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Abstract 

This work presents a modular neural-network model 
(based on reinforcement-learning actor-critic methods) 
that tries to capture some of the most-relevant known 
aspects of the role that basal ganglia play in learning and 
selecting motor behavior related to different goals. In 
particular some simulations with the model show that 
basal ganglia selects "chunks" of behaviour whose 
"details" are specified by direct sensory-motor pathways, 
and how emergent modularity can help to deal with 
multiple behavioral tasks. A "top-down" approach is 
adopted. The starting point is the adaptive interaction of 
a (simulated) organism with the environment, and its 
capacity to learn. Then an attempt is made to implement 
these functions with neural architectures and 
mechanisms that have a neuroanatomical and 
neurophysiological empirical foundation. 

Introduction, Methodology, Empirical 
Evidence Addressed 

What is the role that basal ganglia play in mammals' 
sensory-motor behaviour? When organisms have 
different needs/goals, sometimes they have to associate 
slightly different behaviours to the same perception 
patterns, some other times they have to associate 
completely different behaviours to them. This work 
presents some simulations that suggest that in the 
former case the differences are dealt with within the 
same sensory-motor pathway (implemented by a neural 
module) while in the later cases different sensory-motor 
pathways are selected. In fact if the behavioral response 
to associate to a given perception were different with 
different needs/goals, using the same neural synapses/ 
pathways would only cause interference. In this context 
basal ganglia could play a role in selecting different 
sensory-motor pathways when necessary. 

This work follows a "top-down" approach, where the 
starting point is organisms' behaviour and learning 
processes (cf. Meyer & Guillot, 1990). On this purpose 
it presents a simulation of an organism that has different 
needs (signals coming from the body and indicating a 
physiological unbalance, cf. Rolls, 1999) or, 
alternatively, different goals (desired states of body-
world) associated to different positions in the 
environment (for example we can assume that these 
different positions are occupied by resources that satisfy 
different needs). The organism learns through classical 

and instrumental learning (Lieberman, 1993; in 
Baldassarre & Parisi, 2000, these two learning 
mechanisms are integrated in a comprehensive actor-
critic model. Cf. Barto, 1995, and Sutton & Barto, 
1998, for this model) to navigate in the environment in 
order to reach those positions. Given this behaviour as a 
starting point, the work attempts to yield it by building 
a neural-network controller that satisfies (some of) the 
constraints coming from the known empirical evidence 
about basal ganglia. Since the starting point of this 
approach is to simulate sophisticated organisms' 
behaviours, sometimes there is no empirical data 
suggesting which mechanisms underlie them. In these 
cases some computational solutions are adopted that do 
not have a known empirical correspondent (they will be 
appealed as "arbitrary" in the rest of the paper). These 
solutions should be considered as a useful theoretical 
exercise, eventually suggesting interesting ideas to the 
empirical investigation, and should not be judged too 
severely on the basis of the neural evidence. 

The anatomical and physiological evidence 
specifically addressed in this work is now illustrated. 
Chevalier & Deniau (1990) propose that a double-
inhibition mechanism is the basic process of basal 
ganglia's functioning. They report that in some 
experiments where monkeys have to carry out a delayed 
saccade to a remembered target, some striatal cells 
(usually mute) are induced to fire with local injection of 
glutammate. The striatal discharge inhibits (via 
GABAergic connections) a group of cells in the 
substantia nigra pars reticulata (usually tonically active) 
that release from (GABAergic) inhibition a subset of 
cells of the superior colliculus responsible for the 
saccade. In the case of skeletal movements the double 
inhibition releasing mechanism is implemented by the 
striatum-globus pallidus-thalamus pathway. The authors 
report that while in rodents this mechanism is sufficient 
to trigger movements, in the reported experiments the 
execution of a saccade requires temporal coincidence of 
basal ganglia disinhibition with command signals from 
other sources. This aspect is present in the model: basal 
ganglia select a particular sensory-motor pathway that 
then yields the detailed behavioral output. 

