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Abstract 
This paper focuses on two planning neural-network 
controllers, a "forward planner" and a "bidirectional 
planner". These have been developed within the 
framework of Sutton's Dyna-PI architectures (planning 
within reinforcement learning) and have already been 
presented in previous papers. The novelty of this paper 
is that the architecture of these planners is made 
modular in some of its components in order to deal with 
catastrophic interference. The controllers are tested 
through a simulated robot engaged in an asynchronous 
multi-goal path-planning problem that should 
exacerbate the interference problems. The results show 
that: (a) the modular planners can cope with multi-goal 
problems allowing generalisation but avoiding 
interference; (b) when dealing with multi-goal problems 
the planners keeps the advantages shown previously for 
one-goal problems vs. sheer reinforcement learning; (c) 
the superiority of the bidirectional planner vs. the 
forward planner is confirmed for the multi-goal task. 
 
 
1. Introduction 
This paper focuses on a simulated robot (Figure 1) 
engaged in a stochastic shortest-path problem [3]. In 
this kind of problem the robot has to find the shortest 
(e.g. in terms of number of states visited) path from a 
start state to a goal state in a stochastic world. 
Reinforcement-learning algorithms [13] are capable of 
finding an action policy by using a trial-and-error 
strategy directly implemented in the world. When a 
model of the world is available, stochastic dynamic 
programming methods are capable of generating action 
policies by using the model. The policies are then 
executed in the real world, hence implementing a form 
of planning. Stochastic dynamic programming methods 
are based on the generation of a gradient field of 
"evaluations" associated with the states of the problem 
and creating an action policy that ascends the gradient 
field towards the goal state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Top: the scenario of the simulations 
containing three goals (north-west, east, and south-west, 

marked with x), a start (white square), five landmarks 
(black circles), the scope of the organism's 50 visual 
sensors (delimited by the rays), and the robot (white 

circle at origin of rays). Bottom: the pattern of the visual 
sensors, its re-mapping into contrasts, and an example 

of goal (contrast pattern, for the south west goal). 

 
Sutton [12] has integrated planning based on dynamic 
programming and reinforcement learning into a class of 
architectures called "Dyna architectures" (from 
"dynamic programming"). The basic idea of Dyna 
architectures is to have a reinforcement learning 
architecture that is trained both in the real world and 
through a model of the world used to generate 
"simulated" extra experience. 
Baldassarre [2] has proposed two planning controllers 
inspired to Dyna-PI architectures, a Dyna architecture 
based on actor-critic reinforcement-learning methods 
[13] ("PI" stands for "policy iteration", see later). Actor-
critic methods use two memory structures: one to store 



the evaluation function and the other one to store the 
action policy. The algorithms proposed in [2] are 
capable of operating in "reinforcement learning mode" 
or "planning mode". While planning the algorithms 
execute a sequence of forward "explorations" from the 
current state (forward planner) or both forward from the 
current state and backward from the goal (bidirectional 
planner) within the model of the world. During these 
explorations the state evaluations and the action policy 
are updated. The action probabilities are used to build a 
measure of the robot's "confidence", and to switch 
between acting and planning mode. 
Baldassarre [1] has proposed a modularised version of 
the basic neural-network actor-critic architecture 
capable of coping with multiple goals assigned to the 
robot asynchronously (the robot has to pursue different 
goals in different times). In particular the critic is 
modularised on the basis of the "mixture of experts" 
neural network model [6] (suitably adapted to cope with 
the reinforcement learning evaluation problem) and the 
actor is modularised on the basis of a novel hierarchical 
architecture. The simulations with this architecture 
showed that it is capable of copying with potential 
catastrophic interference caused by the multi-goal task. 
This is a crucial issue for the scalability of neural 
architectures. Catastrophic interference is the well-
known phenomenon that affects neural networks: 
experience learned by dealing with a particular 
goal/problem is easily disrupted by the experience 
learned by dealing with another goal/problem [11]. The 
architecture proposed in [1] copes with catastrophic 
interference through "emergent functional modularity" 
(the structure of the modules is hardwired, but their 
function is emergent, cf. [4]). 
The novelty of this paper is that the planning 
architectures of [2] are integrated with the modular 
architecture proposed in [1], and that the performance of 
the reinforcement learning and the two planners is tested 
and compared with an asynchronous multiple-goal task. 
This task highlights whether controllers are affected by 
catastrophic interference because different goals are 
pursued at different times. The test is important because 
catastrophic interference is expected to have a stronger 
effect on the neural planning controllers proposed in [2] 
than on the reactive controller. In fact while planning 
the planning controllers execute a long deep updating of 
the weights to reach one particular goal before passing 
to another goal. This was expected to worsen the 
negative effects of catastrophic interference (cf. [11]). 
In particular, the simulations run with the multi-goal 
task have verified if and why: (a) the modular neural 
planners are capable of copying with interference; (b) 
the neural planners outperform the (corresponding) 
reactive controllers; (c) the bidirectional planner 
outperforms the forward planner in terms of planning 
and acting cycles needed to achieve the goals. 
Section 2 presents the scenario of the simulations and 
the reinforcement learning and planning algorithms. 
Section 3 illustrates the results of the simulations, their 

