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Abstract. Building intelligent systems that are capable of learning, acting reac-
tively and planning actions before their execution is a major goal of artificial in-
telligence. This paper presents two reactive and planning systems that contain 
important novelties with respect to previous neural-network planners and rein-
forcement-learning based planners: (a) the introduction of a new component 
(“matcher”) allows both planners to execute genuine taskable planning (while 
previous reinforcement-learning based models have used planning only for 
speeding up learning); (b) the planners show for the first time that trained neu-
ral-network models of the world can generate long prediction chains that have 
an interesting robustness with regards to noise; (c) two novel algorithms that 
generate chains of predictions in order to plan, and control the flows of infor-
mation between the systems’ different neural components, are presented; (d) 
one of the planners uses backward “predictions” to exploit the knowledge of the 
pursued goal; (e) the two systems presented nicely integrate reactive behavior 
and planning on the basis of a measure of “confidence” in action. The sound-
ness and potentialities of the two reactive and planning systems are tested and 
compared with a simulated robot engaged in a stochastic path-finding task. The 
paper also presents an extensive literature review on the relevant issues. 

1   Introduction 

Since its birth, from the first experiments with the robot Shakey [8] to current research 
in planning [1] and behavior based robotics [6] [2], a major goal of artificial intelli-
gence has been building intelligent systems that are both capable of acting in a reac-
tive fashion and planning the course of action before its execution. In fact reactive 
behavior allows agents to quickly react to dynamic and unpredictable events. In order 
to be “tuned” with reality, the reactive behavior has to incorporate forms of “implicit 
anticipation” (cf. Butz et al. in this volume). On the other hand, the capacity to predict 
future states of the world on the basis of its regularities allows agents to be flexible 
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and taskable, i.e. to re-use knowledge to pursue different goals (see below, and see the 
concept of “state anticipation” of Butz et al. in this volume). 

Traditionally, artificial intelligence planning systems have been based on logical in-
formation representations built a-priori by the designer [1]. When these planning sys-
tems are used to control robots, sensors’ readings are converted into logical represen-
tations, the control is implemented in terms of manipulations of these representations, 
and the outcome of this processing is again converted into effectors’ commands. This 
approach has difficulties as the time-consumption of logical reasoning about the ef-
fects of low-level actions is too expensive to generate real-time behavior [21]. 

At least initially, behavior-based robotics proposed to eliminate logical deliberation 
and planning from control altogether [6]. Reactive behavior was implemented through 
numerical functions and/or rules that “directly” linked the sensors’ numerical patterns 
to the effectors’ numerical patterns. More recently, behavior-based robotics has at-
tempted to integrate reactive behavior based on numerical representations and plan-
ning (usually) based on logical representations (see review in [2]). However, the re-
sulting systems have an important limitation: they imply a double recoding of 
information, from a numerical format to a logical format and vice versa, that is 
difficult to implement, slow and prone to errors. 

The motivation of this research was building reactive and planning systems that 
rely only on numerical representations. This novel approach should allow coping with 
noisy and unpredictable environments through reactive behaviors, having the flexibil-
ity of planning, and at the same time avoiding the problem of the interface between 
different information representation formats. Given the level of development that they 
have reached (cf. 9), neural networks have been chosen for this purpose. The attempt 
of this research is challenging and interesting at the same time. In fact its solution 
implies answering a number of questions of the following type: What kind of informa-
tion representations can be used to plan with neural networks? What is the origin of 
this information (hand-coded, experience)? How implementing the loop “decision of 
action – prediction of consequences – decision of action - …” required by planning 
with neural networks? How can the neural planning process be used to influence fu-
ture action? What are the advantages and disadvantages of using neural networks 
versus logic-based algorithms to implement planning? 

The systems presented here are based on dynamic programming and reinforcement 
learning methods. Roughly speaking, dynamic programming [20] is based on a model 
of the world that indicates which states and rewards, e.g. rewards associated to goal 
states and costs associated to other states, follow the execution of one of the available 
actions. Dynamic programming repeatedly and systematically explores all the states of 
the model of the world to associate an “evaluation” (e.g. a number between 0 and 1) 
with each of them on the basis of the rewards and the states’ “contiguity” in time. This 
evaluations, that are gradually higher (or lower) for states closer to the goal states, 
form a gradient field. Actions are selected so as to ascended (or descend) this gradient 
field. The way this is done is called “action-selection policy”. As dynamic program-
ming, to which they are closely related, reinforcement learning methods build a gradi-
ent field of evaluations over the states of the world [25]. However, differently from 
dynamic programming, they usually do not use a model of the world (“model-free 
reinforcement learning methods”). Instead, they learn the evaluations by directly exe-



cuting the actions in the world and by observing the consequences in terms of new 
states and rewards (costs) experienced. Dynamic programming and reinforcement 
learning methods are probably the most suitable framework currently available to 
implement planning with neural networks. In fact, even if developed for whole state 
representations, many interesting applications in these fields “break” the representa-
tion of states into feature patterns. Feature patterns, being distributed and parallel 
information representations, can be readily processed by neural networks. Moreover, 
both approaches are based on state evaluations that can be easily represented with 
neural networks (see [3] and the systems presented here). 

Sutton [26] has integrated planning based on dynamic programming and reinforce-
ment learning into a class of architectures called “Dyna” (from “dynamic program-
ming”). The central idea of Dyna architectures is to use a model of the world to gener-
ate “simulated experience” for reinforcement-learning training (e.g. [14]). The algo-
rithms proposed here are inspired by Dyna-PI architectures, a class of Dyna architec-
tures based on actor-critic reinforcement-learning methods [25] (“PI” stands for “pol-
icy iteration”, the process at the basis of actor-critic methods). Actor-critic methods, 
differently from other reinforcement-learning methods that select actions on the basis 
of the evaluations, use a data structure that stores the action-selection policy in the 
form of probabilities of selecting the actions in correspondence to different states. 

