
A PLANNING MODULAR NEURAL-NETWORK ROBOT FOR
ASYNCHRONOUS MULTI-GOAL NAVIGATION TASKS

Gianluca Baldassarre
University of Essex, Colchester, United Kingdom, gbalda@essex.ac.uk

Abstract
This paper focuses on two planning neural-network
controllers, a "forward planner" and a "bidirectional
planner". These have been developed within the
framework of Sutton's Dyna-PI architectures (planning
within reinforcement learning) and have already been
presented in previous papers. The novelty of this paper
is that the architecture of these planners is made
modular in some of its components in order to deal with
catastrophic interference. The controllers are tested
through a simulated robot engaged in an asynchronous
multi-goal path-planning problem that should
exacerbate the interference problems. The results show
that: (a) the modular planners can cope with multi-goal
problems allowing generalisation but avoiding
interference; (b) when dealing with multi-goal problems
the planners keeps the advantages shown previously for
one-goal problems vs. sheer reinforcement learning; (c)
the superiority of the bidirectional planner vs. the
forward planner is confirmed for the multi-goal task.

1. Introduction
This paper focuses on a simulated robot (Figure 1)
engaged in a stochastic shortest-path problem [3]. In
this kind of problem the robot has to find the shortest
(e.g. in terms of number of states visited) path from a
start state to a goal state in a stochastic world.
Reinforcement-learning algorithms [13] are capable of
finding an action policy by using a trial-and-error
strategy directly implemented in the world. When a
model of the world is available, stochastic dynamic
programming methods are capable of generating action
policies by using the model. The policies are then
executed in the real world, hence implementing a form
of planning. Stochastic dynamic programming methods
are based on the generation of a gradient field of
"evaluations" associated with the states of the problem
and creating an action policy that ascends the gradient
field towards the goal state.

Figure 1: Top: the scenario of the simulations
containing three goals (north-west, east, and south-west,

marked with x), a start (white square), five landmarks
(black circles), the scope of the organism's 50 visual
sensors (delimited by the rays), and the robot (white

circle at origin of rays). Bottom: the pattern of the visual
sensors, its re-mapping into contrasts, and an example

of goal (contrast pattern, for the south west goal).

Sutton [12] has integrated planning based on dynamic
programming and reinforcement learning into a class of
architectures called "Dyna architectures" (from
"dynamic programming"). The basic idea of Dyna
architectures is to have a reinforcement learning
architecture that is trained both in the real world and
through a model of the world used to generate
"simulated" extra experience.
Baldassarre [2] has proposed two planning controllers
inspired to Dyna-PI architectures, a Dyna architecture
based on actor-critic reinforcement-learning methods
[13] ("PI" stands for "policy iteration", see later). Actor-
critic methods use two memory structures: one to store

the evaluation function and the other one to store the
action policy. The algorithms proposed in [2] are
capable of operating in "reinforcement learning mode"
or "planning mode". While planning the algorithms
execute a sequence of forward "explorations" from the
current state (forward planner) or both forward from the
current state and backward from the goal (bidirectional
planner) within the model of the world. During these
explorations the state evaluations and the action policy
are updated. The action probabilities are used to build a
measure of the robot's "confidence", and to switch
between acting and planning mode.
Baldassarre [1] has proposed a modularised version of
the basic neural-network actor-critic architecture
capable of coping with multiple goals assigned to the
robot asynchronously (the robot has to pursue different
goals in different times). In particular the critic is
modularised on the basis of the "mixture of experts"
neural network model [6] (suitably adapted to cope with
the reinforcement learning evaluation problem) and the
actor is modularised on the basis of a novel hierarchical
architecture. The simulations with this architecture
showed that it is capable of copying with potential
catastrophic interference caused by the multi-goal task.
This is a crucial issue for the scalability of neural
architectures. Catastrophic interference is the well-
known phenomenon that affects neural networks:
experience learned by dealing with a particular
goal/problem is easily disrupted by the experience
learned by dealing with another goal/problem [11]. The
architecture proposed in [1] copes with catastrophic
interference through "emergent functional modularity"
(the structure of the modules is hardwired, but their
function is emergent, cf. [4]).
The novelty of this paper is that the planning
architectures of [2] are integrated with the modular
architecture proposed in [1], and that the performance of
the reinforcement learning and the two planners is tested
and compared with an asynchronous multiple-goal task.
This task highlights whether controllers are affected by
catastrophic interference because different goals are
pursued at different times. The test is important because
catastrophic interference is expected to have a stronger
effect on the neural planning controllers proposed in [2]
than on the reactive controller. In fact while planning
the planning controllers execute a long deep updating of
the weights to reach one particular goal before passing
to another goal. This was expected to worsen the
negative effects of catastrophic interference (cf. [11]).
In particular, the simulations run with the multi-goal
task have verified if and why: (a) the modular neural
planners are capable of copying with interference; (b)
the neural planners outperform the (corresponding)
reactive controllers; (c) the bidirectional planner
outperforms the forward planner in terms of planning
and acting cycles needed to achieve the goals.
Section 2 presents the scenario of the simulations and
the reinforcement learning and planning algorithms.
Section 3 illustrates the results of the simulations, their