Graybiel (1998), addressing the role that the basal 
ganglia's neural modules play in human slow habit 
learning and animal stimulus response association, 
draws an abstract parallel between the striatum's 
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anatomical organization in partly interconnected zones, 
called "matrisomes", and the modular architecture of 
the neural networks of Jacobs et al. (1991). As we shall 
see, the computational model presented here proposes a 
possible way to specify such parallel. 

Houk, Adams, & Barto (1995) suggest a possible 
correspondence between the actor-critic models' 
architecture and functioning (Barto, 1995; Sutton & 
Barto, 1998) and the architecture of the basal ganglia. 
In particular they propose that the circumscribed 
regions called "striosomes" (differently from 
matrisomes, they are identifiable for their chemical 
make-up and output connectivity) may implement the 
function of the critic (predicting future rewards and 
yielding a step-by-step reward signal in cases of 
delayed rewards) and the surrounding "matrix" regions 
may implement the function of the actor (selecting 
actions or, as in the model presented here, sensory-
motor pathways). As we shall see, the actor-critic 
model is at the base of the model presented here. 

Lots of other aspects of these contributions have been 
incorporated in the model, and will be presented in 
detail in the next section. The numerous brain-imaging 
studies of basal ganglia's role in sequence learning are 
not directly addressed in this paper (see Graybiel, 1998, 
for some references). 

Scenario and Model of Basal Ganglia 
The environment used in the simulations is a square 
arena with sides measuring 1 unit (Figure 1). The 
organism cannot see the boundaries of the arena and 
cannot exit it. Inside the arena there are 5 circular 
landmarks/obstacles that the organism can see with a 
one-dimension horizontal retina covering 360 degrees 
with 50 contiguous sensor units. Each unit gets an 
activation of 1 if a landmark is in its scope, of 0 
otherwise. The signals coming from the retina are 
aligned with the magnetic north through a compass. 
Before being sent to the controller, these signals are re-
mapped into 100 binary units representing the image 
"contrasts". Two contiguous retinal units activate one 
contrast unit if they are respectively on and off, another 
contrast unit if they are respectively off and on, no 
contrast units if they are both on or both off (cf. Figure 
1). At each cycle of the simulation the organism selects 
one of eight actions, each consisting in a 0.05 step in 
one of eight directions aligned with the magnetic north 
(north, northeast, east, etc.). The outcome of these 
actions is affected by a Gaussian noise (0 mean, 0.01 
variance). The organism's task is to reach one of the 
three goal positions showed in Figure 1. 

Figure 2 illustrates the main features of the 
organism's controller and the possible brain areas and 
nuclei corresponding to the model's components. Now a 
computational description of the controller is given, and 
its possible links to the mammal brain's neural 

structures are illustrated (notice that the units used in 
the model sometimes represent whole neural assemblies 
and at other times single units). 

The matcher is a (arbitrary) hand-designed network 
responsible for generating an internal reward signal r by 
detecting the similarity between the goal and the current 
input contrasts (a goal is the contrasts' pattern at that 
goal position). When these patterns have at least 94% of 
bits with same value, the matcher returns 1 otherwise it 
returns 0. It is assumed that some memory process, not 
simulated in the model, evokes the goal patterns (when 
a goal is reached, another goal is evoked that is 
randomly chosen between the three goals). In real 
brains, goal patterns may be generated within frontal 
areas (e.g. by the frontal eye fields in the case of 
saccades) and recognition could take place here or in 
the sensory areas themselves (cf. Kosslyn, 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: (Top) the scenario of the simulations 
containing three goals (marked with x), five landmarks 

(black circles), the scope of the organism's 50 visual 
sensors (delimited by the rays), and the organism (white 
circle at origin of rays). (Bottom) the activation of the 
visual sensors, its re-mapping into contrasts, and the 

bottom left goal (contrast pattern). 
 