To the best of the author’s knowledge, so far Dyna architectures have been only 
used to speed up planning (e.g. [14], [19] and [26]) and not to implement genuine 
“taskable planning”. Let us define a goal as a state to reach. A system is capable of 
executing taskable planning if it possesses a model of the world and can use the goal-
independent information stored in it to autonomously reach a goal, never reached 
previously, more efficiently than a purely reactive system (see below). Dyna architec-
tures are not taskable because they need a model of the environment that incorporates 
the rewards (or costs) associated with the goals [26]. As a consequence, when Dyna 
architectures are assigned a goal, they either need to learn the evaluations associated 
with that goal (but to do this they need to experience the goal several times, so they 
cannot be efficient since the first time they reach the goal) or the evaluations have to 
be hardwired by the designer into the model of the world (but in this case the systems 
are not autonomous). The systems proposed here are endowed with a computationally 
simple but theoretically important new component in order to overcome this problem: 
the “matcher”. This is a simple neural network that compares the goal assigned to the 
system with the current state and internally and autonomously generates a reward if 
they are similar (cf. [4] for an hypothesis on the possible brain structures that might 
correspond to the matcher). Once capable of producing rewards internally, the systems 
can engage in planning by generating “simulated experience” to train their reactive 
components. Simulated experience is generated by producing several “chains of pre-
diction”. To generate a chain of predictions the systems select an action in the current 
state, predict the state that would follow that action’s execution, suspend the execution 
of this action, select another action starting from the predicted state, and so on. After 
doing this, when the systems act again in the world they can reach the goal with high 
efficiency compared to a system made up by the reactive components only. 

There is an interesting issue related to the use of neural networks for planning. The 
predictions generated by the neural networks of the model of the world, are affected 



by noise. As a consequence one would expect to observe an accumulation of noise if 
chains of predictions are generated. Surprisingly, we will see that there are some 
mechanisms for which this noise is filtered out so that long chains can be generated 
that maintain a correspondence with the images of the world. 

While generating the chains of predictions through the model of the world, the sys-
tems learn by reinforcement learning as if they were acting in the world, and then they 
use the knowledge acquired in this way to act. Two novel algorithms are proposed to 
control these processes. These algorithms suitably interleave acting and planning 
according to the systems’ “confidence” in action, defined on the basis of the action 
selection probabilities. 

In a given moment, the systems know not only the current state, but also the goal 
state. The second planner proposed (bidirectional planner) alternately generates for-
ward chains from the current state and backward chains from the goal. The bidirec-
tional planner is more efficient than the forward planner because it is quicker in learn-
ing the evaluations and is more focused on the states relevant for the task while ex-
ploring the world’s model. 

Section 2 presents the reinforcement learning framework, the scenario and the 
simulated robot used to test the algorithms. Section 3 presents the forward planner and 
the results of the simulations run with it. Section 4 presents the bidirectional planner 
and compares its performance with the performance of the forward planner. Section 5 
presents an extensive literature review and highlights the novelties of the algorithms 
presented here. Finally, section 6 presents the conclusions and the future work. 

2   Reinforcement Learning Framework, Scenario of Simulations 
and Simulated Robot 

The reinforcement learning framework, based on “Markov Decision Problems”, is 
sketched here (see [3] and [25] for details). A Markov decision problem implies that 
an agent interacts with the world at discrete time steps t = 1, 2, 3, … On each time step 
t the agent perceives a state of the world st ∈ S, and on the basis of this selects an 
action at ∈ A. In response to each action the world produces a reward rt+1 and a new 
state with probability: pa

ss’ = Pr[st+1.= s’ | st.= s, at = a] for all s, s’ ∈ S and a ∈ A. The 
planners introduced below learn a simplified model of the world M: (st, at) → st+1. 
This model is deterministic and does not take into considerations the rewards that are 
universally modeled by the matcher on the basis of the goal and the current state. 

An (action selection) policy π is defined as a mapping from the states to the action 
selection probabilities, π: S×A → [0, 1]. For each state s a “state-evaluation function” 
Vπ[s] is defined that depends on the policy π and is calculated as the expected dis-
counted future reward from s: 

Vπ[s] = E[rt+1 + γ rt+2 + γ2 rt+3+ …] = Σa∈A[π[a, s] Σs’∈S[pa
ss’ (rt+1 + γ Vπ[s’])]] (1) 

where π[s, a] is the probability that the policy selects a in s, E[.] is the mean operator, 
and γ∈[0, 1] is a discount coefficient. The agent aims at finding an “optimal policy” 
that maximizes Vπ[s] for all s ∈ S. 



The algorithms presented here apply to a restricted class of Markov decision prob-
lems, the “stochastic shortest-path problems” (cf. [5]). In these problems the reward is 
equal to 1 for a unique “goal state” sg and equal to 0 for all other states. The agent 
aims at finding a policy that leads from a start state ss to the goal state sg with the 
minimum number of steps. This restriction is introduced to allow the systems pre-
sented here to generate an internal reward in correspondence to the goal through the 
matcher. This simplification does not reduce the generality of the systems: more com-
plex situations might be dealt with by using more complex internal reward generators 
(e.g. a component that generates costs when actions are selected). 
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probability of flipping for each sensor). The signals coming from the retina are always 
aligned with the magnetic north through a simulated compass before being fed to the 
systems. This facilitates the task by making the images rotation invariant. The reading 
of the compass is affected by Gaussian noise (0 mean, 1 degree variance). Before 
being sent to the controllers, the retina signals are re-mapped into a vector y of 100 
binary units representing the image “contrasts” (contrasts between the landmarks, 
perceived as “black”, and the “background”, perceived as “white”). Two contiguous 
retinal units give unit activation to one contrast unit yj if they are respectively on and 
off, to another contrast unit if they are respectively off and on, and to no contrast units 
if they are both on or both off. This simple re-mapping implements an expansion of 
the input space that allows the systems to work properly by using simple two-layer 
networks for the controller [3] (more complex tasks would require a more powerful 
preprocessing). At each cycle of the simulation the system has to select one of eight 
actions, each consisting of a 0.05 step in one of eight directions aligned with magnetic 
north (north, northeast, etc.). The outcome of these actions is affected by Gaussian 
noise with 0 mean and 0.01 variance. If the simulated robot moves against the arena’s 
boundaries or the obstacles it “bounces back”, i.e. it is set at the previous position. 