interpretation, and the drawbacks of the controllers. 
Finally section 4 summarises the results and discuss if 
the possible application of the algorithms to real robots. 
 
 
2. Scenario of Simulations and Controllers 
This section illustrates the simulation scenario used to 
test the controllers, and the reactive and planning neural 
components of the architectures. The planning 
components are illustrated in two different subsections 
to highlight the differences between the forward and the 
bidirectional planners. 
 
Simulated Scenario and Robot 
The scenario is shown in Figure 1. It is a square arena 
with sides measuring 1 unit, inside of which there are 5 
circular landmarks/obstacles. 
The robot can see the landmarks with a one-dimension 
horizontal retina of 360 degrees. The retina is made up 
of 50 units (vector x). Each unit xi activates with 1 if a 
landmark is in its scope, with 0 otherwise, and is 
affected by noise (0.01 probability of flipping). The 
signals coming from the retina are always aligned with 
the magnetic north through a "compass" affected by 
Gaussian noise (0 mean, 1 degree variance). Before 
being sent to the controller, these signals are re-mapped 
into a vector y of 100 binary units representing the 
image "contrasts". Two contiguous retinal units activate 
(with 1) one contrast unit yj if they are respectively on 
and off, another contrast unit if they are respectively off 
and on, no contrast units if they are both on or both off 
(cf. Figure 1). This re-mapping implements an 
expansion of the input space that allows the controller to 
work properly with simple two-layer networks in the 
scenario considered here. Notice that the robot has a 
limited perception of the world's current state. This can 
raise difficulties not directly dealt with here (cf. [5] on 
"partially observable Markov decision problems"). 
At each cycle of the simulation the robot has to select 
one of eight actions, each consisting of a 0.05 step in 
one of eight directions aligned with the magnetic north 
(north, north-east, etc.). The outcome of these actions is 
affected by Gaussian noise (0 mean, 0.01 variance). If 
the robot moves against the arena's boundaries or the 
obstacles, it bounces back. 
The robot's task is to reach three different goal positions 
in the arena. At the beginning of the simulation the 
robot is set at the start position and has to reach the east 
goal. Then each time the robot reaches a goal, one of the 
other two goals is assigned to it at random until the 
simulation stops. 
Figure 2 shows both the reinforcement learning and the 
planning components of the robot's neural controller. 
Now these are analyzed in detail. 
 
Reinforcement learning 
This part of the model is slightly different from the 
actor-critic models, implemented with neural networks, 
proposed in [13]. In general terms, the actor yields a 



stochastic action-selection policy, and the evaluator 
evaluates the states of the world in terms of expected 
future rewards achievable with the current actor's 
policy. The evaluator improves the quality of its 
evaluations by experiencing the rewards through a 
supervised learning algorithm, while the actor improves 
the action-selection policy by increasing the 
probabilities of actions that cause the robot to ascend 
the gradient field of evaluations (policy iteration). 
Now the single reinforcement-learning components are 
analysed. The "matcher" is a hand-designed neural 
network whose role is to internally generate the reward 
signal rt. The matcher yields 1 as output when the goal 
and the input (contrasts) share more than 94% of bits 
with the same values, and 0 otherwise (cf. [2] for 
details). Notice that while planning the matcher plays 
the role of the model of the world concerning rewards. 
The "actor", a modular network composed of 6 "expert" 
networks and 1 "gating network", implements the 
robot's action-selection policy. Each expert is a two-