interpretation, and the drawbacks of the controllers.
Finally section 4 summarises the results and discuss if
the possible application of the algorithms to real robots.

2. Scenario of Simulations and Controllers
This section illustrates the simulation scenario used to
test the controllers, and the reactive and planning neural
components of the architectures. The planning
components are illustrated in two different subsections
to highlight the differences between the forward and the
bidirectional planners.

Simulated Scenario and Robot
The scenario is shown in Figure 1. It is a square arena
with sides measuring 1 unit, inside of which there are 5
circular landmarks/obstacles.
The robot can see the landmarks with a one-dimension
horizontal retina of 360 degrees. The retina is made up
of 50 units (vector x). Each unit xi activates with 1 if a
landmark is in its scope, with 0 otherwise, and is
affected by noise (0.01 probability of flipping). The
signals coming from the retina are always aligned with
the magnetic north through a "compass" affected by
Gaussian noise (0 mean, 1 degree variance). Before
being sent to the controller, these signals are re-mapped
into a vector y of 100 binary units representing the
image "contrasts". Two contiguous retinal units activate
(with 1) one contrast unit yj if they are respectively on
and off, another contrast unit if they are respectively off
and on, no contrast units if they are both on or both off
(cf. Figure 1). This re-mapping implements an
expansion of the input space that allows the controller to
work properly with simple two-layer networks in the
scenario considered here. Notice that the robot has a
limited perception of the world's current state. This can
raise difficulties not directly dealt with here (cf. [5] on
"partially observable Markov decision problems").
At each cycle of the simulation the robot has to select
one of eight actions, each consisting of a 0.05 step in
one of eight directions aligned with the magnetic north
(north, north-east, etc.). The outcome of these actions is
affected by Gaussian noise (0 mean, 0.01 variance). If
the robot moves against the arena's boundaries or the
obstacles, it bounces back.
The robot's task is to reach three different goal positions
in the arena. At the beginning of the simulation the
robot is set at the start position and has to reach the east
goal. Then each time the robot reaches a goal, one of the
other two goals is assigned to it at random until the
simulation stops.
Figure 2 shows both the reinforcement learning and the
planning components of the robot's neural controller.
Now these are analyzed in detail.

Reinforcement learning
This part of the model is slightly different from the
actor-critic models, implemented with neural networks,
proposed in [13]. In general terms, the actor yields a

stochastic action-selection policy, and the evaluator
evaluates the states of the world in terms of expected
future rewards achievable with the current actor's
policy. The evaluator improves the quality of its
evaluations by experiencing the rewards through a
supervised learning algorithm, while the actor improves
the action-selection policy by increasing the
probabilities of actions that cause the robot to ascend
the gradient field of evaluations (policy iteration).
Now the single reinforcement-learning components are
analysed. The "matcher" is a hand-designed neural
network whose role is to internally generate the reward
signal rt. The matcher yields 1 as output when the goal
and the input (contrasts) share more than 94% of bits
with the same values, and 0 otherwise (cf. [2] for
details). Notice that while planning the matcher plays
the role of the model of the world concerning rewards.
The "actor", a modular network composed of 6 "expert"
networks and 1 "gating network", implements the
robot's action-selection policy. Each expert is a two-

layer feed-forward neural network that gets goal and
visual contrasts as input, and has 8 sigmoidal output
units that locally encode the actions. To select one
action, the activation ml (interpretable as "action merit")
of the output units is sent to a stochastic selector where
a stochastic "winner-takes-all competition" takes place.
The probability P that a given action al becomes the
winning action aw (to execute) is given by:

P[al = aw] = ml / ∑f mf (1)
This formula has been chosen over the more popular,
but also more complex, softmax formula [13] because it
led to similar results. The role of the gating network is
to select an expert that, in its turn, selects the actions to
be executed. This is done with another "winner-takes-all
competition" analogous to the previous one, but this
time involving the experts instead of the actions (it is
based on the "experts' merit", i.e. the activation uk of the
gating-network output units).