3   Reinforcement Learning and Forward Planning 

Fig. 2 shows the reinforcement-learning (reactive) and the planning components of the 
bidirectional planner. The forward planner can be obtained from the bidirectional 
planner by not considering the components necessary to generate the backward predic-
tion chains (these components have a dotted border in the figure). The forward plan-
ner is made up by the reinforcement learning components (bold border in the figure) 
and by the components used to generate the forward prediction chains (thin border in 
the figure). Now the components of the forward planner are analyzed in detail. 

3.1   Actor Critic Reinforcement Learning 

The reactive reinforcement learning components of the system are the critic (com-
posed of the TD-critic and the evaluator), the actor, and the stochastic selector. In the 
introduction it was mentioned that the matcher is used to generate an internal reward 
signal while the system is planning. However, in order to facilitate comparisons, it will 
also be used to generate this signal when the planner will be used as a share reactive 
system in order to show that it does implement genuine taskable planning. For this 
reason the matcher is analyzed here together with the reactive components. The 
matcher is a hand designed neural network with 200 input units and 1 output unit. It 
returns 1 as output when the first part of its input (100 units encoding the goal, i.e. the 
contrast image of the landmarks from the goal position) has at least 94% of units with 
the same activation of the corresponding units of the second part (100 units encoding 
the current input contrast pattern, or the current prediction). Otherwise it yields 0 (cf. 
[3] for the details). 



The “actor” is a two-layer feed-forward neural network that is fed with the input 
pattern yt and has eight sigmoid output units that locally encode the actions. To select 
an action, the activation ml (the “action merit”) of the output units is sent to a selector 
that implements a stochastic winner-take-all competition. The probability Pr[.] that a 
given action ag becomes the winning action aw is given by: 

Pr[ag = aw] = mg  / ∑l ml (2) 

In the scenario studied here the actors’ sigmoid output units plus this selection method 
yield a behavior more robust than the popular soft-max function (cf. [3] and [25]). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The systems’ architecture. Networks with a bold, thin and dashed border implement 
reinforcement learning, forward planning, and bidirectional planning respectively. Arcs and 
arrows respectively indicate forward and backward connections that “copy” a pattern from one 
layer to another. The four and five spike stars indicate the channels respectively set open and 
closed by the action-planning controller when acting (vice versa when planning). Dashed ar-
rays indicate the learning signal used to update the weights of the evaluator, actor and back-
actor. 

The “evaluator” is a two-layer feed-forward neural network that is fed with the in-
put pattern yt and that returns the estimation V’π[yt] of the evaluation Vπ[yt] with its 
linear output unit. Similarly to what has been done for the states s, Vπ[yt] is defined as 
the expected discounted sum of future reinforcements r, given the current actor’s pol-
icy π (cf. equation 1; γ is set at 0.95 in the simulations). 

The “TD-Critic” is a neural implementation (see [3] and [4] for details) of the 
computation of the Temporal-Difference error e defined as (see [25]): 

et = (rt+1 + γ V’π[yt+1]) – V’π[yt] (3) 

Notice that Vπ[yt] is set at 0 if yt = yg because a “trial” ends [3, 25]  
The evaluator is trained with a Widrow-Hoff algorithm [31] that uses the error sig-

nal et. In particular, its weights wj are updated as follows: 

∆wj = η et  yj = η ((rt+1 + γ V’π[yt+1]) - V’π[yt]) yj (4) 
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where η is a learning rate (set at 0.1 in the simulations). This rule implies that the 
evaluator’s estimation V’π[yt] is made closer to the target value (rt+1+ γ V’π[yt+1]). This 
target is a more precise evaluation of yt because it is expressed at time t+1 on the basis 
of the observed rt+1 and the estimation V’π[yt+1], usually closer to the goal than V’π[yt]. 

The actor is also trained with a Widrow-Hoff algorithm according to the TD-
Critic’s error signal. The updating of the merit values is done by adjusting the weights 
of the neural unit corresponding to the winning action aw (and only this) as follows:  

∆wwj = ζ et (4 mj (1 - mj)) yj = ζ ((rt+1 + γ V’π[yt+1]) - V’π[yt]) (4 mj (1 - mj)) yj (5) 

where ζ is a learning rate (0.1 in the simulations) and (4 mj (1 - mj)) is the derivative 
of the sigmoid function multiplied by 4 to homogenize the actor’s and critic’s learning 
rates. When a new goal is assigned to the simulated robot, the weights of the evaluator 
and actor are randomized in [-0.001, +0.001], so the evaluations expressed by the 
evaluator’s linear output unit are around 0, and the merits (probabilities) expressed by 
the actor (stochastic selector) are all around 0.5 (0.125). This implies that initially the 
simulated robot randomly explores the world (or the model of the world). Afterwards, 
the evaluator shapes the evaluations on the basis of the rewards, and at the same time 
the actor shapes the action probabilities on the basis of the evaluations. The parallel 
training of the evaluator and actor is called “policy iteration” [25] and gives the name 
to the Dyna-PI architectures (cf. [26] and see below). 

3.2   Forward Planning 

This section illustrates the components added to the reinforcement learning compo-
nents to have forward planning. The “predictor”, i.e. the system’s model of the world, 
is a set of 8 feed-forward two-layer networks, called “experts”. Each expert corre-
sponds to one action. Each expert takes yt as input, and is specialized to predict the 
following sensors’ activation xt+1, if the action corresponding to it is executed, with its 
sigmoid output units. To have a binary output, the output of each sigmoid unit is 
squashed to 0 if below 0.5, and to 1 if above. A hand-designed selector chooses the 
expert corresponding to the selected action to yield the output of the predictor. The 
experts are trained while the robot navigates randomly in the environment for 200,000 
cycles. This brings the “quadratic error” (computed as (∑i[(x’i-xi)2]/n))1/2 where xi and 
x’i are the actual and predicted activations of the n sensors) to about 0.24. This train-
ing is done before the simulations illustrated below. At each cycle, the contrast pattern 
yt and the input pattern xt+1, observed after the execution of one action, are respec-
tively used as input and as teaching output to train the expert that selected the action 
with a Widow-Hoff rule [31]. Notice that the predictor yields deterministic predictions 
that tend to be the average of the xt+1 observed. This is a simplification since the world 
is stochastic and the model should produce stochastic predictions. 