layer feed-forward neural network that gets goal and 
visual contrasts as input, and has 8 sigmoidal output 
units that locally encode the actions. To select one 
action, the activation ml (interpretable as "action merit") 
of the output units is sent to a stochastic selector where 
a stochastic "winner-takes-all competition" takes place. 
The probability P that a given action al becomes the 
winning action aw (to execute) is given by: 

P[al = aw] = ml  / ∑f mf (1) 
This formula has been chosen over the more popular, 
but also more complex, softmax formula [13] because it 
led to similar results. The role of the gating network is 
to select an expert that, in its turn, selects the actions to 
be executed. This is done with another "winner-takes-all 
competition" analogous to the previous one, but this 
time involving the experts instead of the actions (it is 
based on the "experts' merit", i.e. the activation uk of the 
gating-network output units). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The controller of the robot. Networks with a bold, thin and dashed border implement reinforcement 
learning, forward planning, and backward planning respectively. Arcs and arrows indicate forward and backward 

connections that "copy" a pattern from one layer to another. The four and five spike stars indicate the channels 
respectively set open and close by the action-planning controller when acting (vice versa when planning). Dashed 

arrays indicate the learning signal used to update the weights of the evaluator, actor and back-actor. 

The "evaluator" (which together with the TD-critic 
makes up the "critic") is a "mixture of experts network" 
composed of 6 experts and 1 "gating network", suitably 
modified to cope with the reinforcement-learning 
evaluation problem. See [6] for the details of this 
architecture, and for the mathematical justification of 
the training algorithm described later. Each expert is a 
two-layer feed-forward neural network that gets goal 
and visual contrasts as input. With its linear output unit, 
the evaluator yields the estimation V'π[yt] of the correct 
evaluation Vπ[yt] of the current state yt (contrast 
pattern). Vπ[yt] is defined as the expected discounted 
sum of all future reinforcements r, given yt and the 
current action-selection policy π expressed by the actor: 

Vπ[yt] = E[γ 0 rt+1 +γ 1 rt+2 +γ 2 rt+3 + …] (2) 

where γ ∈ (0, 1) is a "discount factor", set to 0.95 in the 
simulations, and E is the mean operator. In order to 
compute V'π[yt] the output of the experts is weighted 
and summed: 

V'π[yt] = Σk[vk gk] (3) 
where vk is the output of the expert k, and the weight gk 
is computed as the "softmax activation function" of the 
activation of the output units ok of the gating network: 

gk = exp[ok] / Σf[exp[of]]    where: Σk gk = 1 (4) 
The "TD-critic" is a neural implementation of the 
computation of the "temporal-difference error" et 
("learning signal" in Figure 2) defined as [13]: 

et = (rt+1 + γ V'π[yt+1]) - V'π[yt] (5) 
Each evaluator's expert has a specific error defined as: 

ekt = (rt+1 + γ V'π[yt+1]) - vk[yt] (6) 
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Each evaluator's expert is trained on the basis of the 
expert's learning signal, which assumes the role of error 
(in the estimation of V'π[yt]) in a supervised learning 
algorithm. The weights of the experts are updated so 
that their estimation vk[yt] tends to be closer to the target 
value (rt+1+ γ V'π[yt+1]). This target is a more precise 
evaluation of yt because it is expressed at time t+1 on 
the basis of the observed rt+1 and the new estimation 
V'π[yt+1]. The formula (a modified Widrow-Hoff rule 
[15]) used to update the weights of each expert is: 

