T-shaped waveguide, the bandwidth of
self-energy matrix is about twice the number of discretiz
points along the transverse direction of the stub (2W).
Therefore, the longer the stub, the larger the bandwidth.

For completeness, we provide here all the relevant
tails of quantities for our calculation

\nn522at sin~kx,na!,

kx,na5cos21@~E2en,0!/~2t !11#,

xn~ j !5A 2

N11
sinS np j

N11D ,
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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1779J. Appl. Phys., Vol. 89, No. 3, 1 February 2001 Yip et al.
en,052tFcosS np

N11D21G ,
E52tFcos~kx,na!1cosS np

N11D22G , ~9!

wherea, vn andkx,n denote the tight-binding lattice constan
longitudinal velocity and longitudinal wave vector, respe
tively. en,0 andE, represent thenth band energy of the elec
trons in the leads and the total energy of the electrons res
tively. Finally, using the Green’s function one can al
calculate the dc conductance from the scattering matrs
through the discretized version of the Fisher–Lee relatio

snmqp52dnmqp1
i\Avnvm

a (
j Pq

(
i Pp

xn~ j !G0
r ~ j ,i !xm~ i !,

~10!

wheren,mare the propagating mode numbers of leadsq and
p, respectively.

Using the NEGF formalism and the numerical proc
dures outlined in this section, we calculated dynamic c
ductance for the electron waveguides of the inset of Fig.~2!
and the results are presented in the next section. F
hereon, we fix units using\5a52m51. In this system of
units, for a wire of widthW5500 Å and using effective
massm corresponding to GaAs,v51 corresponds to 3.4
31011Hz.

III. RESULTS

The dynamic conductanceGab(v) is a complex quan-
tity which has two components. Its real part, denoted asGR ,
characterizes the dissipative component, whereas the im
nary part, denotedGI , represents the nondissipative comp
nent. At small frequencies, one can expandGab(v) in terms
of v to obtain28 Gab(v)5Gab(0)2 ivEab1O(v2) where
Eab is called the emittance. In SMT,Eab has been analyze
in detail29 and it is found to be related to the local density
states characterizing the quantum scattering process.29 For
higher frequencies, which is the concern of this work, we
Eq. ~1! to predict dynamic conductance for a generalv.

G11(v) of the T-shaped waveguide at three different f
quencies is shown in Fig.~1! as a function of the scatterin
electron energy for the range corresponding to the first s
band, obtained from NEGF formalism outlined in the pre

FIG. 1. Dynamic conductance versus Fermi energy for a 2D T-sha
waveguide. The results are obtained by using the NEGF.
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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ous section. The upper three lines show the dissipative c
ponent GR , while the lower three lines represent th
nondissipative componentGI . The frequencies arev50.1,
1.0, and 2.0, from top to bottom, respectively. For the sm
est frequencyv50.1, GR[Re@G11(v)# is very close to the
dc conductance directly obtained from the scattering matr13

while GI is very small. This is reasonable because whenv
→0, we indeed expectGR;G11(0) while GI;2vE11.
Similar behavior is observed for both waveguides at smalv.

Since the waveguides are very transmissive, their
transmission coefficient is in general close to unity~for one
subband!. At a certain resonance point corresponding to q
sibound states we get complete reflection, correspondin
antiresonance.17,18The anti resonance behavior is clearly o
served in the curve ofGR in Fig. ~1! at frequencyv50.1, as
indicated by the minima ofGR . For most energies, the non
dissipative componentGI is positive, indicating an
inductive-like dynamic response of the system. However
is negative near the antiresonant points: for the range of
first subband energy there are three negative dips inGI ~see
Fig. 1!, showing a capacitive-like response at these energ
The capacitive behavior is consistent with the anti-reson
picture, e.g., at an antiresonance there is no dc conduc
thus the system behaves like a capacitor. The capacitive
behavior ofG11 is mainly due to the internal dynamic re
sponse which results from Coulomb interactions. As the f
quency v is increased, the dynamic conductance chan
significantly near antiresonance points, as shown in Fig. 1
particular, we note that the sharp minimum ofGR is smeared
out by v, indicating a decrease of dynamic resistance. A
other result is that whenv is increased, both inductive-like
and capacitive-like behavior are enhanced.

The behavior ofGR and GI as v is increased can be
qualitatively understood from a classical circuit model30

Due to both inductive and capacitive responses of th
waveguides, one can consider our system as an inducto
series with a parallel connection of a capacitor and a resis
For this classical circuit the dynamic conductance can
written30 in the following form up to second order in fre
quencyv:

G~v!5~1/R!2 iv@C2L/R2#1v2~L/R!@2C2L/R2#. ~11!

