Presented at isaf-ecapd 2010, 9-12 August, Edimburgh 2010

## Thermal Evolution of Dielectric and Piezoelectric properties of Lead-Free Submicron-Structured (Bi<sub>0.5</sub>Na<sub>0.5</sub>)<sub>0.94</sub>Ba<sub>0.06</sub>TiO<sub>3</sub> Ceramics

Lorena Pardo<sup>1</sup>\*, Elisa Mercadelli<sup>2</sup>, Alvaro García<sup>1</sup>, Klaus Brebøl<sup>3</sup> and Carmen Galassi<sup>2</sup>

 <sup>1</sup> Instituto de Ciencia de Materiales de Madrid. Consejo Superior de Investigaciones Científicas (ICMM-CSIC). Cantoblanco. 28049- Madrid (Spain)
<sup>2</sup> National Research Council Institute of Science and Technology for Ceramics (CNR-ISTEC) via Granarolo 64. I-48018 Faenza (Italy)
<sup>3</sup>Limiel ApS. Langebæk. (Denmark)

\*E-mail address:lpardo@icmm.csic.es

## Abstract

The challenge to develop high piezoelectric sensitivity and lead-free compositions ferroelectric ceramics has bring new interest [1] to the study of some classical ferroelectrics as  $(Bi_{0.5}Na_{0.5})TiO_3$  [2] and its solid solutions. The composition near the MPB of the system (1-x)  $(Bi_{0.5}Na_{0.5})TiO_3$ -xBaTiO<sub>3</sub> with x=0.06 (BNBT6) was found to have interesting properties as lead-free piezoelectric ceramic [3]. Processing of ceramics from nanopowders allows getting fine grained, submicron structured, ceramics that are of interest both for the basic studies of size-effects in ferroelectrics and for their use as high frequency ultrasonic transducers. Submicron-structured BNBT6 ceramics, obtained from nanometric powder synthesized by sol gel auto-combustion at 500°C [4], by hot-pressing at low temperature (700-800°C) and subsequent recrystallization at higher temperature, still moderate (<1100°C), in order to reduce loss of the volatile elements, have been studied. Elastic and piezoelectric coefficients, as well as electromechanical coupling factors, were determined at the resonances of, thickness poled, thin disks and shear plates [5]. The best room temperature piezoelectric coefficient obtained in these BNBT6 fine-grained (~1µm) ceramics (d<sub>33</sub>=148 pC.N<sup>-1</sup>, d<sub>31</sub>= -37 pC.N<sup>-1</sup>,

 $d_{15}=158 \text{ pC.N}^{-1}$ ,  $k_t=40.4\%$ , kp=26.8% and  $k_{15}=40.2\%$ ) can be compared with those reported for coarse-grained ceramics prepared at higher sintering temperatures. The thermal evolution of the dielectric permittivity, piezoelectric coefficients and coupling factors has been also determined and compared with results reported for BNBT6 coarse grained ceramics [6], which showed a depolarization temperature of ~105°C.

[1] C.S. Tu, S.H. Huang, C.S. Ku, H.Y. Lee, R.R. Chien, V.H. Schmidt and h. Luo. "Phase coexistence and Mn-doping effect in lead-free ferroelectric Bi<sub>1/2</sub>Na<sub>1/2</sub>TiO<sub>3</sub> crystals". Appl. Phys. Lett. <u>96</u>, 062903 (2010)

[2] G.A.Smolenskii, V.A. Isupov, A.I. Agranovskaya and N.N. Krainik."New Ferroelectrics of Complex Composition IV". *Soviet Physics Solid State*, <u>2</u> (11), 2651 (1961).

[3] T. Takenaka, K.Maruyama and K. Sakata. "(Bi<sub>1/2</sub>Na<sub>1/2</sub>)TiO<sub>3</sub>-BaTiO<sub>3</sub> system for lead-free piezoelectric ceramics". *Jap. J. Appl. Phys.*, <u>30</u>(9B) 2236 (1991).

[4] E. Mercadelli, C. Galassi, A.L. Costa, S. Albonetti and A. Sanson. "Sol-gel combustion synthesis of BNBT powders". J. Sol-Gel Sci. and Technol. , <u>46</u>(1), 39 (2008).

[5] L. Pardo, A. Garcia, F. Montero De Espinosa and K. Brebøl. "Choosing the best geometries for the linear characterization of lossy piezoceramics: Study of the thickness poled shear plate". Appl. Phys. Lett., <u>92</u> (2008) 172907.

[6] D.Q. Xiao, L. Wu, J.G. Zhu. "Temperature stability of Lead-free Piezoelectric Ceramics of Perovskite  $Bi_{0.5}Na_{0.5}TiO_3$  and  $K_{0.5}Na_{0.5}NbO_3$  Families". 18th IEEE International Symposium on the Applications of Ferroelectrics (ISAF2009) 3-27 Aug. 2009. Xiam, China. DOI:10.1109/ISAF.2009.5307596



Fig. 1 Temperature dependence of  $\varepsilon_r$  and tan  $\delta$  of the poled BNBT6 ceramics at 1, 10, and 100 kHz respectively.