Figure 2: The controller of the robot. Networks with a bold, thin and dashed border implement reinforcement
learning, forward planning, and backward planning respectively. Arcs and arrows indicate forward and backward

connections that "copy" a pattern from one layer to another. The four and five spike stars indicate the channels
respectively set open and close by the action-planning controller when acting (vice versa when planning). Dashed

arrays indicate the learning signal used to update the weights of the evaluator, actor and back-actor.

The "evaluator" (which together with the TD-critic
makes up the "critic") is a "mixture of experts network"
composed of 6 experts and 1 "gating network", suitably
modified to cope with the reinforcement-learning
evaluation problem. See [6] for the details of this
architecture, and for the mathematical justification of
the training algorithm described later. Each expert is a
two-layer feed-forward neural network that gets goal
and visual contrasts as input. With its linear output unit,
the evaluator yields the estimation V'π[yt] of the correct
evaluation Vπ[yt] of the current state yt (contrast
pattern). Vπ[yt] is defined as the expected discounted
sum of all future reinforcements r, given yt and the
current action-selection policy π expressed by the actor:

Vπ[yt] = E[γ 0 rt+1 +γ 1 rt+2 +γ 2 rt+3 + …] (2)

where γ ∈ (0, 1) is a "discount factor", set to 0.95 in the
simulations, and E is the mean operator. In order to
compute V'π[yt] the output of the experts is weighted
and summed:

V'π[yt] = Σk[vk gk] (3)
where vk is the output of the expert k, and the weight gk
is computed as the "softmax activation function" of the
activation of the output units ok of the gating network:

gk = exp[ok] / Σf[exp[of]] where: Σk gk = 1 (4)
The "TD-critic" is a neural implementation of the
computation of the "temporal-difference error" et
("learning signal" in Figure 2) defined as [13]:

et = (rt+1 + γ V'π[yt+1]) - V'π[yt] (5)
Each evaluator's expert has a specific error defined as:

ekt = (rt+1 + γ V'π[yt+1]) - vk[yt] (6)

Matcher

100 100

Evaluator

100

Predictor

8 100

Actor

Stoc. sele.

8

100

50

100

50

Goal

Contrasts

Input

Learning
signal

Action-planning controller

TD-Critic

Back-Predictor

8 100

Back-Actor

100

Stoc. sele.

8 50

100 100 100 100

Gating net. Gating net. Gating net.

Each evaluator's expert is trained on the basis of the
expert's learning signal, which assumes the role of error
(in the estimation of V'π[yt]) in a supervised learning
algorithm. The weights of the experts are updated so
that their estimation vk[yt] tends to be closer to the target
value (rt+1+ γ V'π[yt+1]). This target is a more precise
evaluation of yt because it is expressed at time t+1 on
the basis of the observed rt+1 and the new estimation
V'π[yt+1]. The formula (a modified Widrow-Hoff rule
[15]) used to update the weights of each expert is:

∆wkj = η ekt yj hk (7)
where η is a learning rate (set to 0.02), wkj is a weight of
the expert k, and yj is the activation of the goal and
contrast units at time t (evaluator's input). hk (absent in
the Widrow-Hoff rule) is the "updated" contribution of
the expert to the global answer V'π[st], and is defined as:

hk = gk ck / Σf[gf cf] where: Σk hk = 1 (8)
where ck is a measure of the "correctness" of the expert k
defined as:

ck = exp[-0.5 ekt
2] (9)

The gating network weights zkj are updated to increase
the weight gk of the experts that had low error:

∆zkj = ξ (hk - gk) yj (10)
where ξ is a learning rate set to 0.2 in the simulations.
This algorithm causes the experts to specialise in the
different regions of the goal-contrast space ([6] for
details). Notice that ξ is higher than η. This has been
found to be a necessary condition for the controller to
work. With ξ = η = 0.02 the experts did not specialise
and interference between different goals prevented the
convergence of the algorithm.
The actor is trained according to the TD-critic's learning
signal et. Here this signal is a measure of the actor's
capacity to select actions that bring the robot to new
states with an evaluation higher than the average
evaluation experienced previously departing from that
same state. The updating of the action merit of the
"winning expert" (and only this) is done by changing the
weights of the neural unit corresponding to the selected
action aw (and only this) as follows:

∆wwj = ζ et (4 mw (1 - mw)) yj (11)
where ζ is a learning rate, set to 0.02 in the simulations,
and (4 mw (1 - mw)) is the derivative of the sigmoidal
function multiplied by 4 to homogenise the size of the
learning rates of the actor and the (linear) evaluator. The
weights of the gating network (only those of the
winning expert's unit) are updated by using the merit uw
and error et (ζ = 0.02):

∆wwj = ζ et (4 uw (1 - uw)) yj (12)
At the beginning of the simulation the weights of the
evaluator and actor are randomised in [-0.001, +0.001],
so the evaluations expressed by the evaluator's linear
output unit are around 0, and the merits (probabilities)
expressed by the actor (stochastic selector) are around
0.5 (0.125). This implies that initially the robot explores
the environment randomly, and then it starts to shape
the evaluations on the basis of the rewards, and the
probabilities on the basis of the evaluations.