The action-planning controller is a hand-designed algorithm (Fig. 3) that decides 
the planning or acting mode of the system and generates the forward (and backward) 
chains. Fig. 4 shows the details of one cycle of action and one cycle of (forward or 
backward) planning. The whole algorithm of Fig. 3 and Fig. 4 is executed sequentially 
one time at each cycle of the simulation. 



 
//Initialisations 
01 IF(NewGoalHasBeenAssigned) 
02   MaxStepsPlan := 1 
03   ConfThresh := MaxConfThresh 
04   ForwardPlanning := TRUE 
05   StepPlan := 0 
06   InputFromWorld := TRUE 
//Decision about planning or acting 
07 IF(InputFromWorld) 
08   System gets input x

t
 (y

t
) from the robot’s sensors 

09   Actor gets y
t
 and gives m

t 

10   Confidence is computed on the basis of m
t
 

11   IF(Confidence < ConfThresh) 
12     Planning := TRUE 
13   ELSE 
14     Planning := FALSE 
15     ConfThresh := MIN(MaxConfThresh, ConfThresh + Gain) 
//Control of forward chains’ length and interruption 
16 IF(Planning) 
17   StepPlan := StepPlan + 1 
18   ConfThresh := ConfThresh - Decay 
19   IF(ForwardPlanning) 
20     IF(InputFromWorld = TRUE) 
21       InputFromWorld := FALSE 
22     ELSE 
23       System uses predictor’s output y

t
 as input 

24     IF(GoalReached OR StepPlan = MaxStepsPlan) 
25       IF(StepPlan = MaxStepsPlan) 
26         MaxStepsPlan := MaxStepsPlan + 1 
27       ELSE 
28         MaxStepsPlan := MIN(MaxStepsPlan, StepPlan * 2) 
29       InputFromWorld := TRUE 
30       IF(BidirectionalPlanning) 
31         ForwardPlanning := FALSE 
32         ForwardSteps := StepPlan 
33         GoalAsInput := TRUE 
34         InputFromWorld := FALSE 
35       StepPlan := 0 
//Control of backward chains’ length and interruption 
36   ELSE 
37     IF(GoalAsInput = TRUE) 
38       System uses goal yg as input 
39       GoalAsInput := FALSE 
40     ELSE 
41       System uses back-predictor’s output x

t
 (y

t
)as input 

42     IF(StepPlan = ForwardSteps) 
43       ForwardPlanning := TRUE 
44       InputFromWorld := TRUE 
45       StepPlan := 0 
 

Fig. 3. Pseudo-code of the action-planning controller. “:=” is the assignment operator, 
“MIN(. , . , …)” is a function that returns the minimum argument, “//” indicates a comment 

If the variable “BidirectionalPlanning” is set at “FALSE”, then the algorithm im-
plements the forward planner. Let us see how the forward planner works. When a new 
goal is assigned to the system, some variable settings are done (line 1 to 6). The sys-



tem’s planning or acting mode (variable “Planning”) is decided each time the system 
receives an input from the world (line 7) on the basis of the system’s “confidence” 
(line 8 to 14). 

 
//Networks’ activation in one forward chain cycle 
46 IF(Planning) 
47   IF(ForwardPlanning) 
48     Evaluator gets y

t
 and gives V'π[y

t
]
 

49     Actor gets y
t
 and gives m

t
  

50     Stochastic selector gets m
t
 and gives a

t
 

51     Predictor gets y
t
, a

t
 and gives x

t+1
 (y

t+1
) 

52     Matcher gets y
g
, y

t
 and gives r

t
 

53     TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
, gives e

t-1
 

54     Evaluator gets y
t-1
, e

t-1
 and learns 

55     Actor gets y
t-1
, m

t-1
, a

t-1
, e

t-1
 and learns 

56     IF(BidirectionalPlanning) 
57       Back-Actor gets y

t
 and gives m

t-1
 

58       Back-Actor gets y
t
, m

t-1
, a

t-1
(actor), e

t-1
 and learns 

//Networks’ activation in one backward chain cycle 
59   ELSE 
60     Back-actor gets y

t
 and gives m

t-1
  

61     Back-stochastic selector gets m
t-1
 and gives a

t-1
 

62     Back-predictor gets y
t
, a

t-1
 and gives x

t-1
 (y

t-1
) 

63     Evaluator gets y
t-1
 and gives V'π[y

t-1
] 

64     Matcher gets y
g
, y

t
 and gives r

t
 

65     TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
 and gives e

t-1
 

66     Evaluator gets y
t-1
, e

t-1
 and learns 

67     Back-actor gets y
t
, a

t-1
, e

t-1
 and learns 

68     Actor gets y
t-1
 and gives m

t-1
 

69     Actor gets y
t-1
, m

t-1
, a

t-1 
(back-actor), e

t-1
 and learns 

//Networks’ activation in one action cycle 
70 ELSE 
71   Evaluator gets y

t
 and gives V'π[y

t
]
 

72   Actor gets y
t
 and gives m

t
 (already done in line 9) 

73   Stochastic selector gets m
t
 and gives a

t
 

74   Matcher gets y
g
, y

t
 and gives r

t
 

75   TD-Critic gets V'π[y
t-1
], V'π[y

t
], r

t
 and gives e

t-1
 

76   Evaluator gets y
t-1
, e

t-1
 and learns 

77   Actor gets y
t-1
, m

t-1
, a

t-1
, e

t-1
 and learns 

78   System executes a
t
 in the world 

79   IF(BidirectionalPlanning) 
80     Back-Actor gets y

t
 and gives m

t-1
 

81     Back-Actor gets y
t
, m

t-1
, a

t-1 
(actor), e

t-1
 and learns 

 

Fig. 4. Pseudo-code of the activation of the neural networks components in one cycle of for-
ward planning, backward planning and action 

The system’s confidence is defined as the highest of the actions’ probabilities 
measured at the position currently occupied by the simulated robot. If the confidence 
is above a certain threshold the system acts in the world and the predictor is not used 
(cf. Fig. 4). If the confidence is below the threshold, the action-planning controller 
“disconnects” the robot from the world (line 11, 12, 16, 22 and 23; see 4 spike stars in 



Fig. 2), in the sense that it starts to generate simulated experience by using the predic-
tor and the matcher (cf. Fig. 4). 

