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ABSTRACT 

 
While economic models of strategic interaction among autonomous decision-makers are usually 
based upon principles of optimisation, this work focuses on “satisfying” decision procedures. A 
flexible simulator of oligopolistic economic environment, where autonomous decision-makers 
evolve their decision procedures using a learning and adaptation process, has been built. Each 
artificial agent is implemented using a feedforward neural network. The unsupervised learning of 
the agent is obtained using genetic algorithms which evolve the structure and weights of the neural 
network during simulations. The obtained results show that as the complexity of the environment 
overwhelms the cognitive abilities of the agents, decision procedures emerge that are at the same 
time simple robust and “satisfying”. 
 

1. ECONOMIC FRAMEWORK OF THE SIMULATION: BOUNDED RATIONALITY 
THEORY AND RULE-BASED BEHAVIOURS 

 
The main purpose of this study has been to develop suitable modelling techniques for a 

“satisfying” approach to the strategic environment of oligopolistic markets. 
Usually the framework of the researches of such economic environments, is made up by the 

game theory and the general equilibrium theory. Both theories deal with the problem of the final 
state of the system and the existence of equilibria. The processes which lead to equilibria and in 
general the dynamic aspects of the system are not analysed in deep. 

Further limits of this theoretic framework can be examined with regard to the hypothesis 
assumed upon the decision makers, actors of the strategic interactions (see Hodgson (1988)).  

Probably the hard-core hypothesis of the rational theory is represented by the maximisation 
one. It states that the economic agents operate consciously by basing on some environment variables 
to maximise a goal variable like the expected utility. Models based upon this assumption can hardly 
account for some behaviours of agents observed in real economic interaction systems, that we 
reproduced with our simulations. Bounded rationality theory introduced by Simon, which states that 
the agents have goals expressed in terms of a minimum to reach offers a better framework to 
account for the observations (Newell and Simon (1972)). 
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Another hypothesis that rational theory usually assumes is that the information available to the 
agents is complete. Each agent knows his own decision alternatives and preferences, the ones of the 
opponents and their being rational, the payout matrix, the environment and so on. In our simulations 
agents have limited information about the environment and do not know the strategies of the rivals, 
thus they have to create a representation of them by observing their reactions to their actions. 

Another hypothesis usually assumed is that of the unlimited cognitive abilities of the agents. 
Each agent is able to get the best from the information obtained from the environment, having 
unlimited computation capacities. In our simulations we implement agents that have limited 
computation capacity. In fact our aim, in the positive theories spirit, is to make models which have a 
“weak isomorphism” with real economic systems, so that the evolution of simulated systems is for 
some aspect similar to the real ones (Dosi (1994)). 

To conclude this theoretic justification of our simulation we observe that assuming the strong 
hypothesis said, even in the weaker form of the “as if” of Friedman (Friedman (1953)), means to 
have incomplete theoretic instruments to account for some economic behaviour. For these reasons 
we believe that using the bounded rationality theory along with the rational decision theory to 
explain and to model situations that not fit the last one. In this sense one of the aims of our work has 
been to show that when the complexity of the environment reaches a level too high for the agents 
limited cognitive capacities, agents can’t behave rationally but have to adopt some decision 
procedure simple enough to compute and robust enough to lead to a satisfying level of outcome in 
several different environmental situations.  

The basic idea that lies behind our artificial agents (Nelson and Winter (1982) and Holland et 
al. (1986)) is that economic agents face decision problems not by maximising a sort of function, but 
by adopting rules of action that have shown to provide a good outcome in the past experience. In 
particular a rule is a procedure that links a precise action to a particular state of the world, or, better, 
to the agent’s representation of it. When the agent gets some information about the environment, he 
creates a representation of it and reacts by choosing the use of the procedure that was most 
profitable in similar situations. 

While acting in the environment, the agent undergoes a learning process. He has other 
procedures along with the one that he uses, we can call them “different hypothesis on the world”, 
that he tests during the action. If the agent realizes that one of this hypothesis would have provided a 
better outcome if used instead of the procedure effectively applied, this becomes the procedure that 
he will use the next time. New rules are generated by mixing the best old rules, when for a while no 
one of the “hypothesis on the world” succeed to substitute the rule applied. This kind of learning is a 
typically evolutionary one. The mechanism that leads the agent to learn how to face the environment 
by developing good procedures is in essence a genetic algorithm (Holland (1975)). 