Forward Planner
The components added to the reactive-learning model to
obtain the forward planner are now explained. The
"predictor" (robot's "model of the world") is composed
of 8 feed-forward two-layer networks ("experts") with
sigmoid output units, each corresponding to one action.
Each expert takes yt as input, and is specialized to
predict the following sensors' activation xt+1 if the action
corresponding to it is executed (each sigmoid unit's
output is squashed to 0 if below 0.5, to 1 if above). A
hand-designed selector chooses the expert
corresponding to the selected action to yield the output
of the predictor itself. The experts are trained while the
robot navigates randomly in the environment for
200,000 cycles (this brings the mean square error per
unit to about 0.24). This training is done before the
robot faces the task. At each cycle the contrast pattern yt
and the input pattern xt+1, observed after the execution
of one action are respectively used as input and teaching
output to train the expert corresponding to the action
with a Widow-Hoff rule [15] (cf. [8] and [9]). Notice
that, because of its architecture, the predictor yields
deterministic predictions that tend to be the average of
the xt+1 observed after each yt. This is a simplification
given that a correct model of the stochastic world
should yield stochastic predictions.
The "action-planning controller" is a hand-designed
algorithm (Figure 3) that controls the flow of
information among the different components of the
whole system when the robot is acting and planning
forward and backward. Notice that the forward planner
is obtained by setting the variable "OnlyForward-
Planning" (Figure 3) to "TRUE", while the bidirectional
planner is obtained by setting it to "FALSE". Now the
forward planner is explained.
The forward planner can be in either planning or acting
mode. The action-planning controller decides the robot's
mode on the basis of its "confidence" (the highest of the
actions' probabilities). If the confidence is above a
threshold the robot acts in the world and the predictor is
not used, otherwise it is used, together with the matcher,
to simulate experience. While planning the threshold
slowly decreases (cf. variable "Decay") so that the robot
changes position after some time spent planning. This
prevents the robot from getting stuck in places where it
does not succeed to become "confident" enough. When
acting the threshold is increased up to a maximum (cf.
variables "MaxConfThresh" and "Gain", Figure 3).
When the robot is forward planning the actor and critic
function and learn in the same way they do when acting
in the real world. In particular, in a cycle of planning
these events take place: the matcher, the actor, and the
critic take the signal from the sensors/contrasts activated
by the predictor (or from the world if it is the first step
of a "simulated walk", see later) as input; the matcher
returns the reward signal, the evaluator returns the
evaluation of the input pattern, the TD-Critic returns the
error e, and the actor (stochastic selector) yields the
actions' merits (probabilities) on the basis of which

action is selected; the selected action and the input
pattern are sent to the predictor, which in turn yields the
predicted input using the network corresponding to the
action. At this point a new cycle can take place, yielding
a new reward, a new evaluation, and a new error e; this
new error is used to train the actor and critic to evaluate
and act in correspondence to the old input pattern.
IF(NewGoalHasBeenAssigned)
 MaxStepsPlan := 1;
 ConfThresh := MaxConfThresh;
 ForwardPlanning := TRUE;
 StepPlan := 0;
 Planning := TRUE;
IF(InputOutputRealWorld)
 IF(Confidence < ConfThresh)
 Planning := TRUE;
 ELSE
 {Planning := FALSE; ConfThresh :=
 MIN(MaxConfThresh, ConfThresh + Gain);}
IF(Planning)
 InputOutputRealWorld := FALSE;
 StepPlan++;
 ConfThresh := ConfThresh - Decay;
 IF(ForwardPlanning)
 IF(GoalReached OR StepPlan = MaxStepsPlan)
 IF(StepPlan = MaxStepsPlan)
 MaxStepsPlan++;
 ELSE
 {MaxStepsPlan :=
 MIN(MaxStepsPlan, StepPlan * 2);}
 ForwardPlanning := FALSE;
 ForwardSteps := StepPlan;
 GoalAsInput := TRUE;
 StepPlan := 0;
 IF(OnlyForwardPlanning)
 ForwardPlanning:= TRUE;
 GoalAsInput := FALSE;
 InputOutputRealWorld := TRUE;
 ELSE
 GoalAsInput := FALSE;
 IF(StepPlan = ForwardSteps)
 ForwardPlanning := TRUE;
 InputOutputRealWorld := TRUE;
 StepPlan := 0;