The linear term inv, which corresponds to the nondissip
tive part of dynamic conductanceGI , exhibits a competition
between two different dynamic responses. IfC.L/R2, the
response is capacitive-like with a negativeGI , and uGI u in-
creases linearly withv at small frequencies, which is consis
tent with Fig. 1. A similar argument forGI applies to the
inductive-like region whenC,L/R2. The transition from
capacitive-like to inductive-like behavior occurs whenC
5L/R2, when GI vanishes to second order inv. On the
other hand, the dissipative componentGR , near antiresonan
points, can increase or decrease withv2 depending on the
sign of the second-order term in Eq.~11!. Our data of Fig. 1
indicates an increase ofGR at antiresonance, hence, for th
waveguide the effective parameterC.L/(2R2). Note, how-
ever, that when the frequency is so large thatv3 or higher
order terms cannot be neglected, Eq.~11! breaks down.

d
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1780 J. Appl. Phys., Vol. 89, No. 3, 1 February 2001 Yip et al.
The depletion of antiresonances is clearly observed
Fig. 1, whereGR becomes nonzero as the frequencyv is
increased. Figure 2 depicts the dynamic conductance of
T-shaped waveguide as a function of frequencyv for energy
fixed at the first antiresonance,Er516.43 ~see Fig. 1!. The
solid and dotted curves represent the dissipative and non
sipative componentsGR andGI , respectively. Again, Fig. 2
showsGR;GI;0 nearv;0 due to antiresonance and
capacitive-like dynamic response. As the frequency
creases, electrons can absorb photons of energyv and
traverse the waveguide with a higher energy,Er1v. When
v;5, the electron energy,Er1v, is near the transmissio
plateau where transmission coefficientT'1, which gives the
electron a maximum dc conductance ofe2/h. The first peak
of GR in Fig. 2 indicates this. Up to this frequencyGI is
negative, indicating a capacitive-like response where cur
follows voltage in phase. As one increases frequency furt
Fig. 2 shows that transmission decreases and an induc
like response takes over in which voltage follows curre
This is because the probability of the photon-assisted pro
is inversely proportional to frequency. When the frequenc
nearv513, dynamic conductance reaches a minimum d
to the fact thatEr1v is close to the second antiresona
state. In general,GR decreases withv within the first sub-
band energy range. However, when the frequency is la
than v522, Er1v is greater than the second subba
threshold, hence, two conducting channels causeGR to in-
crease aroundv522 as shown in Fig. 2. The results of Fi
2 allow us to conclude that the dynamic response of elec
waveguides is dominated by photon-assisted transport.

It is interesting to numerically examine the two terms
dynamic conductanceGab(v) of Eq. ~1!. As discussed in
Ref. 20 there are two contributions to dynamic conductan
First, there is a contribution directly due to the external
perturbation, which is the first term on the right-hand side
Eq. ~1!; we denote this term byGext(v). Second, there is a
contribution from the internal dynamic response to the ex
nal ac field, which is the second term of Eq.~1!; we denote
this term byGint(v). BothGext(v) andGint(v) are complex
quantities. Importantly, we note thatGint(v) includes the

FIG. 2. Dynamic conductance vs frequency at a fixed energyE516.43 for
a 2D T-shaped waveguide. This figure also shows a comparison of dyn
conductance formulas: thick lines for Eq.~1! of NEGF; and thin lines for
Eq. ~12! of SMT. Inset: The geometry of 2D electron waveguides.
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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displacement current contribution to the dynamic cond
tance. In Fig. 3~a! we plot the real part ofGext(v) and
Gint(v), and in Fig. 3~b! their imaginary part, forv51.0.
The bold solid and dotted lines represent external and in
nal responses respectively. From Fig. 3~a!, which shows the
dissipative component~real part! of the dynamic conduc-
tance, we immediately conclude that external and inter
responses have very different behavior:GR

ext[Re@Gext(v)#
resembles the shape of the transmission curve~see Fig. 1!
with some small deviation near antiresonances; the beha
of GR

int[Re@Gint(v)# is very similar to that of electron dwel
time for this waveguides.13 This behavior is qualitatively un-
derstandable from the point of view that both internal
sponse and dwell time are related to the local density
states of the scattering region. Both Figs. 3~a! and 3~b! show
that the external and internal contributions compensate e
other in that the minimum of external contribution corr
sponds to the maximum of the internal contribution, a res
due to induction which seeks to oppose the external cha

For the L-shaped waveguide, the dynamic conducta
behaves in essentially the same manner as that of
T-shaped system, namely dominated by antiresonances
instance, Fig. 4 shows the results for the L-shaped struct
with Gab(v) versus Fermi energy for different frequencie

ic

FIG. 3. The external and internal contributions to dynamic conductance
a 2D T-shaped waveguide.~a! Re@G# and ~b! Im@G#.