Each chain of predictions starts when the system switches from the acting to the 
planning mode (line 7, 8, 11, 12), and starts from the image that corresponds to the 
position currently occupied by the simulated robot (line 7 and 8). Then the chain con-
tinues with “rings” each made up by a prediction from the predictor (one for each 
cycle: line 19 to 23). Notice that chains of predictions tend to be different between 
them since the system selects actions stochastically (Fig. 4, line 49 and 50, ). If one 
chain terminates without encountering the goal, the succeeding chain gets one “ring” 
longer (line 2, 24 to 26), otherwise it tends to get shorter (line 25, 27 and 28). While 
planning, the confidence threshold decreases (line 18). This prevents the robot from 
getting stuck in places in which the system is unable of becoming “confident” enough 
to start to move (for example, without this mechanism the simulated robot got stuck 
between the arena’s border and the northwest landmark). While acting, the threshold 
increases again and reaches the maximum level without ever exceeding it (line 15). 
This guarantees that the simulated robot tends to move only when the confidence is 
above the maximum level of the threshold (MaxConfThresh). In the simulations the 
parameters that regulate these aspects are set as follows: Decay = 0.000001, Gain = 
0.01, MaxConfThresh = 0.15. Each time a chain of predictions is terminated (either 
because the goal has been encountered or because it has reached a maximum length, 
line 24) the system “connects” again to the sensors (line 24, 29, 7 and 8), updates the 
mode (line 9 to 14), and starts to act or to generate another chain of predictions. 

Fig. 4 shows the activation of the neural networks executed in one cycle of action  
when the variable “planning” is “FALSE” (line 46, 70 to 78). When planning is 
“TRUE” the predictor produces one of the predictions that make up the chain of pre-
dictions (line 51) and the matcher checks if the chain encounters the goal (line 52). 
Moreover, while the chains of predictions are generated the actor and the evaluator are 
trained with reinforcement learning as if the robot were acting in the world (compare 
line 48 to 55 with line 71 to 77). This allows the evaluator to improve its evaluating 
capacity and the actor to shape the action probabilities. As a consequence, when the 
system stops planning and acts in the world (line 78) it reaches the goal following a 
path that tends to be straight. 

3.2 Reactive Behavior and Forward Planning: Results and Interpretations 

The first simulation has tested the taskability of the reactive-planning system. This has 
been done by comparing its performance with the performance of the system made up 
by the reactive components only. The simulated robot is set at the southeast start, and 
its task is to reach the goal. Each time the simulated robot reaches the goal it is set at 
another randomly-drawn position of the arena. This is done for 50,000 cycles. 

Fig. 5 reports the results of this simulation (averaged over 10 simulations run with 
different random seeds). For both the reactive and planning controllers the number of 
moves taken to reach the goal was measured and plotted against the cumulated cycles 
(this measure was sampled every 100 cycles, and then smoothed with a 10-step mov-
ing average). Each cycle reported in the graph implied the execution of one action and 



eventually, if the controller was planning, a variable number of planning cycles. In the 
case of the planner, the graph also reports the number of planning cycles per move. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Y-axis: moves per success taken by the reactive system (action), and moves per success 
(action (plan)) and planning cycles per success (plan) taken by the reactive-planning system, 
measured against the cumulated simulation cycles (x-axis). The measures have been sampled 
every 100 cycles and have been smoothed with a 10-step moving average, and are the average 
of the results of 10 simulations run with different random seeds 

When assigned the (new) goal, the reactive system reaches it, by random walk, in 
about 1600 steps. When assigned the (new) goal, the reactive-planning system reaches 
it in about 200 steps from the first time it pursues it. This result is achieved through a 
considerable amount of planning processing: on average (10 random seeds) it takes 
40,116 planning cycles to reach the goal the first time. During this planning activity 
the skills of the evaluator and actor improve so that when the system decides to act in 
the world it can achieve the goal by following an almost straight line. If the confidence 
threshold is set at 0.25 (a value higher than the previous 0.15), the performance of the 
planner improves to about 50 moves (see Fig. 6). These results demonstrate that the 
reactive-planning system implements genuine taskable planning. In fact, by using the 
goal-independent information stored in the predictor, the planner outperforms the 
corresponding reactive system from the first time it pursues the goal. 

Fig. 5 shows another important property of the reactive-planning system. With re-
peated trials the system needs progressively less planning cycles, until it is capable of 
reaching the goal reactively without planning in about 40 moves from any position of 
the arena (the optimal path, not considering noise and obstacles, is about 15 moves). 
Interestingly, direct observation of the simulated robot’s behavior also showed that 
once the robot has planned from a given position and then starts to act, it stops acting 
only if it reaches regions that are far away from the path between that position and the 
goal. This happens because planning process is focused on the states between the 
position where planning takes place and the goal. These results indicate that the algo-
rithm nicely interleaves action and planning on the basis of “confidence”, and that 
while planning it develops the skills of the evaluator and actor only for relevant states. 