Figure 3: Pseudo-code of the planning-acting controller
algorithm (executed at each cycle after the actor's

activation). Assignment operator: ":="; 1 unit increment
operator: "++". The parameters are set as follows:

Decay = 0.000001, Gain = 0.01, MaxConfThresh = 0.15

Given a goal, if in forward planning mode the robot
executes several planning cycles in a sequence. Each
sequence is a sort of "simulated walk" that starts from
the current input pattern, continues through a succession
of states (predictions yielded by the predictor), and
terminates either when the goal is reached or when the
sequence is longer than a certain number of steps
(MaxStepsPlan). This number is increased if the
simulated walk fails to reach the goal (similarly to an
"iterative-deepening search" [7]). When success is
achieved, the number is decreased to focus exploration
around the start and goal.

Bidirectional Planner
The bidirectional planner generates simulated walks
alternatively forward from the current input and
backward from the goal. The length of each backward
walk is the same as the forward walk (the algorithm
resembles a "bidirectional iterative-deepening search"

[7]). Forward walks are executed as in the forward
planner. Backward walks are executed through the
"back-predictor" and "back-actor".
The back-predictor is a network with the same
architecture as the predictor. While the predictor is
trained to produce the association yt, at → xt+1, the back-
predictor is trained to produce the association xt, at-1 →
yt-1 (time indexes used backward) i.e. to
remember/guess what the situation was that brought the
robot to the current situation after executing a particular
action. Notice that each predictor's expert and back-
predictor's expert corresponding to a particular action
could be integrated in one bidirectional network
associating xt ↔ xt+1 under action at.
The back-actor has the same architecture as the actor,
and is used to generate actions for the simulated
backward walks (the at-1 of the association xt, at-1 → yt-

1). Before the tests described later the back-actor
weights are randomly drawn from the interval [-0.001,
+0.001], so initially it selects actions at random. During
a back walk cycle that derives yt-1 from yt the merit of
the action selected is updated according to the same
formula used for the actor and with the usual error of
equation (5). Notice that this training induces the back-
actor to generate actions that lead to states with the
lowest possible evaluation V'π[yt-1], i.e. states far from
the goal and visited few times. During the backward
walks the actor and evaluator are also updated (using et).
In particular after each cycle the actor yields the actions'
merit in correspondence to yt-1, and then its weights are
updated in correspondence to those merits and the
action at-1 selected by the back-actor. During forward
planning and acting, the back-actor is also trained by
using et. To this purpose after each forward cycle the
back-actor yields the actions' merit in correspondence to
yt+1, and then its weights are updated in correspondence
to those merits and the action at selected by the actor
with yt. The overall functioning of the backward planner
can be summarised as follows. With training the back-
actor learns to yield backward walks that "escape" from
the goal in "straight" lines, hence creating a big area of
positive evaluations around the goal. This area is
"easily" found by the actor's forward walks that, as a
consequence, progressively expand the area itself
toward the start. At the same time the actor becomes
competent in the whole area where positive evaluations
diffuse. Cf. [2] for a deeper analysis of these algorithms
and their applicability limitations.

3. Results, Interpretations, and Limits of the
Controllers
The reinforcement learning, forward planner and
bidirectional planner have been tested with the multi-
goal task described in the previous section. 10
simulations with different random seeds were run for
each algorithm for a sequence of 2000 achievements of
the goals. For all the three conditions 7 out of 10
simulations were successful. In these simulations the

critic used three different experts to encode the three
different evaluation gradient fields corresponding to the
three goals (in each position the evaluator had a
probability above 99% of selecting the same expert).
Figure 4 shows the gradient fields relative to 2 goals (1
of the 7 successful seeds).

Figure 4: Evaluation gradient fields for two of the three
goals (north-west and east goal). For each goal the robot

was set in 20×20 different positions of the arena, and
the evaluator's output for that position was measured.
Each white square of the graph is drawn in a position
corresponding to the position in the arena where the
evaluation was measured. The area of each square is
proportional to the evaluation level. Empty squares
correspond to the landmarks. The gradient fields are

higher in correspondence to the goals

Figure 5: Actor's expert with maximum probability in
20×20 positions of the arena in correspondence to the

north-west goal (the position of the goal is marked with
a square). The small numbers indicate the expert with
the highest probability in the position occupied by the

number itself. The big numbers summarise the
frequencies of use of the 6 experts in the whole arena.

