

Synthesis and properties of new geopolymeric foams

E. Papa ^{a,c}, V. Medri ^a, E. Landi ^a, J. Dedececk ^b, P. Benito ^c and A. Vaccari ^c

a National Research Council - Institute of Science and Technology for Ceramics (CNR-ISTEC),

via Granarolo 64, 48018 FAENZA RA, Italy

b J. Heyrovsky Institute of Physical Chemistry ASCR,

Dolejskova 2155/3, 18223 PRAGUE 8, Czech Republic

c Dipartimento di Chimica Industriale e dei Materiali – ALMA MATER STUDIORUM Università di Bologna,

Viale Risorgimento 4, 40136 BOLOGNA, Italy

What are Geopolymers? Alkali-bonded inorganic polymers

The reaction of a solid aluminosilicate with a <u>highly concentrated aqueous alkali hydroxide or</u> <u>silicate solution</u> produces a synthetic amorphous to semi-crystalline alkali aluminosilicate material called "GEOPOLYMER"

The word "Geo" implies that these materials mimic natural minerals (ex. clay)

These synthetic materials can be considered INORGANIC POLYMERS because they are made of long chain molecules of alumino-silicates

The geopolymers are designated as poly(sialate), an abbreviation for poly(silico-oxo-aluminate) or (- Si-O-Al-O -)n (with n degree of polymerization).

The sialate network consists of SiO_4 and AlO_4^- tetrahedra linked in an alternating sequence by sharing all of the interstitial oxygens.

Positive ions (Na⁺, K⁺, Li⁺, Ca⁺⁺, Ba⁺⁺, NH₄⁺ and H₃O⁺) must be present in the framework cavities to balance the negative charge of Al³⁺ in IV-fold co-ordination.

Aim of the work

Consolidation of ceramic-like materials, geopolymeric resins and foams, with tailored porosity in the nano-ultramacro range,

in the view of potential applications (catalysis, thermal insulation, filtration..).

Variation of K-PSS intrinsic porosity by water dilution

Variation of K-PSS intrinsic porosity by water dilution

H ₂ O:K ₂ O	Porosity* %	Mean pore diameter* µm	S _{BET} m²/g	Vp cm³/g
10	29.2	0.01	40	0.168
13.5	35.6	0.03	40	0.245
23	56.2	0.54	16	0.078

Design of intrinsic nano-micro porosity:				
Filtering				
Heat exchanger and passive cooling				
Catalysis (ionic exchange of M ⁿ⁺)				

*by Hg intrusion porosimetry

Inorganic in situ foam formation

Gas evolution leads to foamed architectures when the viscosity of the slurry contemporary increases and the material consequently consolidates.

Redox reaction with H₂ evolution

- $Si^0 \rightarrow Si^{4+} + 4e^-$ (1)
- $4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-$ (2)
- $4H_2O + Si_0 \rightarrow 2H_2\uparrow + Si(OH)_4$ (3)

Water consuming and exothermic reaction ΔH = -314 kJ/mol at 25°C

Study of the foaming in situ conditions to obtain fully reacted structures with tailored ultra-macro porosity.

Si⁰ addition effects

Sample F13 (H₂O:K₂O=13.5) added with increasing amounts of metallic Si and treated with different curing temperatures

Si⁰ addition effects

Sample F23 ($H_2O:K_2O=23$): high dilution and high content of Si⁰ make the structure collapse.

Microstructural characterization

Best method to produce geopolymeric foams

1mm

Geopolymerization degree and accessibility of the geopolymer inner volume

Samples	Geopolymerization degree (%)	NH4 ⁺ exchange capacity (%)	
G10	98	28	
G13	98 26		
G23	98	28	
F13-0.04%Si	97	27	
F23-0.03%Si	97	26	
F13-1.15%Si-RT	64 9		
F13-1.15%Si-80°C	63	7	

Geopolymerization degree and

accessibility of the geopolymer inner volume

Negligible presence of octahedral and penta-coordinated AI atoms, significant for metakaolin clearly evidence complete transformation of metakaolin to the geopolymer

Textural analysis

Porosimetric and surface analyses

Samples	Porosity (%)	Average pore diameter (μm)	S _{BET} (m²/g)	V _p (cm³/g)
G10	29.2	0.01	40	0.168
G13	35.6	0.03	40	0.245
G23	56.2	0.54	16	0.078
F13-0.04%Si	37.1	0.03	50	0.243
F23-0.03%Si	33.7	0.03	98	0.480
F13-1.15%Si-RT	33.8	98.06	1	0.005
F13-1.15%Si-80°C	32.4	95.96	1	0.005

Thermal properties

Thermal properties

Conclusion

• Metallic silicon is used as inorganic foaming agent exploiting its ability in reacting in alkaline aqueous medium evolving H_2 gas.

• Both the intrinsic and induced porosity depend on the water availability in the geopolymer composition, because hydrolysis step during geopolymerization and silicon reaction are both water consuming processes.

• The experimental findings highlighted the versatility of the foams that may be properly designed as a function of the possible application. The obtained porosity range are suitable for producing catalysis supports, filters and thermal insulators.

Work in progress

Porosity < 50%, nm-

2µm

- Catalysis [P.Sazar]
- Evaporators and heat exchangers
- Ionic chromatography [MacKenzie et al. 2012]

Porosity <70%, nm-mm, geop100%:

- Catalysis [P. Sazama et al., 2011]
- Biomedical: drug delivery and bone replacement

Porosity >70%, µm-mm, geop <70%: ■ Thermal insulation