 
2. ARTIFICIAL INTELLIGENCE TOOLS USED FOR THE SIMULATOR 

 
At this point we analyse how we simulated an agent using some artificial intelligence tools. 

The model of agent we will explain can be used in any simulated decision context where the agent’s 
learning process can be realised with several proofs and errors, and the success can be quantified 
each time. In the next paragraph we will introduce the particular environment where we have used 
our agents, the monopolistic and oligopolistic markets. Our efforts have concentrated on solving the 
well known problem of simulations in positive economics: to create decision makers that learn 
through unsupervised processes, and that do this while acting in the environment. These are the 
necessary conditions to create simulated systems that have at least a “weak isomorphism” with the 



 

 

real systems. After reaching this minimum condition we can hope that the behaviours of the 
artificial agent and systems created are similar for some aspects to the real ones. 

Each rule of one agent is implemented by a classic feedforward neural network made of three 
layers: input layer, hidden layer, output layer. The net gets standardized between -1 and +1 
quantitative information from the environment through the input layer, then it makes an internal 
representation of environment using the hidden neurons states, and finally it decides a particular 
action by activating the output neurons. Hidden and Output units have sigmoidal transfer functions, 
and the input units are simply signal repeaters (Pessa (1993) and Pessa Penna (1994)). 

Each rule/network is coded by a matrix using the following criterion: 
 

 I 1 I 2 I 3 I 4 I 5 O 1 O 2 O 3 
1° hidden 95 470 937 -439 26 996 -625 65 
2° hidden -735 380 385 698 -889 -362 452 -597 

 
Each line is made by the weights connected with one particular hidden unit. The first group of 

weights of a line connects the input units to the hidden unit, the last group weights connects the 
hidden unit to the output units.  

At the beginning of the simulation the rules of each agent (weights of the nets) are randomly 
generated. Then every rule is tested with the environment to get a number that synthesizes its 
fitness. This is done by sending the inputs to the net, by getting its output(s) and by getting the 
answer of the environment. The number that synthesise the fitness of the test is cumulated over time 
as tests follow, thus cumulated fitness is gained for each rule. On every period/test each agent uses 
the rule that has gained the highest cumulated fitness until then. The opponent have to use their best 
rules and test their hypothesis on the world, against that rule. The fitness is multiplied by a 
coefficient (around 0.98) that is the inverse of the number of existing connections. This has been 
done to make the nets prune “parasite connections” that would make their interpretations difficult. 

After a certain testing time during which a precise rule has the highest cumulated fitness and 
therefore is used, the agent substitutes his hypotheses on the world because they have shown not to 
be competitive with the rule applied. This is done through a genetic algorithm mechanism. 

Each rule has a “DNA” made by the sequence of the net weights (the sequence of the matrix 
lines shown before). The new rules are generated from the old best ones in two ways. The first way 
consists in taking one old rule and applying some mutations. The second consists in taking two old 
rules, generating two new rules by mixing the old by crossing-over, and applying some mutations. 
The crossing-over never splits any group of weights corresponding to one hidden unit (one matrix 
line). This ensures that the rules are mixed by taking the whole subnets corresponding to one single 
hidden unit, this facilitating the finding of complex high performance schemata (Holland (1975)). 

Mutations are of two types. The first type randomly creates or destroys connections between 
units, the second makes little variations on some randomly chosen existing connections. In other 
words the first kind of mutation changes the structure of the net, the second one reproduces the fine 
tuning of weights usually obtained in the nets learning process through algorithms like back-
propagation (in our case the process used is a random walk). 

In the first simulations every agent had the goal of increasing the profit. This was made by 
selecting the networks according to the profit produced. The system we obtained was very unstable: 
one agent became soon monopolist by fixing price under the ones of others, even if the selection of 
networks was done over several periods (long run profit). For this reason we have introduced a 
mechanism of multiple goals based on a threshold principle (Simon (1974)). A threshold is fixed for 
each goal. In each period in which the reproduction of networks is done, the effective value of each 
goal is compared with the threshold and the difference, after being divided by a dimension index, is 



 

 

transformed using a sigmoidal function for a further standardization. The goal with the lower 
standardized value is the goal used by the agent in the following interactions. 