The quality of the chains of predictions generated by the predictor is a critical as-
pect of the system. Recall that when the predictor was trained, the square error per 
output unit did not go below 0.24, a quite high level if one considers that the error 
made by drawing a prediction randomly is about 0.5. On the basis of this, one could 
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reasonably expect that the chains of predictions would have become completely ran-
dom after few steps. In fact if a noisy prediction is fed back into the predictor, one 
would expect that the new prediction accumulates a double amount of noise, and so on 
for the further predictions generated along the chain. Interestingly, this is not the case. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. The positions occupied by the simulated robot the first time that it reaches the goal by 
reinforcement learning (left) and by planning and acting (right) 

A simulation was run to verify this. The simulated robot was set at the southeast 
start. The action “selected” was fixed to northwest by suitably changing the simulation 
program. A sequence of 29 successive predictions was then recorded (see Fig. 7). The 
results show a quite surprising capacity of the predictor to anticipate the consequences 
of actions. For example the predictor is capable of coping with noise, is capable of 
anticipating the appearance of landmarks from behind other landmarks, or the disap-
pearance of them, and the overall chains of predictions are quite similar to the corre-
sponding image sequences (compare the left and right parts of Fig. 7). 

Though good, the predictor makes some mistakes (see Fig. 7 and cf. [3]; inciden-
tally, these mistakes are quite interesting). For example it “loses” some landmarks, 
predicts the appearance of non-existing landmarks, tends to keep fixed images of 
landmarks at the middle of the scene (this is a strong regularity learned in the world: 
when the simulated robot moves toward a landmark, the image of it stays still while 
the images of all other landmarks move to the sides). 

This robustness to noise of the predictor probably depends on the neural-networks’ 
generalization property, and on the non-linearity of the output units of the predictor’s 
experts (recall that these are sigmoid units whose output is compared with a 0.5 
threshold and made binary accordingly, see above). When the predictor is trained, the 
images used as teaching output are those that correspond to the views of the world. As 
a consequence, even when fed with some images corrupted by noise the predictor’s 
output will tend to be close to an image that corresponds to a view of the world since 
noise will tend to be filtered out by the non-linear output units. 

This section is closed with some remarks on the noise robustness of the reactive 
system (the noise robustness of the planners is comparable). The system is robust with 
regards to the noise that affects actions and to the noise that causes the pixels of the 
retina to flip their values: doubling the variance of the former (from 0.01 to 0.02 of 
variance: recall that the step measures 0.05) or the probability of the latter (from 0.01 



to 0.02) does not disturb the system. On the contrary, the system is very sensitive to 
the compass noise. Doubling it (from 1 degree to 2 degrees of variance) makes the 
system fall in local minima. Probably the reason of this sensitivity is that the rotation 
invariance of images is very important in the absence of a rotation-invariant pre-
processing and with the simple one-layer neural networks used here. 
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4   Bidirectional Planning 
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bidirectional planner that exploits this information by generating chains of “predic-
tions” both from the current position and from the goal image, and show that this 
planner has some important advantages in comparison to the forward planner. 

4.1   The Architecture and Functioning of Bidirectional Planning 

If the variable “BidirectionalPlanning” of the algorithm illustrated in Fig. 3 and Fig. 4 
is set at “TRUE”, the algorithm implements bidirectional planning. As the forward 
planner, the bidirectional planner decides if planning or acting on the basis of the 
measure of confidence at the position currently occupied by the simulated robot (line 
7 to 14). The major difference between the two algorithms is that while planning the 
bidirectional planner generates prediction chains alternately forward from the current 
position image (line 47 to 55 implement one cycle of forward chain) and backward 
from the goal image (line 38; line 60 to 69 implement one cycle of backward chain). 
The length of each backward chain is the same as the last forward chain (line 32 and 
42). Forward chains are executed as in forward planning. Backward chains are exe-
cuted through the “back-predictor” and “back-actor” (Fig. 2). 

The back-predictor is a network with the same architecture as the predictor. While 
the predictor is trained to produce the association yt, at → xt+1, the back-predictor is 
trained to produce the association yt, at-1 → xt-1 (time indexes used backward) i.e. to 
remember (or guess) which situation xt-1 led the system to the current situation yt after 
executing action at-1 (line 62). Notice that each couple of experts of the predictor and 
of the back-predictor corresponding to a particular action could have been integrated 
in one bi-directional network associating xt ↔ xt+1 under action at. This has not been 
done since for simplicity only feed-forward networks have been used. 

The back-actor has the same architecture as the actor, and is used to generate ac-
tions for the backward chains (the at-1 of the association yt, at-1 → xt-1, see line 60 to 
62). Before the tests shown below the back-actor weights are randomly drawn in the 
interval [-0.001, 0.001], so initially it selects actions randomly. During a back cycle 
that leads from yt to yt-1 (from xt to xt-1), after the back-actor selects at-1, the merit of 
this action is updated according to the same formula used for the actor (see equation 
3) and with the usual error et-1 = (rt + γ V'π[yt]) - V'π[yt-1] (line 67). However, now the 
merit of the action is updated using yt as input for the back-actor (and not yt-1 as for 
the forward actor). Notice that with this training the back-actor learns to generate 
actions that lead to states with the lowest possible evaluation V'π[yt-1], i.e. states far 
from the goal and visited few times. When backward chains are generated, the actor 
and evaluator are also updated using et-1. In particular the actor produces the actions’ 
merit in correspondence to yt-1, and then its weights are updated on the basis of those 
merits and the action at-1 selected by the back-actor and back-stochastic selector (line 
68 and 69). During forward planning and acting, the back-actor is also trained by 
using et-1 (line 56 to 58 and 79 to 81). To this end, in each forward cycle the back-
actor yields the actions’ merit mt-1 in correspondence to yt, and then its weights are 
updated on the basis of those merits and the action at-1 selected by the actor and sto-
chastic selector for yt-1. The overall functioning of the bidirectional planning algorithm 
can be summarized as follows. The back-actor learns to yield backward chains that 



“escape” from the goal in “straight” lines, hence creating a big area of positive evalua-
tions around the goal. This area is easily “found” by the forward planning chains that, 
as a consequence, expand the same area toward the position occupied by the simulated 
robot. At the same time the actor becomes competent in the area where positive 
evaluations diffuse, and soon gets ready to act efficiently in the world. 

