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The paper describes a neural network model of early language acquisition with an 
emphasis on how language positively influences the categories with which the child 
categorizes reality. Language begins when the two separate networks that are responsible 
for nonlinguistic sensory-motor mappings and for recognizing and repeating linguistic 
sounds become connected together at 1 year of age. Language makes more similar the 
internal representations of different inputs that must be responded to with the same 
action and more different the internal representations of inputs that must be responded to 
with different actions. 

1. Introduction 

Understanding the relationship between language and cognition is one of the 
most difficult and important challenges facing cognitive science. Language has 
not only a communicative (social) function, but also a cognitive (individual) 
function (Vygotsky 1962, Jackendoff 1996, Clark 1998, Carruthers 2002). The 
view of language as something that transforms all human psychological 
processes dates back as early as the 1930s, with the work of Russian scholar Lev 
Vygotsky (1962, 1978), but it is a view which has been rather neglected in 
mainstream cognitive science. Nonetheless, the idea has not completely 
disappeared and recently has been raising increasing interest  in philosophy and 
cognitive science (Carruthers & Boucher, 1998; Gentner & Goldwin-Meadow, 
2003). Indeed, in recent years, language has been proposed to have an influence 
on, and to improve, many human psychological functions, among them 
categorization (Clark, 1998; Gentner, 2003), learning (Waxman & Markov, 
1995; Nazzi & Gopnik, 2001), selective attention (Jackendoff, 1996; Clark, 
1998), memory (Gruber & Goschke, 2004), voluntary control (Diaz & Berk 
1992), perspective taking (Tomasello, 2003), analogy making (Gentner 2003), 
and reflexive thinking (Dennett 1991, 1996; Carruthers 2003). This paper 
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describes some very simple neural network simulations that (a) model the very 
earliest stages of language acquisition and (b) investigate the effects of language 
on categorization. 

During her first year of life, the child learns to control her movements, to 
make appropriate sensory-motor mappings, to categorize perceptual experiences, 
and to reproduce her own sounds and the linguistic sounds of her environment. 
Notwithstanding all these progresses, this phase of child development is called 
‘pre-linguistic’ because in her first 10-12 months the child does not show any 
strictly linguistic competence, that is, she is able neither to understand nor to 
meaningfully produce words. It is only around the end of her first year that the 
child learns to connect the linguistic sounds that have become familiar to her 
with their meanings as indicated by the fact that she reacts correctly to linguistic 
stimuli and she produces words in the appropriate circumstances. 

Language acquisition can be considered to involve three sub-tasks(Kit, 
2002): the acquisition of linguistic forms, the acquisition of non-linguistic 
sensory-motor mappings, and the association between linguistic forms and 
specific sensory-motor mappings, which become the meanings of the linguistic 
forms. Behavioral evidence (Bloom, 1994) suggests that the acquisition of 
linguistic forms and the acquisition of sensory-motor mappings run quite 
independently until the end of the first year and that only after the child has 
acquired a certain ability to map sensory inputs into motor outputs and to 
categorize experiences, on one side, and to recognize and produce linguistic 
forms, on the other side, the third task, the association of linguistic forms with 
specific sensory-motor mappings, can begin. The model of language learning 
presented here is based on this kind of behavioral evidence. 

2. Method 

2.1.  The neural network and the environment 

The neural network used in our simulations is modular. It is constituted by two 
sub-networks with three layer each, which we call the sensory-motor sub-
network and the linguistic sub-network. The hidden layers of the two sub-
networks are reciprocally connected by two matrices of connection weights so 
that the linguistic and the sensory-motor systems can interact with the each other 
(figure 1). 

The sensory-motor sub-network has 16 bipolar input units (each unit’s 
activation can be either 1 or –1) which encode the properties of perceived 
objects, 2 hidden units (with continuous activation in the interval [–1; 1]), and 2 
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output units which encode the action performed by the network in response to 
each object. The activation of the two output units is thresholded to be either 1 
or – 1, so that there are only four possible ‘actions’: <-1; -1>, <-1; 1>, <1; -1>, 
<1; 1>. The network’s environment consists of 480 objects, belonging to 4 
categories of 120 exemplars each. There are four prototype vectors, one for each 
categorya, and the perceptual properties of objects are generated by flipping 4 
bites of the prototype to which the object belongs. 