The simulator allows to change several parameters like the following ones: the number of 
hidden units of nets, the member of tests after which hypothesis are changed if always the same rule 
is used, the number of agents, the number of rules generated from one old rule and by crossing-over, 
the different mutations probabilities and entities, the parameters of multiple goals mechanism, the 
economic parameters as the level and elasticity of demand, the elasticity of market, the fixed and the 
variable costs. 

 
3. SIMULATIONS OF OLIGOPOLISTIC MARKETS 

 
In order to test the capabilities of our model, we started to simulate a monopolistic market. 

The economic environment considered was the classic one, except that the monopolist did not know 
the curve of demand. The intercept of demand and the variable unitary cost (constant) had a random 
variation of +-20% and +-30% respectively at each time. The variables known by the agent were: 
the fixed cost (CF), the variable unitary cost of present (CV) and past period (CV-1), the quantity 
produced (Q-1) and the price fixed (P-1) in the precedent period, the variation of profit in the last 
two periods (dPro). The decision variable was the price (P). The results have been the following 
ones. Given the economic parameters, the structure of the nets tends to converge to a precise one, 
for example the next one (the blanks are missing connections): 

 
 CF CV CV-1 Q-1 P-1 dPro P 

1°hidd.  +630  +403 
2°hidd.  +383  +257 
3°hidd.    
4°hidd.    

 
This simple structure is enough to yield a very good performance (demand is unknown): 

 
 
 
 
 
 
 
 
 
 

What is important is that our agent tends to show the ability to “understand” that the 
informations relevant for him are the ones about the costs, and that the other informations about the 
past are not important. This behaviour can be inferred by looking at the net structure shown before, 
namely to which columns the existing connections correspond. Another interesting result is that the 
agent reaches a good performance using a little amount of its cognitive potential. A further 
theoretically important consideration is that the agent fixes the price with the rule of mark-up given 
that the demand is unknown for him. 

We consider now the oligopolistic markets. We suppose a linear global market demand, 
unknown for the agents, which varies randomly at every period. Every agent has a certain amount of 
fixed costs and unitary costs which are constant for each production unit but randomly variable in 
every period. Every agent has to fix the price in each period. Then the market price is calculated on 
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unitary 

Optimal  
decision

Agent  
decision



 

 

the base of the old market shares and the present agents’ market shares are changed proportionally 
to the ratio between the average market price and the fixed price.  

The information given to every agent are the ones seen for monopolist plus the following: 
prices of each agent (Px-1), average market price (PM-1), aggregate demanded quantity (QM-1), 
own market share (S-1) and its variation (dS). The following graphs show the results of a 2000 
interactions simulation with three agents. The first one shows the variable unitary cost (equal for 
every agent) and the prices fixed by the three agents in the last interactions: the mark-up rule has 
emerged as a profitable and robust rule. The second graph shows the market shares during the whole 
simulation: the multiple-goal mechanism makes the system stable enough. The nets structure 
mutations were stopped after 400 interactions to obtain a more gradual learning rate after an initial 
phase of environment exploration. 
 
 
 
 
 
 
 
 
 
 
 

The results are also confirmed by the structures of networks emerged during the simulation. 
The following table shows for example the structure of the last rule used by the third agent: 

 
 CF CV CV-1 P1-1 P2-1 PM-1 QM-1 P-1 S-1 dS dPro P 

1° hidden   -500 +453   +589
2° hidden  +472  -103 +74 -727 +690 +327
3° hidden  +77 -298 +446   

 
The results so far obtained confirm the theory stated at the beginning: the more the 

environment is complex, the more the agents tend to concentrate on important information. 
Moreover the experience we have had suggests that the researches carried on by the neuronal nets 
theory provide very interesting instruments to build economic models concerning with the decision 
theory, since they allow to study (within the limit of realism of models) in experimentally controlled 
situations the relationships between the system and the psychological aspects of agents. 
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