There is an alternative way to view this part of the 

model. Animals are endowed with innate neural 
structures that take input from the environment and map 
it into a "reward" or "punishment" internal signal. This 
usually happens when some states of the environment 
are achieved that are relevant for adaptation, for 
example some food is ingested or the body is hurt 
(primary reinforcements). Notice that these signals are 
produced only if a correspondent appetitive need (e.g. 
hunger) is present (Rolls, 1999). In the model the 
presence of a certain need could be thought of as 
corresponding to an arbitrary pattern (the "goal") 
coming from the body, while the signal relevant for 
adaptation is the signal coming from the sensors (e.g. 



 

 

from the sensors in the mouth that detect the ingestion 
of food). In this case the matcher would yield a 
rewarding signal when a need and the corresponding 
satisfying input pattern are present together (in this case 
the matcher would correspond to limbic structures, cf. 
Rolls, 1999). In both cases the matcher's signal arrives 
to the substantia nigra pars compacta and ventral 
tegmental area, capable of generating a dopaminergic 
signal that triggers learning. 

The actor, with the 6 "expert" networks (6 different 
input areas - thalamus - frontal areas pathways), 
implements the organism's "action-selection policy". 
Each expert is a two-layer feed-forward neural network 
that gets the goal and the visual contrasts as input, and 
has 8 sigmoidal output units that locally encode the 
actions (the experts may correspond to thalamus' neural 
assemblies: here the details of the model are quite 
arbitrary). To select one action, the activation mk 
(interpretable as "action merit") of the output units is 

sent to the frontal areas where a stochastic winner-take-
all competition takes place (cf. Hanes & Schall, 1996, 
on this possibility). The execution of one action has to 
be thought of involving the activation of a particular 
muscle template. The probability P[.] that a given 
action ak becomes the winning action aw (to execute) is 
given by: P[ak = aw] = mk / ∑f mf.. The role of the basal 
ganglia is to select an expert which, in its turn, has to 
select the actions to be executed through the mechanism 
of double inhibition illustrated previously involving the 
matrix of the striatum and the globus pallidus. This is 
done with another winner-take-all competition 
analogous to the previous one, but this time involving 
the experts instead of the actions (could this mechanism 
correspond to the bistable behaviour of the striatum 
spiny cells?). Notice that the basal ganglia can only 
release the proper expert from inhibition, but cannot 
trigger an action directly. 
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implementation of what is suggested in Houk et al., 
1995: different striosomes may be specialized in 
dealing with different behavioral tasks. As we shall see, 
this is obtained as an emergent feature of the model). 
The last component of the critic (subthalamic loop, 
substantia nigra pars compacta and ventral tegmental 
area) is a neural implementation of the computation of 
the "temporal-difference error" e defined as: et = (rt+1 + 
γ V'π[st+1]) - V'π[st] (Houk et al., 1995). Each critic's 
expert has a specific error defined as: ekt = (rt+1 + γ 
V'π[st+1]) - vk[st]. These error signals correspond to the 
dopaminergic signals and are at the base of the learning 
processes of the actor and critic. 

Each critic's expert is trained on the basis of the 
expert's dopaminergic error signal that assumes the role 
of error in the estimation of V'π[st] in a supervised 
learning algorithm. The weights of the experts are 
updated so that their estimation vk[st] tends to be closer 
to the target value (rt+1+ γ V'π[st+1]). This target is a 
more precise evaluation of st because it is expressed at 
time t+1 on the basis of the observed rt+1 and the new 
estimation V'π[st+1]. The formula (a modified Widrow-
Hoff rule, cf. Widrow & Hoff, 1960) to update the 
weights of each expert is: ∆wki = η ekt yi hk where wki is 
a weight of the expert, η is a learning rate (set to 0.01 in 
the simulations) and yi is the activation of the goal and 
contrast units. hk (absent in the Widrow-Hoff rule) is 
the (updated) contribution of the expert k to the global 
answer V'π[st], and is defined as: hk = gk ck / Σf [gf cf], 
where ck is a measure of the "correctness" of the expert 
k defined as: ck = exp[-0.5 ekt