∆wkj = η ekt yj hk (7) 
where η is a learning rate (set to 0.02), wkj is a weight of 
the expert k, and yj is the activation of the goal and 
contrast units at time t (evaluator's input). hk (absent in 
the Widrow-Hoff rule) is the "updated" contribution of 
the expert to the global answer V'π[st], and is defined as: 

hk = gk ck / Σf[gf cf]         where: Σk hk = 1 (8) 
where ck is a measure of the "correctness" of the expert k 
defined as: 

ck = exp[-0.5 ekt
2] (9) 

The gating network weights zkj are updated to increase 
the weight gk of the experts that had low error: 

∆zkj = ξ (hk - gk) yj (10) 
where ξ is a learning rate set to 0.2 in the simulations. 
This algorithm causes the experts to specialise in the 
different regions of the goal-contrast space ([6] for 
details). Notice that ξ is higher than η. This has been 
found to be a necessary condition for the controller to 
work. With ξ = η = 0.02 the experts did not specialise 
and interference between different goals prevented the 
convergence of the algorithm. 
The actor is trained according to the TD-critic's learning 
signal et. Here this signal is a measure of the actor's 
capacity to select actions that bring the robot to new 
states with an evaluation higher than the average 
evaluation experienced previously departing from that 
same state. The updating of the action merit of the 
"winning expert" (and only this) is done by changing the 
weights of the neural unit corresponding to the selected 
action aw (and only this) as follows: 

∆wwj = ζ et (4 mw (1 - mw)) yj (11) 
where ζ is a learning rate, set to 0.02 in the simulations, 
and (4 mw (1 - mw)) is the derivative of the sigmoidal 
function multiplied by 4 to homogenise the size of the 
learning rates of the actor and the (linear) evaluator. The 
weights of the gating network (only those of the 
winning expert's unit) are updated by using the merit uw 
and error et (ζ = 0.02): 

∆wwj = ζ et (4 uw (1 - uw)) yj (12) 
At the beginning of the simulation the weights of the 
evaluator and actor are randomised in [-0.001, +0.001], 
so the evaluations expressed by the evaluator's linear 
output unit are around 0, and the merits (probabilities) 
expressed by the actor (stochastic selector) are around 
0.5 (0.125). This implies that initially the robot explores 
the environment randomly, and then it starts to shape 
the evaluations on the basis of the rewards, and the 
probabilities on the basis of the evaluations. 

Forward Planner 
The components added to the reactive-learning model to 
obtain the forward planner are now explained. The 
"predictor" (robot's "model of the world") is composed 
of 8 feed-forward two-layer networks ("experts") with 
sigmoid output units, each corresponding to one action. 
Each expert takes yt as input, and is specialized to 
predict the following sensors' activation xt+1 if the action 
corresponding to it is executed (each sigmoid unit's 
output is squashed to 0 if below 0.5, to 1 if above). A 
hand-designed selector chooses the expert 
corresponding to the selected action to yield the output 
of the predictor itself. The experts are trained while the 
robot navigates randomly in the environment for 
200,000 cycles (this brings the mean square error per 
unit to about 0.24). This training is done before the 
robot faces the task. At each cycle the contrast pattern yt 
and the input pattern xt+1, observed after the execution 
of one action are respectively used as input and teaching 
output to train the expert corresponding to the action 
with a Widow-Hoff rule [15] (cf. [8] and [9]). Notice 
that, because of its architecture, the predictor yields 
deterministic predictions that tend to be the average of 
the xt+1 observed after each yt. This is a simplification 
given that a correct model of the stochastic world 
should yield stochastic predictions. 
The "action-planning controller" is a hand-designed 
algorithm (Figure 3) that controls the flow of 
information among the different components of the 
whole system when the robot is acting and planning 
forward and backward. Notice that the forward planner 
is obtained by setting the variable "OnlyForward-
Planning" (Figure 3) to "TRUE", while the bidirectional 
planner is obtained by setting it to "FALSE". Now the 
forward planner is explained. 
The forward planner can be in either planning or acting 
mode. The action-planning controller decides the robot's 
mode on the basis of its "confidence" (the highest of the 
actions' probabilities). If the confidence is above a 
threshold the robot acts in the world and the predictor is 
not used, otherwise it is used, together with the matcher, 
to simulate experience. While planning the threshold 
slowly decreases (cf. variable "Decay") so that the robot 
changes position after some time spent planning. This 
prevents the robot from getting stuck in places where it 
does not succeed to become "confident" enough. When 
acting the threshold is increased up to a maximum (cf. 
variables "MaxConfThresh" and "Gain", Figure 3). 
When the robot is forward planning the actor and critic 
function and learn in the same way they do when acting 
in the real world. In particular, in a cycle of planning 
these events take place: the matcher, the actor, and the 
critic take the signal from the sensors/contrasts activated 
by the predictor (or from the world if it is the first step 
of a "simulated walk", see later) as input; the matcher 
returns the reward signal, the evaluator returns the 
evaluation of the input pattern, the TD-Critic returns the 
error e, and the actor (stochastic selector) yields the 
actions' merits (probabilities) on the basis of which 