FIG. 4. The dynamic conductance as a function of Fermi energy for
L-shaped waveguide. The results are obtained by using the NEGF. Her
upper three lines~solid, dashed, and dotted! show the real part of the dy-
namic conductance, while the lower three lines~thin solid, dashed, and
dotted! represent the imaginary part of the dynamic conductance withv
50.1, 1.0, and 2.0.
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IV. DISCUSSION AND SUMMARY

The calculation reported in the previous section was c
ried out by evaluating nonequilibrium Green’s functions a
using the NEGF dynamic theory.20 We point out that there is
another way to study dynamic conductance when a syste
near equilibrium. Büttiker, et al. have derived11 a formula
for dynamic conductance which, through the self-consist
evaluation of an internal potential response to the externa
perturbation, effectively included contributions from the d
placement current. Their approach is from the scattering
trix point of view and is also easily applicable to practic
calculations such as reported here. Their formula is
pressed as

gab
I 5gab~v!2

(ggag~v!(dgdb~v!

(gdggd~v!
, ~12!

where

gab~v!5
e2

h E dETr@1adab2sab
† ~E!sab~E1\v!#

3
f ~E!2 f ~E1\v!

\v
. ~13!

In this SMT equation, the external responsegab(v) due to
an ac field is defined as the response of the system for a fi
electrostatic potential.

Equation~12! can be easily evaluated if one has the sc
tering matrix sab . Near an antiresonant pointE5Er , the
scattering matrix for a symmetric system can be appro
mated by the Breit–Wigner formula:31 sab512dab

2 iG/2/(DE1 iG/2) whereDE5E2Er . From Eq.~12!, we
obtaing12

I [X11 iX2 with

X15
e2G

4h\v F4v

G
1arctanS DE1v

G/2 D2arctanS DE2v

G/2 D G ~14!

and

X25
e2G

8h\v
lnF ~DE1v!21~G/2!2

~DE!21~G/2!2

~DE2v!21~G/2!2

~DE!21~G/2!2 G .
~15!

In the present context of dynamic response of elect
waveguides, we have numerically confirmed that the two f
mula ~1! and~12! give qualitatively exact and quantitativel
very close results. In fact it can be verified straightforward
that the NEGF formulation and Eq.~1! reduce to Eq.~12! if
one neglects nonequilibrium quantities such asgr ,a ands r ,a.
Figure 2 shows a quantitative comparison ofGab as a func-
tion of v; the agreement is good. There have been deta
discussions of the formal relation between linear respo
theory ~such as SMT! and the NEGF theory.23,24 Figure 2
gives a direct numerical comparison for 2D waveguides
this regard. We have checked numerically that the devia
between the two approaches mainly comes from the im
nary parts of their external response.

To summarize, we have investigated the dynamic c
ductance of electron waveguides in general terms of the
frequencyv. We have applied the theoretical formalism
NEGF, which includes electrodynamic effects to calcul
Downloaded 06 Nov 2006 to 147.8.21.97. Redistribution subject to AIP
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Gab(v) such that it also includes contributions from th
displacement current. From the results, we conclude
variations ofGab(v) as a function of electron energy ar
dominated by antiresonances at small values ofv, but these
antiresonances are smeared out whenv increases. Since an
antiresonance is caused by a quasibound state, the beh
of Gab(v) suggests a way to experimentally probe qua
bound states in these open waveguides. By steadily var
an applied voltage through the connecting probes, one fi
quasibound states of that system measuring its capaci
like response: an abrupt change in its value shows the e
tence of a quasibound state. For the electron wavegu
studied here, it is the antiresonance which is responsible
a change of dynamic response from capacitive-like
inductive-like behavior and vice versa. Our results sh
clear evidence of photon-assisted transport asv is varied.
Essentially, an electron can absorb a photon thus sampli
higher energy band where transport behavior is differe
This process is indicated by the oscillatory behavior
Gab(v) as a function ofv at a fixed electron Fermi energy
One further interesting behavior is the fact that external a
internal contributions toGab(v) are always opposing eac
other: as one increases the other decreases. This is e
understood because the internal contribution is due to ind
tion caused by the external ac perturbation.
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