Figure 1. The neural network. 

The linguistic sub-network has 2 input units encoding incoming linguistic 
signals, 2 hidden units, and 2 output units which represent emitted sounds. All 
the units of the linguistic sub-network have continuous activations in the interval 
[– 1; 1]. The linguistic environment is constituted by 4 words, which can be 
interpreted as the names of the four kinds of objects or of the appropriate actions 
to be performed upon them. Since words are pronounced in different ways by 
different persons and by the same person at different times, the acoustic inputs 
are created by changing slightly 4 prototype vectors, one for each word (<-0.5; -
0.5>, <-0.5; 0.5>, <0.5; -0.5>, <0.5; 0.5>). There are 120 instances of each word 
and each instance is produced by changing both values of the corresponding 
prototype vector by a amount randomly chosen in the range [–0.25; 0.25] . 

                                                           
a The prototype vectors are: <-1; -1; -1; -1; -1; -1; -1; -1; 1; 1; 1; 1; 1; 1; 1; 1>; 

<-1; -1; -1; -1; 1; 1; 1; 1; -1; -1; -1; -1; 1; 1; 1; 1>; <-1; -1; 1; 1; -1; -1; 1; 1; -1; 
-1; 1; 1; -1; -1; 1; 1> and <-1; 1; -1; 1; -1; 1; -1; 1; -1; 1; -1; 1; -1; 1; -1; 1> 
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2.2. The two stages of learning 

The entire network goes through two successive stages of learning which are 
meant to correspond approximately to child’s learning from birth to 1 year and to 
her learning from 1 year on, respectively. In the first stage of learning the two 
sub-networks are trained independently to accomplish two different tasks. The 
sensory-motor network learns to categorize objects and the linguistic network 
learns to repeat or imitate words. At the end of this first stage the connections 
between the hidden layers of the two sub-networks become functional and in the 
second stage of learning the network learns to associate words with the 
categories of objects to which they refer.   

At the beginning the network is initialised with random connection weights 
in the range [-0.5; 0.5]. Then, 1000 cycles of backpropagation learning (with a 
learning rate of 0.2) are run in the following way. For the sensory-motor sub-
network, one of the 480 different objects is randomly chosen, its perceptual 
properties are encoded in the input units of the sensory-motor network, the 
response of the network is calculated, and the correct action is provided to the 
network as teaching input (correct responses are <-1; -1>, <-1; 1>, <1; -1> and 
<1; 1> for objects belonging to category A, B, C and D, respectively). For the 
linguistic sub-network, one of the 480 possible instances of words is randomly 
chosen and encoded in the linguistic input units, the sound produced by the 
linguistic network in response to this heard sound is calculated, and the same 
sound heard as input is given as teaching input (in other words, the linguistic 
network has to accomplish an autoassociative task). 

During this first stage of learning, the connections that link the hidden layers 
of the two sub-networks are non-functional. After 1000 cycles of back-
propagation learning, the inter-network connections become functional and in 
the second stage of learning their weights are modified so that the network learns 
to associate the internal representations of objects (the vectors of activation of 
the sensory-motor hidden layer) with the internal representations of the 
appropriate words (the vectors of activation of the linguistic hidden layer), and 
vice versa. This second phase of learning runs as follow. One of the 480 objects 
is chosen randomly, together with one of the 120 instantiations of the word that 
designates the category to which the object belongs. The object and the word are 
given as input to the sensory-motor network and to the linguistic network, 
respectively. Then, the vectors of activation of the two hidden layers are 
calculated and two cycles of the delta rule learning algorithm are applied by 
considering the two hidden layers with the connection weights in between them 
as two distinct perceptrons: one perceptron has the sensory-motor hidden layer 



 5

has its input layer and the linguistic hidden layer as its output layer, and the other 
perceptron has the linguistic hidden layer as its input layer and the sensory-motor 
hidden layer as its output layer. The delta rule is applied by using the vector of 
activation observed in the linguistic hidden layer as teaching input for the first 
perceptron and the vector of activation observed in the sensory-motor hidden 
layer as teaching input for the second perceptron. The procedure, like that of the 
first stage of learning, is applied 1000 times with a learning rate of 0.2. 