action is selected; the selected action and the input 
pattern are sent to the predictor, which in turn yields the 
predicted input using the network corresponding to the 
action. At this point a new cycle can take place, yielding 
a new reward, a new evaluation, and a new error e; this 
new error is used to train the actor and critic to evaluate 
and act in correspondence to the old input pattern. 
IF(NewGoalHasBeenAssigned) 
  MaxStepsPlan := 1; 
  ConfThresh := MaxConfThresh; 
  ForwardPlanning := TRUE; 
  StepPlan := 0; 
  Planning := TRUE; 
IF(InputOutputRealWorld) 
  IF(Confidence < ConfThresh) 
    Planning := TRUE;  
  ELSE 
    {Planning := FALSE; ConfThresh := 
      MIN(MaxConfThresh, ConfThresh + Gain);} 
IF(Planning) 
  InputOutputRealWorld := FALSE; 
  StepPlan++; 
  ConfThresh := ConfThresh - Decay; 
  IF(ForwardPlanning) 
    IF(GoalReached OR StepPlan = MaxStepsPlan) 
      IF(StepPlan = MaxStepsPlan) 
        MaxStepsPlan++; 
      ELSE 
        {MaxStepsPlan := 
          MIN(MaxStepsPlan, StepPlan * 2);} 
      ForwardPlanning := FALSE; 
      ForwardSteps := StepPlan; 
      GoalAsInput := TRUE; 
      StepPlan := 0; 
      IF(OnlyForwardPlanning) 
        ForwardPlanning:= TRUE; 
        GoalAsInput := FALSE; 
        InputOutputRealWorld := TRUE; 
  ELSE 
    GoalAsInput := FALSE; 
    IF(StepPlan = ForwardSteps) 
      ForwardPlanning := TRUE; 
      InputOutputRealWorld := TRUE; 
      StepPlan := 0; 

Figure 3: Pseudo-code of the planning-acting controller 
algorithm (executed at each cycle after the actor's 

activation). Assignment operator: ":="; 1 unit increment 
operator: "++". The parameters are set as follows: 

Decay = 0.000001, Gain = 0.01, MaxConfThresh = 0.15 
 

Given a goal, if in forward planning mode the robot 
executes several planning cycles in a sequence. Each 
sequence is a sort of "simulated walk" that starts from 
the current input pattern, continues through a succession 
of states (predictions yielded by the predictor), and 
terminates either when the goal is reached or when the 
sequence is longer than a certain number of steps 
(MaxStepsPlan). This number is increased if the 
simulated walk fails to reach the goal (similarly to an 
"iterative-deepening search" [7]). When success is 
achieved, the number is decreased to focus exploration 
around the start and goal. 
 