The 3 simulations that failed did so because the critic
employed the same expert to yield the evaluations
related to two different goals. As a consequence the
evaluation gradient field had two peaks, the actor was
trained to go to both peaks, and the resulting behaviour
was dithering. This fact shows that in the task
considered here the specialisation of the evaluator's

experts for the different goals is crucial for the correct
functioning of the architecture (cf. [1])
In the 7 successful simulations, the actor learned to
reach the goals in few steps from any point of the arena
(see Figure 6, explained later). The function of the actor
does not seem to require a precise specialisation as in
the case of the evaluator: more than one expert is used
to achieve one goal, and the same expert is used to
achieve many goals. For example Figure 5 shows which
actor's expert has the highest probability of being
selected in 400 positions of the arena for the north-west
goal. Clearly different areas of the arena tend to cause
the activation of different experts (cf. [1] and [4]). To
summarise, the emergent functionality of the modules
within the critic and the actor (strong in the former and
partial in the later) allow all the three controllers to cope
successfully with the asynchronous multi-goal task,
keeping the interference problems under control.
For each simulation the number of cycles per success
(achievement of the assigned goal) was measured for
each reached goal and then plotted against the
cumulated cycles. Figure 6 shows this measure for the
three algorithms (averaged over the 7 successful random
seeds). Several relevant facts become apparent from
these simulations, and confirm the results previously
obtained with single goal tasks (cf. [1] and [2]). The
comparison between the performance of planning vs.
sheer reinforcement learning shows that planning allows
the robot to reach the goals with improved efficiency
from the very first time each goal is assigned to the
robot (cf. Table 1; see later for the reason because the
second goal is reached with more steps than the first
goal). Moreover in all the three cases when the robot
pursues the same goal several times the performance
improves (cf. again Figure 6). This happens because the
information collected through planning and real
experience merges suitably and incrementally in the
weights of the evaluator and actor. This is a typical
strength of the Dyna architectures [12].

Table 1: Number of cycles taken by the three
algorithms to reach the first and second goal the first

time it is assigned (averaged over 20 seeds).
 Reinforcement

learning
Forward
planner

Bidirectional
planner

1st goal 719 286 199
2nd goal 1407 420 297

With regards to the comparison of the forward planner
and the bidirectional planner, Figure 6 shows that before
convergence the bidirectional planner outperforms the
forward planner in terms of cycles taken to reach the
goals. One reason for this is that the forward planner
spends more cycles planning than the bidirectional
planner (see later) and that while planning the robot
executes some actions (cf. algorithm in Figure 3).
Another possible reason is that the bidirectional planner
focuses exploration and learning not only around the
current position (as in the case of the forward planner),

5 2 5 5 5 3 5 5 5 5 5 3 3 3 3 3 2 3 3 4
2 2 0 5 5 5 5 3 5 5 5 5 2 1 5 5 2 2 3 3
2 2 2 5 5 5 5 5 5 5 5 5 5 2 5 5 5 2 3 3
2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 3 2 3 3
5 2 2 2 5 5 5 5 5 5 5 2 2 5 5 5 2 6 6 0
2 2 2 2 2 5 5 3 0 0 2 2 2 2 3 3 3 3 3 0
2 2 2 2 2 5 5 1 0 0 2 2 3 3 3 3 3 3 4 4
2 2 2 2 2 3 3 1 1 5 1 3 3 3 3 4 4 4 1 2
1 2 3 2 2 2 3 1 1 3 3 3 4 2 4 4 4 2 1 2
1 2 3 1 2 2 3 1 3 3 2 4 4 3 4 4 2 1 2 3
1 2 1 1 2 2 2 3 3 2 2 2 5 1 4 1 1 1 3 3
5 2 3 3 2 2 2 3 3 5 5 5 3 5 1 1 1 1 2 5
3 5 3 3 2 2 2 2 2 5 5 5 3 3 1 3 1 1 5 1
5 3 3 2 2 2 2 2 3 3 5 3 3 2 6 3 5 1 1 1
0 0 3 2 2 2 2 5 5 3 3 5 5 3 4 1 1 1 2 3
1 2 2 2 2 2 2 2 2 0 0 2 4 2 3 1 1 3 3 3
3 2 2 2 2 1 2 2 2 0 0 3 3 2 5 1 1 1 3 3
2 2 3 1 1 1 1 1 2 2 3 2 2 2 1 5 1 5 3 3
1 2 2 1 1 1 1 1 1 2 2 1 1 2 1 5 5 4 3 3
1 1 2 3 1 1 5 1 1 2 2 2 1 1 1 1 1 5 3 5