Some remarks about backward planning are due. Updating the evaluator when the 
back-actor is selecting the actions may cause some problems. In fact actor-critic meth-
ods require that state evaluations reflect the expected reward averaged over the actions 
selected by the current policy (actor) in that state (notice that one could avoid this 
problem using “off-policy reinforcement learning methods”, cf. [25]). Notwithstand-
ing this, the choice made here should not be impairing because the actor’s policy and 
the back-actor’s “back-policy” should be quite similar. In fact: (a) the actor and the 
back-actor have the same architecture and are trained an equal number of times with 
the same errors; (b) the probability that the back-actor selects the action at-1 at yt (xt) is 
similar to the probability that the actor selects the same action at yt (xt-1) (yielded by 
the back-predictor on the basis of yt and at-1) since xt and xt-1 tend to be perceptually 
very similar; (c) the direction of the maximum slope of the evaluation gradient field 
built by the actor and by the back-actor tends to be the same (i.e. toward the goal). 
Incidentally, notice that these observations suggest that maybe it is possible to inte-
grate the actor and back-actor in a unique network. It remains to be ascertained which 
are the domains different from navigation where these assumptions still hold. 

Backward planning should present two important advantages vs. forward planning. 
The first advantage is exploration. Updating the evaluations backward from the goal 
brings immediately to change the evaluations of states close to the goal. On the con-
trary forward planning starts to update the evaluations only after the goal is encoun-
tered the first time. Since the first search of the goal is usually done by random walk 
(but cf. [30]), that event can take very long to occur (the expected time is exponential 
in the number of steps separating the start from the goal, cf. [30]). The second advan-
tage is in terms of propagation of evaluations. This is particularly fast if done back-
ward from the goal because newly updated evaluations of states are used to update the 
evaluations of other states [14] [30]. 

4.2   Forward and Bidirectional Planning: Results and interpretations 

The forward and bidirectional planners have been tested with the scenario illustrated 
in section 2. The task assigned to the simulated robot was to reach the goal several 
times each time departing from one of the 12 starting positions showed in Fig. 1 in a 
sequence, beginning with the northwest one (after the southeast starting position was 
used, the sequence repeated until the end of the test). The results show that both plan-
ners implement genuine taskable planning. In fact they respectively reach the goal for 
the first time in 245 and 186 moves in comparison to the reactive system that takes 
1432 moves (averaged over 10 random seeds). Both planners suitably interleave plan-
ning and reactive behavior (Fig. 8 and Fig. 9): when they repeatedly reach the goal 
from the same start, the performance improves both in terms of planning cycles and 



moves; moreover, the experience gathered while planning to reach the goal from a 
given starting position is transferred to the starting positions close to it (Fig. 8). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Number of cycles (y-axis) spent planning for each success (x-axis, 36 successes) of the 
forward and bidirectional planners. Average over 10 random seeds. For graphical reasons the 
vertical axis is cut at 6000 (forward planning took 52,923 cycles to reach the first goal) 

If the performance of the planners is compared, the following differences become 
apparent. The bidirectional planner is much more “goal oriented” than the forward 
planner. The forward planner spends nearly ten times the planning cycles used by the 
bidirectional planner (52,923 vs. 5,397 cycles) to reach the goal for the first time. 
After the first success in the world, bidirectional planning maintains its superiority for 
the following successes (Fig. 8). This difference is due to the fact that the forward 
planner takes several cycles to find the goal the first time (18,892 cycles on average). 
In comparison bidirectional planning is particularly efficient: in 6 tests out of 10 it 
reaches the goal in the world (for the first time) without having ever reached it in 
(forward) planning mode. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Number of cycles (y-axis) spent acting for each success (x-axis, 61 successes) by the 
forward and the bidirectional planners. Average over 10 random seeds 

This efficiency in exploration implies a fast “propagation” of the correct evalua-
tions and policy updating through states. Fig. 10 shows the evaluations produced by 
the two planners in 20×20 positions of the arena after some cycles of action and plan-
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ning. The bidirectional planner yields evaluations much closer to the optimal ones 
(equal to γ to the power of the number of steps to the goal) than the forward planning.  

The bidirectional planner is also more effective than the forward planner in propa-
gating the evaluations back from the goal. Direct observation of the dynamics of the 
graph of Fig. 10 drawn during the simulation, shows that, at the beginning of the simu-
lation, in the case of the forward planner the evaluations tend to fall again to 0 be-
tween a (planned) reaching of the goal and the next. This happens because the goal is 
reached rarely and the evaluations get close to 0 due to the decay coefficient that, on 
the average, lowers the “targets” of the evaluations’ updating (see formula 3). In the 
case of the bidirectional planner, positive evaluations are continuously “injected” in 
the graph from the goal state, and from there rapidly diffuse to contiguous states. 

 
 
 
 
 
 
 
 
 
 

Fig. 10. Evaluations produced by the forward (left) and bidirectional (right) planners when put 
in 20×20 different positions of the arena. The area of the white squares (positive evaluations) 
and the black squares (negative evaluations) is proportional to the absolute evaluation pro-
duced at that position. Gray in correspondence to a position indicates an evaluation close to 0. 
For the forward planner, the evaluations have been recorded at the cycle after which the goal 
was reached the first time with a chain of predictions. For the bidirectional planner, evaluations 
were recorded after 13,340 cycles: this is the average number of cycles taken by the forward 
planner to reach the goal for the first time with a chain of predictions. Negative evaluations, 
that should not be present since the task does not involve negative rewards, are due to the 
insufficient number of degrees of freedom of the evaluator and the generalization properties of 
networks (negative evaluations are more pronounced in the case of the bidirectional planner 
simply because it is in a more advanced stage of learning in comparison to the forward planner) 

5   Related Literature and Novelties of the Paper 

The actor-critic part of the planners is similar to the actor critic models implemented 
with neural networks in [14] and [25]. The only difference is the way the actions are 
selected stochastically (see equation 2). 