Bidirectional Planner 
The bidirectional planner generates simulated walks 
alternatively forward from the current input and 
backward from the goal. The length of each backward 
walk is the same as the forward walk (the algorithm 
resembles a "bidirectional iterative-deepening search" 

[7]). Forward walks are executed as in the forward 
planner. Backward walks are executed through the 
"back-predictor" and "back-actor". 
The back-predictor is a network with the same 
architecture as the predictor. While the predictor is 
trained to produce the association yt, at → xt+1, the back-
predictor is trained to produce the association xt, at-1 → 
yt-1 (time indexes used backward) i.e. to 
remember/guess what the situation was that brought the 
robot to the current situation after executing a particular 
action. Notice that each predictor's expert and back-
predictor's expert corresponding to a particular action 
could be integrated in one bidirectional network 
associating xt ↔ xt+1 under action at. 
The back-actor has the same architecture as the actor, 
and is used to generate actions for the simulated 
backward walks (the at-1 of the association xt, at-1 → yt-

1). Before the tests described later the back-actor 
weights are randomly drawn from the interval [-0.001, 
+0.001], so initially it selects actions at random. During 
a back walk cycle that derives yt-1 from yt the merit of 
the action selected is updated according to the same 
formula used for the actor and with the usual error of 
equation (5). Notice that this training induces the back-
actor to generate actions that lead to states with the 
lowest possible evaluation V'π[yt-1], i.e. states far from 
the goal and visited few times. During the backward 
walks the actor and evaluator are also updated (using et). 
In particular after each cycle the actor yields the actions' 
merit in correspondence to yt-1, and then its weights are 
updated in correspondence to those merits and the 
action at-1 selected by the back-actor. During forward 
planning and acting, the back-actor is also trained by 
using et. To this purpose after each forward cycle the 
back-actor yields the actions' merit in correspondence to 
yt+1, and then its weights are updated in correspondence 
to those merits and the action at selected by the actor 
with yt. The overall functioning of the backward planner 
can be summarised as follows. With training the back-
actor learns to yield backward walks that "escape" from 
the goal in "straight" lines, hence creating a big area of 
positive evaluations around the goal. This area is 
"easily" found by the actor's forward walks that, as a 
consequence, progressively expand the area itself 
toward the start. At the same time the actor becomes 
competent in the whole area where positive evaluations 
diffuse. Cf. [2] for a deeper analysis of these algorithms 
and their applicability limitations. 
 
 
3. Results, Interpretations, and Limits of the 
Controllers 
The reinforcement learning, forward planner and 
bidirectional planner have been tested with the multi-
goal task described in the previous section. 10 
simulations with different random seeds were run for 
each algorithm for a sequence of 2000 achievements of 
the goals. For all the three conditions 7 out of 10 
simulations were successful. In these simulations the 



critic used three different experts to encode the three 
different evaluation gradient fields corresponding to the 
three goals (in each position the evaluator had a 
probability above 99% of selecting the same expert). 
Figure 4 shows the gradient fields relative to 2 goals (1 
of the 7 successful seeds). 
 
 
 
 
 
 
 
 
 

Figure 4: Evaluation gradient fields for two of the three 
goals (north-west and east goal). For each goal the robot 

was set in 20×20 different positions of the arena, and 
the evaluator's output for that position was measured. 
Each white square of the graph is drawn in a position 
corresponding to the position in the arena where the 
evaluation was measured. The area of each square is 
proportional to the evaluation level. Empty squares 
correspond to the landmarks. The gradient fields are 

higher in correspondence to the goals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Actor's expert with maximum probability in 
20×20 positions of the arena in correspondence to the 

north-west goal (the position of the goal is marked with 
a square). The small numbers indicate the expert with 
the highest probability in the position occupied by the 

number itself. The big numbers summarise the 
frequencies of use of the 6 experts in the whole arena. 

 
The 3 simulations that failed did so because the critic 
employed the same expert to yield the evaluations 
related to two different goals. As a consequence the 
evaluation gradient field had two peaks, the actor was 
trained to go to both peaks, and the resulting behaviour 
was dithering. This fact shows that in the task 
considered here the specialisation of the evaluator's 