2]. The gating network 
weights zki are updated to increase the weight in 
yielding V'π[st] of the experts who had low errors: ∆zki 
= ξ (hk - gk) yi where ξ is a learning rate set to 0.1 in the 
simulations. This algorithm leads the experts to 
specialize in the different regions of the goal-contrast 
space. Notice that ξ is higher than η. This has been 
found to be a necessary condition for the controller to 
work. With ξ = 0.01 the experts did not specialize and 
interference between different goals prevented learning. 

The actor is trained according to the dopaminergic 
signal et. In this case this signal is interpreted as the 
actor's capacity to select actions that bring the organism 
to new states with an evaluation higher than the average 
evaluation experienced previously departing from that 
same state. The updating of the action merits of the 
selected expert (and only this) is done by updating the 
weights of the neural unit corresponding to the selected 
action aw (and only this) as follows: ∆wwi = ζ et (4 mw 
(1 - mw)) yi. ζ is a learning rate (0.01) and (4 mw (1 - 
mw)) is the derivative of the sigmoid function multiplied 
by 4 to homogenize the size of the learning rates of the 
actor and the linear critic. The model's dopaminergic 
signal affecting the sensory-motor pathways may 
correspond to the real brain dopaminergic signal 

targeting the frontal areas downstream the thalamus. 
For simplicity in the model these dopamine-sensitive 
areas have been designed upstream the thalamus. The 
weights of the winning gating network's unit are 
updated in the same way used for the experts' merits 
(learning rate 0.01). 

The learning mechanism of the critic and the actor 
differ because in the later case it is not possible to have 
a teaching pattern to implement a supervised learning 
algorithm (as in the former case). The stochastic nature 
of the actor is necessary to produce new behaviours that 
are then strengthened or weakened according to their 
outcome in terms of rewards. At the beginning of the 
simulations the weights of the critic and actor (only 
those affected by the dopamine) are randomized in the 
interval [-0.001, +0.001]. This implies that the 
evaluations expressed by the linear critic are around 0, 
and the merits (probabilities) expressed by the 
"sigmoidal" actor (stochastic selector) are around 0.5 
(0.125). This implies that initially, the organism's 
behaviour is a random walk. Then the critic and the 
actor are trained simultaneously (policy iteration): the 
evaluator learns to evaluate the states of the world on 
the basis of the actor's action-selection policy, and the 
actor improves the policy by increasing the probabilities 
of those actions that yield an evaluation higher than the 
expected one (cf. Sutton & Barto, 1998). 

Simulations, Results, Interpretations 
As mentioned, the task of the organism is to reach one 
of the three goal positions shown in Figure 1. When a 
goal is reached a new one (randomly chosen between 
the three goals) is assigned to the organism and this has 
to reach it from its current position. Figure 3 shows the 
organism's learning curve in terms of number of steps 
taken to reach a goal (mobile average for 100 successes, 
average for 10 random seeds). The performance 
improves from about 1000 to about 30 steps. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The learning curve of the organism. Y-axis: 
cycles per success. X-axis: cumulated cycles. 

 
Figure 4 presents some data about how the neural-

network controller of one of the 10 simulations has self-
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organized during learning (the other random seeds have 
produced results with analogous quality). Concerning 
the critic, we see that each goal is dealt with by a 
different expert (in each possible position of the arena 
the weight of this expert in determining the evaluation 
is over 0.99. The second column of Figure 4 shows the 
resulting gradient field of the evaluations for the three 
goals). This probably means that the positions in the 
arena need to receive a different evaluation for the three 
different goals, so that using the same weights (same 