70 120 89 10 87 3

but also around the goal. Direct observation of the
robot's behaviour has shown that this area, where the
robot has to move to the specific position corresponding
to the goal, is a particularly difficult part of the task
(consider that when the robot is very far from the goal,
about 50% of the moves take it towards the goal, while
when very close to the goal only 12.5% i.e. 1 in 8
moves take it to the goal). So when the robot is
confident enough at the current state and starts to act, its
actual competence for the area near the goal is higher in
the case of the backward planner than in the case of the
forward planner. Further investigation should verify this
explanation and check if this result holds for problem
domains different from navigation.
Figure 7 shows the number of planning cycles per
success taken by the two planning algorithms for the
first 36 goals reached (averaged over 24 successful
seeds out of 32: many simulations were run to control
noise). A relevant result is that the planning cycles fall
close to 0 when the robot experiences the same goals
several times. The explanation of this result is that when
the same goal is encountered several times, the
"confidence" associated with it increases over the
confidence threshold, so that planning is no longer
required and the goal is achieved reactively.

Figure 6: Performance of the three algorithms (average
over 7 random seeds per algorithm). Y-axis: number of
cycles per success (forward moving average over 20

successes). X-axis: successes.

Figure 7 also shows that the bidirectional planner
outperforms the forward planner in terms of number of
cycles spent planning before reaching the goals. This is
caused by three factors. The first depends on the way
the two algorithms explore the model of the world. The
forward planner spends a lot of time searching for the
goal unsuccessfully given that the search is a random
walk, while the bidirectional planner "finds" the goal as
soon as it starts to plan. So contrary to the bidirectional
planner, the forward planner wastes a lot of planning
cycles before starting to update the evaluations and,
consequently, update the action policy (cf. [14]). The
second factor is that the bidirectional planner is more
efficient in propagating the evaluations backward from
the goal to the other states than the forward planner is.
In fact it updates the evaluation of each state on the

basis of the evaluation of a state that has just been
updated (cf. [2]).
The third factor involves the multi-goal nature of the
task. After enough confidence is gained and the first
goal is reached, the action probabilities are quite biased
in favour of that goal. When the goal changes, half
actor's input pattern is changed according to the new
goal (cf. Figure 2). Given that the experts are not yet
specialised for the different goals and that in general the
actor is responding to the second goal mostly with the
same weights used for the first goal, the actions'
probabilities are still quite biased in favour of the first
goal. This implies that the random walk used to explore
the model of the world is biased away from the second
goal. Figure 7 shows that the forward planner spends
nearly a double number of cycles planning to reach the
second goal than to reach the first goal, while the
bidirectional planner only spends few cycles more. In
fact the bidirectional planner "forces" the search around
the newly assigned goal. This leads the evaluations, and
hence the action probabilities, to change according to
the new goal until enough confidence is gained.

Figure 7: Cycles spent planning by the forward and
bidirectional planners before achieving the goals, for the

first 36 successes. Average over 24 seeds.

Limits of the Controllers
These encouraging results about the planning algorithms
are weakened by some drawbacks. The forward planner
and even more so the bidirectional planner have a quite
complex architecture and are composed of
heterogeneous neural networks. The functioning of both
algorithms relies on the possibility of building a
sufficiently reliable model of the world. Moreover,
contrary to reinforcement learning, the planning
algorithms need to explore the world before attempting
to solve the tasks in order to acquire such model.
Backward planning relies on the possibility of training
the back-actor to "guess" what action could have led to
a particular state: it is not clear if this is possible within
problem domains different from navigation. In 8 seeds
out of 32 the experts of the modular evaluator fail to
specialise, while this specialisation seems necessary to
solve the multi-goal task.