experts for the different goals is crucial for the correct 
functioning of the architecture (cf. [1]) 
In the 7 successful simulations, the actor learned to 
reach the goals in few steps from any point of the arena 
(see Figure 6, explained later). The function of the actor 
does not seem to require a precise specialisation as in 
the case of the evaluator: more than one expert is used 
to achieve one goal, and the same expert is used to 
achieve many goals. For example Figure 5 shows which 
actor's expert has the highest probability of being 
selected in 400 positions of the arena for the north-west 
goal. Clearly different areas of the arena tend to cause 
the activation of different experts (cf. [1] and [4]). To 
summarise, the emergent functionality of the modules 
within the critic and the actor (strong in the former and 
partial in the later) allow all the three controllers to cope 
successfully with the asynchronous multi-goal task, 
keeping the interference problems under control. 
For each simulation the number of cycles per success 
(achievement of the assigned goal) was measured for 
each reached goal and then plotted against the 
cumulated cycles. Figure 6 shows this measure for the 
three algorithms (averaged over the 7 successful random 
seeds). Several relevant facts become apparent from 
these simulations, and confirm the results previously 
obtained with single goal tasks (cf. [1] and [2]). The 
comparison between the performance of planning vs. 
sheer reinforcement learning shows that planning allows 
the robot to reach the goals with improved efficiency 
from the very first time each goal is assigned to the 
robot (cf. Table 1; see later for the reason because the 
second goal is reached with more steps than the first 
goal). Moreover in all the three cases when the robot 
pursues the same goal several times the performance 
improves (cf. again Figure 6). This happens because the 
information collected through planning and real 
experience merges suitably and incrementally in the 
weights of the evaluator and actor. This is a typical 
strength of the Dyna architectures [12]. 
 

Table 1: Number of cycles taken by the three 
algorithms to reach the first and second goal the first 

time it is assigned (averaged over 20 seeds). 
 Reinforcement 

learning 
Forward 
planner 

Bidirectional 
planner 

1st goal 719 286 199 
2nd goal 1407 420 297 

 
With regards to the comparison of the forward planner 
and the bidirectional planner, Figure 6 shows that before 
convergence the bidirectional planner outperforms the 
forward planner in terms of cycles taken to reach the 
goals. One reason for this is that the forward planner 
spends more cycles planning than the bidirectional 
planner (see later) and that while planning the robot 
executes some actions (cf. algorithm in Figure 3). 
Another possible reason is that the bidirectional planner 
focuses exploration and learning not only around the 
current position (as in the case of the forward planner), 
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but also around the goal. Direct observation of the 
robot's behaviour has shown that this area, where the 
robot has to move to the specific position corresponding 
to the goal, is a particularly difficult part of the task 
(consider that when the robot is very far from the goal, 
about 50% of the moves take it towards the goal, while 
when very close to the goal only 12.5% i.e. 1 in 8 
moves take it to the goal). So when the robot is 
confident enough at the current state and starts to act, its 
actual competence for the area near the goal is higher in 
the case of the backward planner than in the case of the 
forward planner. Further investigation should verify this 
explanation and check if this result holds for problem 
domains different from navigation. 
Figure 7 shows the number of planning cycles per 
success taken by the two planning algorithms for the 
first 36 goals reached (averaged over 24 successful 
seeds out of 32: many simulations were run to control 
noise). A relevant result is that the planning cycles fall 
close to 0 when the robot experiences the same goals 
several times. The explanation of this result is that when 
the same goal is encountered several times, the 
"confidence" associated with it increases over the 
confidence threshold, so that planning is no longer 
required and the goal is achieved reactively. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Performance of the three algorithms (average 
over 7 random seeds per algorithm). Y-axis: number of 
cycles per success (forward moving average over 20 

successes). X-axis: successes. 

 
Figure 7 also shows that the bidirectional planner 
outperforms the forward planner in terms of number of 
cycles spent planning before reaching the goals. This is 
caused by three factors. The first depends on the way 
the two algorithms explore the model of the world. The 
forward planner spends a lot of time searching for the 
goal unsuccessfully given that the search is a random 
walk, while the bidirectional planner "finds" the goal as 
soon as it starts to plan. So contrary to the bidirectional 
planner, the forward planner wastes a lot of planning 
cycles before starting to update the evaluations and, 
consequently, update the action policy (cf. [14]). The 
second factor is that the bidirectional planner is more 
efficient in propagating the evaluations backward from 
the goal to the other states than the forward planner is. 
In fact it updates the evaluation of each state on the 