expert) would only cause negative interference. This 
also means that the connections from the (contrast) 
input pattern to the critic's gating network are 
redundant. The fact that different parts of the striosomes 
specialize for different goals as in the model, is an 
interesting hypothesis that has not yet been verified 
empirically. Notice that the controller is capable of not 
using some of the resources available (expert 1, 3, 4). 
These resources could be used for other goals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Data about the self-organization of the controller during learning (1 out of 10 random seeds). The three 

rows of graphs are relative to the three different goals. The first column reports the expert that is used by the critic 
for the particular goal (only 1 expert per goal). The second column of graphs reports the gradient field of evaluations 
V'π[st] yielded by the critic in 400 different positions (corresponding to the 20×20 cells of the grid). The area of the 

white (positive evaluations) and black (negative evaluations) cells is proportional to the evaluation yielded. The third 
column of graphs reports the order number of the actor's expert with highest probability of being selected (for the 
same 400 positions of the previous column). The last column of graphs reports the histograms that summarize the 

frequencies of the experts illustrated in the previous column.  
 
With regard to the actor, Figure 4 shows that the 

specialization of the experts is much less pronounced. 
In particular the graphs of the third and fourth column 
of the Figure 4 show that while pursuing a goal the 
actor uses different experts in different position in the 
arena. The histograms report the frequency of use of the 
different experts for the different goals. Clearly the 
controller tends to use different experts when dealing 
with different goals, but now (differently from what is 
observed in the critic) the visual input plays an 
important role. An interesting fact coming out from the 
third and fourth column of Figure 4 is that the same 
experts are being used for different goals (e.g. expert 1 

for goal 1 and 3). Further investigation should show if 
this different use of the experts in the critic and in the 
actor are due to the differences in the role they play or 
if it is due to the difference between the algorithms 
employed (supervised learning and stochastic 
unsupervised learning; cf. Calabretta et al., 1998, on the 
evolutionary emergence of modular networks' function 
through genetic algorithms). Notice that in the actor, as 
in the case of the critic, there is a partial use of the 
resources available (marginal role of expert 3, 4, and 5). 

The exploration of some parameters and simulation 
conditions has shown some limits of the controller. Too 
high learning rates (especially for the critic) produce 
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instability, while too low rates produce slow learning. 
The system is also quite sensitive to the "aliasing" 
problem (this is the problem that occurs when there are 
states of the world that appear to be the same or very 
similar, cf. Whitehead & Ballard, 1991). In particular if 
there are positions that are similar to the goal positions, 
the organism tends to waste time searching on them 
(this happens because they will tend to have a high 
evaluation). With more goals some problems also 
occur: with some random seeds the same critic's expert 
is used for more than one goal. This produces a gradient 
field with more than one peak. This causes the 
organism to pursue the positions corresponding to these 
peaks at the same time so that the behaviour results to 
be dithering. 

Conclusion 
This work has presented a computational model that 
attempts to summarize in a coherent picture some of the 
most relevant properties of basal ganglia regarding 
motor behaviour. An attempt has been made to design a 
model that on one side is capable of controlling an 
organism in a non-trivial behavioral task, and on the 
other side is based on architectures and mechanisms 
possibly grounded on the empirical evidence about the 
anatomy and physiology of basal ganglia. The model 
has shown that the role of the striosomes in the striatum 
might be that of producing an evaluation of the 
expected future rewards, and to build a dopaminergic 
signal corresponding to previously neutral input 
patterns on the basis of some primary reinforcers. The 
dopaminergic signal is used to learn to express the 
evaluations themselves on the basis of a supervised 
learning algorithm. The simulations have shown that 
the modularity of the striosomes is used to deal with 
different behavioral tasks the organism meets during its 
life. The model has also shown that the role of the 
matrix in the striatum might be that of learning to 
generate stochastic variants of behaviour, eventually 
consolidated on the basis of the dopaminergic signal. 
Here the role of the basal ganglia's double-inhibition 
mechanism is not that of directly triggering particular 
patterns of behaviour, but that of releasing from 
inhibition sensory-motor pathways that then yield a 
particular behaviour suitably related to the current goals 
and percepts. 
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