The idea of implementing planning as a form of (reinforcement) learning within a 
model of the world has been proposed with the Dyna models [26] (also compare [5], 
on “trial-based real-time asynchronous dynamic programming” applied to path finding 
problems, with the planners presented here). It is important to stress that previous 
works (e.g. [14] and [26]) used Dyna architectures exclusively to speed up learning, 



not to implement genuine taskable planning as done here. The reason is probably that 
no device like the matcher was used. The idea of generating simulated experiences on 
the basis of the current policy, called "trajectory sampling", was investigated in [5] 
and [25] but this is the first time that long prediction chains are generated with neural 
networks and their properties are investigated. The idea of increasing the depth of the 
path generated during planning resembles the “iterative deepening search” applied to 
deterministic problems by problem solving research [12]. However, the algorithms 
proposed here are new since they deal with stochastic problems. 

The forward and bidirectional planning algorithms that control the flow of informa-
tion between the components of the systems and generate the prediction chains are 
new. The idea of implementing the predictor (model of the environment) with a feed-
forward neural network trained with experience has already been used in [14] and 
[18]. Notice that these works, as here, use deterministic neural networks to implement 
a model of a stochastic world. An alternative would have been to use stochastic net-
works, such as the feed-forward stochastic networks proposed in [17]. In this paper 
the predictor was trained while the simulated robot randomly explored the world. 
More sophisticated ways of exploring the world for model building have been pro-
posed, e.g. in [23] and [30]. The idea of using expert networks for the predictor, each 
specialized to predict the consequences of one action, is proposed and used in [13]. 

The general idea of planning backward from the goal is widely used in the literature 
on classic planning [1]. However, its application to stochastic worlds, as done here, 
implies completely new problems, so the algorithms proposed here are new in this 
respect. The idea of updating the evaluations backward from the rewarding states has 
already been investigated within the reinforcement learning literature. In particular 
[13], [14], [19] and [30] have shown that this is a powerful strategy because state-
evaluations are updated on the basis of recently updated evaluations. However, all 
these works used memory structures to store sequences of states that led to rewarding 
states in order to use them for iterated “backward” backups. If one wants to use neural 
networks, this strategy raises the problem of how implementing these memory struc-
tures and how using the information stored in them. With this respect, the back-actor, 
back-predictor and matcher used here are new since they allow generating rewards and 
states backward from the goal at will. Prioritized sweeping [7] [16], by updating states 
or state variables whose evaluations would change a lot if updated, often propagates 
evaluations backwards from states close to the goal. 

There are two other important branches of research related to planning with neural 
networks. One is activation-diffusion planning (see several examples in [15]). These 
models are based on maps of Kohonen-like units [11]. Each of these units stores a 
“snapshot” of the world in its weights. While the agent randomly navigates in the 
world, lateral connections are formed/strengthened between units corresponding to 
places that are contiguous in space. Planning is implemented by “injecting” activation 
into the unit corresponding to the goal, allowing it to diffuse through lateral connec-
tions with a progressive attenuation, and selecting the actions so as to ascend the acti-
vation gradient field formed over the units. The model presented here differs from 
these models because: (a) places are represented by patterns of active cells instead of 
patterns of weights; (b) planning is based on focussed active exploration of the possi-
ble actions’ consequences; (b) distributed representations are used allowing one unit 



to participate to the representation of several places (while activation diffusion plan-
ning needs to use one unit for each place represented). 

The second branch of research is represented by neural planners based on gradient 
descent processes ([22], [28] and [29]). These planners formulate planning problems 
in terms of differentiable cost functions (and eventually differentiable actions) so they 
have a limited applicability. Plans are found by minimising these functions. Two other 
works relevant for the issues tackled here are [18] and [27]. They present two systems 
that use neural models of the world respectively to improve the performance of an 
agent controlled by a neural network evolved with genetic algorithms, and to allow a 
simulated robot to learn the world’s regularities at multiple levels of abstraction. 

6   Conclusion and Future Work 

This paper has presented two new reactive and planning systems implemented with 
neural networks and inspired by Dyna-PI reinforcement learning methods. These 
planners present important novelties. Contrary to Dyna architectures, the planners are 
capable of executing genuine taskable planning using the goal independent informa-
tion stored in the model of the world. This allows them to reach the goal with few 
moves from the first time they pursue a goal. This ability, that relies on the capacity to 
anticipate future states, is of great advantage if experience is costly or risky. Both 
planners are capable of nicely interleaving planning and action. They can decide to 
plan when their “confidence” in action, a novel concept introduced in the paper, is 
low, and to act reactively when they have enough experience about the goal and the 
current state. In the future, a better measure of confidence will be based on the con-
cept of “entropy” applied to the actions’ probabilities [24]. The model of the world is 
a compound neural network trained with experience to predict the states deriving from 
the execution of actions. The tests of the planners run with a simulated robot engaged 
in a stochastic path-finding task have indicated that the chain of predictions generated 
on the basis of this model of the world are more robust than expected, due to the non-
linearity and generalization capabilities of neural networks. Since the model of the 
world is the core component of each planning system, this interesting result will be 
further investigated in the future. The bidirectional planner, that exploits the knowl-
edge of the goal to generate “prediction” chains backward from it, has shown to be 
more efficient in exploring the state space and quicker in propagating the evaluations 
back from the goal than the forward planner. Unfortunately, these advantages have 
been obtained at the cost of a rather complex architecture. In the future a simpler 
planner will be studied that generates forward chains as the forward planner presented 
here, and updates the goal state’s evaluation with a target of 1+γ when a forward chain 
terminates without encountering the goal (1+γ, and not simply 1, will be used since the 
states encountered one step before reaching the goal are updated on the basis of the 
undiscounted reward of 1). Given the generalization property of neural networks, this 
should change the evaluation of several states around the goal state, creating an ex-
tended area with positive evaluations. This would facilitate the forward chains in find-
ing the goal state, allowing one to have some advantages similar to those obtained 



with the bidirectional planner, but with an architecture as simple as the forward plan-
ner’s one (see [3] for details). 
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