basis of the evaluation of a state that has just been 
updated (cf. [2]). 
The third factor involves the multi-goal nature of the 
task. After enough confidence is gained and the first 
goal is reached, the action probabilities are quite biased 
in favour of that goal. When the goal changes, half 
actor's input pattern is changed according to the new 
goal (cf. Figure 2). Given that the experts are not yet 
specialised for the different goals and that in general the 
actor is responding to the second goal mostly with the 
same weights used for the first goal, the actions' 
probabilities are still quite biased in favour of the first 
goal. This implies that the random walk used to explore 
the model of the world is biased away from the second 
goal. Figure 7 shows that the forward planner spends 
nearly a double number of cycles planning to reach the 
second goal than to reach the first goal, while the 
bidirectional planner only spends few cycles more. In 
fact the bidirectional planner "forces" the search around 
the newly assigned goal. This leads the evaluations, and 
hence the action probabilities, to change according to 
the new goal until enough confidence is gained. 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Cycles spent planning by the forward and 
bidirectional planners before achieving the goals, for the 

first 36 successes. Average over 24 seeds. 

 
Limits of the Controllers 
These encouraging results about the planning algorithms 
are weakened by some drawbacks. The forward planner 
and even more so the bidirectional planner have a quite 
complex architecture and are composed of 
heterogeneous neural networks. The functioning of both 
algorithms relies on the possibility of building a 
sufficiently reliable model of the world. Moreover, 
contrary to reinforcement learning, the planning 
algorithms need to explore the world before attempting 
to solve the tasks in order to acquire such model. 
Backward planning relies on the possibility of training 
the back-actor to "guess" what action could have led to 
a particular state: it is not clear if this is possible within 
problem domains different from navigation. In 8 seeds 
out of 32 the experts of the modular evaluator fail to 
specialise, while this specialisation seems necessary to 
solve the multi-goal task. 
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4. Summary and Conclusion 
This paper has tested two neural planners presented 
previously, with a simulated robot engaged in a new 
multi-goal stochastic shortest-path problem. To cope 
with catastrophic interference, the critic, the actor and 
the back-actor components, previously implemented 
with monolithic neural networks, have been replaced 
with modular networks. The algorithm presented in [6] 
(suitable for the supervised training of "mixture of 
experts networks") has been adapted to train the critic, 
while an unsupervised learning algorithm has been used 
to train the actor's new hierarchical architecture. 
The results of simulations have shown that the 
specialisation of the critic's experts (one per goal) and 
the partial specialisation of the actor's experts (one 
prevailing expert for goal) allows the system to cope 
with multi goals. These results suggest that emergent 
functional modularity is a useful mechanism to use to 
cope with interference both in the case of reinforcement 
learning and planning so to build scalable controllers. 
Other results have confirmed the outcome of single-goal 
tests. The planners showed a superior efficiency vs. 
sheer reinforcement learning from the very first time a 
goal was assigned to the robot. With successive 
experiences the performance further improved, and the 
robot became "confident" enough about how to reach 
the different goals and did not need to plan anymore. 
Moreover the bidirectional planner outperformed the 
forward planner both in terms of action cycles and 
planning cycles needed to achieve goals, thanks to its 
capacity to focus exploration around the start and the 
goal and to propagate the evaluations quickly. 
Notwithstanding these encouraging results, the 
controllers studied present some drawbacks as the need 
of an accurate (though not perfect) model of the world, 
and a high degree of complexity of the architecture. 
The controllers proposed here should be applicable to 
real robots. In fact they are capable of dealing with 
noise both at the level of sensors and effectors thanks to 
the use of neural networks and to the use of "policies" 
for planning [2]. However two problems could arise in 
doing so. The first is that it may be difficult to train the 
predictor with success. Perhaps a solution would be to 
implement planning at a more abstract level where 
prediction is easier [2]. The second is that the pre-
processing with contrasts is too simple to disambiguate 
the images of different positions. A solution would be to 
use a more sophisticated pre-processing (e.g. cf. [13]). 
The controllers should be also applicable to problem 
domains different from navigation (some problems may 
arise for the implementation of the back-actor, cf. [2]). 
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