Fig. 3 Temperature dependence of  $k_p$  of BNBT6 and KNLNS2-5 ceramics.



Fig. 4 Annealing temperature dependence of  $d_{33}$  of BNBT6 and KNLNS2-5 ceramics.

Figures From : D.Q. Xiao, L. Wu, J.G. Zhu. "Temperature stability of Lead-free Piezoelectric Ceramics of Perovskite Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub> and K<sub>0.5</sub>NbO<sub>3</sub> Families". 18th IEEE International Symposium on the Applications of Ferroelectrics (ISAF2009) 3-27 Aug. 2009. Xiam, China. DOI:10.1109/ISAF.2009.5307596

From this work: the shape of the permittivity curve changes and, while piezoelectric properties are still high (see results reported in paper submitted to PAC journal), the depolarization temperature increases as the grain size decreases from sample recrystallised at 1050°C-2h to sample recrystallised at 1050°C-1h. For further decrease of the grain size, the temperature of depolarization remains similar but the piezoelectric properties are lower.



| Composition and                                     |   |                              |                     |                     |              |                        | BNBT6 <sup>2</sup> | BNBT6 <sup>3</sup>  | BNBT6 <sup>4</sup>  |
|-----------------------------------------------------|---|------------------------------|---------------------|---------------------|--------------|------------------------|--------------------|---------------------|---------------------|
| synthesis route                                     |   | BNBT6 sol-gel autocombustion |                     |                     |              |                        | mixed oxides       | mixed oxides        | mixed oxides        |
| Processing                                          |   | HP 700°C2h                   | HP 800°C2h          | HP 800°C2h          | HP800°C2h    | sintering <sup>1</sup> | Sintering          | sintering           |                     |
| conditions                                          |   | 1000°C 1h                    | 1000°C 1h           | 1050°C 1h           | 1050°C 2h    | 1100°C 2h              | 1150°C             | 1200°C              |                     |
|                                                     |   |                              |                     |                     |              |                        | 2h                 | 2h                  |                     |
| Grain size                                          |   | $<1\mu m$                    | $\sim 1 \mu m$      | $\sim 1 \mu m$      | ≥1µm         | $\geq 1 \mu m$         | >3µm               | >3µm                |                     |
| Poling conditions                                   |   | 40                           | 40-60               | 40-60               | i?           | <i>i</i> ?             |                    | 30                  | 30-40               |
|                                                     |   | kV.cm <sup>-1</sup>          | kV.cm <sup>-1</sup> | kV.cm <sup>-1</sup> |              | -                      |                    | kV.cm <sup>-1</sup> | kV.cm <sup>-1</sup> |
|                                                     |   | 180°C                        | 180°C               | 180°C               |              |                        |                    | 60°C                | 80°C                |
| $d_{33} (10^{-12} \text{C.N}^{-1})^*$               |   | 105                          | 143                 | 148                 | 167          | 125                    | 131                | 125                 | 122                 |
| $d_{31} (10^{-12} \text{ C.N}^{-1})$                | Р | -19.9+0.97i                  | -34.8 + 1.37i       | -37.0 + 1.33i       | -38          | -39                    | -36.8              | 40                  |                     |
| K <sub>p</sub> (%)                                  | Р | 13.6                         | 24.6                | 26.8                | 25.2         | 27.2                   | 26.5               | 20                  | 29                  |
| K <sub>t</sub> (%)                                  | Т | 29.5                         | 36.4                | 40.4                | 42.3         | 42.6                   | 50.4               | 52                  | 40                  |
| N <sub>p</sub> (kHz.mm)                             | Р | 2535                         | 2873                | 2933                | 2995         | 2953                   | 2937               | 2975                | 3000                |
| N <sub>t</sub> (kHz.mm)                             | Т | 1855                         | 2238                | 2281                | 2274         | 2409                   | 2293               | 2600                | 2522                |
| $\epsilon_{33}^{T}$                                 | Р | 465-24i                      | 636 – 34i           | 641 – 31i           | 775 (1kHz)   | 698 (1kHz)             | 648 (1kHz)         | 580 (1kHz)          | 601 (1kHz)          |
| tan δ                                               | Р | 0.052                        | 0.054               | 0.048               | 0.036 (1kHz) | 0.030 (1kHz)           | 0.023 (1kHz)       | 0.013 (1kHz)        | 0.018(1kHz)         |
| $s_{11}^{E} (10^{-12} \text{ m}^{2} \text{N}^{-1})$ | Р | 14.3 - 0.20 i                | 9.57 - 0.09i        | 9.73 – 0.07i        | 8.96         | 9.23                   | 9.01               | 8.59                |                     |
| $s_{12}^{E}(10^{-12} \text{ m}^{2} \text{N}^{-1})$  | Р | -3.89 + 0.05 i               | -2.90 + 0.03i       | -3.02 + 0.02i       | -2.31        | -2.69                  | -2.31              |                     |                     |

1 Mercadelli JSG 2 Mercadelli PAC 3 Takenaka 4 Chu \*Berlincourt-meter