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000

Reinforcement learning
Forward planner
Bidirectional planner

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Forward planner

Bidirectional planner

4. Summary and Conclusion
This paper has tested two neural planners presented
previously, with a simulated robot engaged in a new
multi-goal stochastic shortest-path problem. To cope
with catastrophic interference, the critic, the actor and
the back-actor components, previously implemented
with monolithic neural networks, have been replaced
with modular networks. The algorithm presented in [6]
(suitable for the supervised training of "mixture of
experts networks") has been adapted to train the critic,
while an unsupervised learning algorithm has been used
to train the actor's new hierarchical architecture.
The results of simulations have shown that the
specialisation of the critic's experts (one per goal) and
the partial specialisation of the actor's experts (one
prevailing expert for goal) allows the system to cope
with multi goals. These results suggest that emergent
functional modularity is a useful mechanism to use to
cope with interference both in the case of reinforcement
learning and planning so to build scalable controllers.
Other results have confirmed the outcome of single-goal
tests. The planners showed a superior efficiency vs.
sheer reinforcement learning from the very first time a
goal was assigned to the robot. With successive
experiences the performance further improved, and the
robot became "confident" enough about how to reach
the different goals and did not need to plan anymore.
Moreover the bidirectional planner outperformed the
forward planner both in terms of action cycles and
planning cycles needed to achieve goals, thanks to its
capacity to focus exploration around the start and the
goal and to propagate the evaluations quickly.
Notwithstanding these encouraging results, the
controllers studied present some drawbacks as the need
of an accurate (though not perfect) model of the world,
and a high degree of complexity of the architecture.
The controllers proposed here should be applicable to
real robots. In fact they are capable of dealing with
noise both at the level of sensors and effectors thanks to
the use of neural networks and to the use of "policies"
for planning [2]. However two problems could arise in
doing so. The first is that it may be difficult to train the
predictor with success. Perhaps a solution would be to
implement planning at a more abstract level where
prediction is easier [2]. The second is that the pre-
processing with contrasts is too simple to disambiguate
the images of different positions. A solution would be to
use a more sophisticated pre-processing (e.g. cf. [13]).
The controllers should be also applicable to problem
domains different from navigation (some problems may
arise for the implementation of the back-actor, cf. [2]).

5. Acknowledgements
The University of Essex has funded the author's
research. Special thanks are addressed to Prof. Jim
Doran for the precious discussions of the ideas
presented in the paper and James Adam for his kind
help during the preparation of the paper.

6. References
[1] Baldassarre G., A Modular Neural-Network Model

of the Basal Ganglia's Role in Learning and
Selecting Motor Behaviours, in Altmann E.M.,
Cleermans A., Schunn C.D., Gray W.D. (eds.),
Proceedings of the Fourth International
Conference on Cognitive Modelling, pp. 37-42,
Lawrence Erlbaum Associates, Mahwah NJ, 2001.

[2] Baldassarre G., Planning with Reinforcement
Learning and Neural Networks, PhD thesis,
Department of Computer Science, University of
Essex, 2001. Submitted.

[3] Barto A.G., Bradtke S.J., Singh S.P., Learning to
act using real-time dynamic programming,
Artificial Intelligence, vol. 72, pp. 81-138, 1995.

[4] Calabretta R., Nolfi S., Parisi D., Wagner, G.P.,
Emergence of functional modularity in robots, in
Pfeiffer R. (ed.), From Animals to Animats 5:
Proceedings of the 5th International Conference on
the Simulation of Adaptive Behaviour, pp. 497-504,
The MIT Press, Cambridge MA, 1998.

[5] Jaakkola T., Singh S.P., Jordan M.I.,
Reinforcement learning algorithm for partially
observable Markov decision problems, in Tesauro
G., Touretzky D.S., Leen T.K. (eds.), Advances in
Neural Information Processing Systems 7, pp. 345-
352, The MIT Press, Cambridge MA, 1995.

[6] Jacobs R.A., Jordan M.I., Nowlan S.J., Hinton
G.E., Adaptive mixtures of local experts, Neural
Computation, vol. 3, pp. 79-87, 1991.

[7] Korf R.E., Optimal path finding algorithms, in
Kanal L.N., Kumar V. (eds.), Search in Artificial
Intelligence, Springer-Verlag, Berlin, 1988.

[8] Lin L.J., Self-improving reactive agents based on
reinforcement learning, planning and teaching,
Machine Learning, vol. 8, pp. 293-391, 1992.

[9] Nolfi S., Elman J.L., Parisi D., Learning and
evolution in neural networks, Adaptive Behavior,
vol. 3, pp. 5-28, 1994.

[10] Ross S., Introduction to Stochastic Dynamic
Programming, Academic Press, New York, 1983.

[11] Sharkey N.E., Sharkey A.J.C., An analysis of
catastrophic interference, Connection Science, vol.
7, pp. 301-329, 1995.

[12] Sutton R.S., Integrated architectures for learning,
planning, and reacting based on approximating
dynamic programming, in Proceeding of the
Seventh International Conference on Machine
Learning, pp. 216-224, Morgan Kaufmann, San
Mateo CA, 1990.

[13] Sutton R.S., Barto A.G., Reinforcement Learning:
An Introduction, The MIT Press, Cambridge MA,
1998.

[14] Thrun S., Efficient Exploration in Reinforcement
Learning, Carnegie-Mellon University, Technical
Report CMU-CS-92-102, 1992.

[15] Widrow B., Hoff M.E., Adaptive Switching
Circuits, IRE WESCON Convention Record, Part
IV, pp. 96-104, 1960.