3. Results 

We have run two kind of tests, behavioral tests and internal representations tests. 
The behavioral tests have the function of assessing the performance of the 
network, while with the internal representation tests we analyse the effects of 
language on the categorization abilities of the network. 

3.1. Behavioral tests 

There are 4 behavioral tests: categorization, linguistic imitation, naming, and 
comprehension. In the categorization test the sensory-motor network is given an 
object as input and its performance is calculated as the difference between its 
action response and the right one (according to the object’s category). In the 
linguistic imitation test the linguistic network is given the instantiation of a word 
as input and performance is how much the network is able to reproduce the heard 
sound in its sound output. In the naming test we give the network one of the 480 
objects as input, activation spreads to the sensory-motor hidden units, then to the 
linguistic hidden units, and finally to the linguistic output units. We calculate the 
network’s performance with respect to the vector prototype of the word that 
designates the category of the perceived object. The comprehension test is 
symmetrical to the naming one. In this test, we give the network an instantiation 
of a word as input and let the activation spread from the linguistic input units to 
the linguistic hidden units, then to the sensory-motor hidden units and, finally to 
the motor output units of the sensory-motor networks. The network’s 
performance is calculated with respect to the response that is appropriate to the 
meaning of the word, that is, to the action to be produced in response to objects 
of the category to which the heard word refers. 

All the behavioral tests are conducted three times: at the beginning of the 
simulation (cycle 0), at the end of the first stage of learning (cycle 1000), and at 
the end of the second stage (cycle 2000). Figure 2a reports the percentage of 
errors in the four behavioral tests averaged on all the 480 inputs (objects in the 
categorization and naming tests and instances of words in the linguistic imitation 
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and comprehension tests)b. The network learns both to perform the correct action 
in response to a perceived object and to imitate the linguistic sounds it hears: for 
both tasks the percentage of error decreases from around the 75% at the 
beginning of the simulation to 0%, that is, no error at all, at the end of the first 
stage of learning. Even the second stage of learning is very successful: while at 
the end of the first stage of learning the network gives wrong responses almost 
90% of the time in the naming test and around 70% of the time in the 
comprehension test, at the end of the second stage the network has acquired a 
perfect linguistic competence in that it always names objects correctly and 
responds appropriately to all the linguistic signals present in its environment. 

Figure 2. (a): Percentage of errors in the categorization (left), linguistic imitation (middle-left), 
naming (middle-right) and comprehension (right) tests with random weights (0) and after the first 
(1000) and the second stage of learning (2000). (b): Average clouds’ dimension before learning 
(left) and after learning in the ‘vision’ (middle), and ‘language’ (right) conditions. (c): Average 
distance between clouds before learning (left) and after learning in the ‘vision’ (middle), and 
‘language’ (right) conditions. See text for details. 

3.2. Internal representations tests 

Given the perceptual properties of an object as input, we can look at the 
activation vector of the two sensory-motor hidden units (in the range [-1; 1]) and 
consider this activation vector as the network’s internal representation of that 
object. Therefore, the internal representation of an object can be viewed as a 
point in a bi-dimensional space, with each dimension of the space corresponding 
to the activation state of one hidden node; consequently, the internal 
representation of one category of objects is the “cloud” of points which represent 
all the objects belonging to that category (see figure 3). A good categorization is 
one in which (1) objects belonging to the same category are represented 
similarly, that is, the size of their cloud is small, and (2) objects belonging to 
                                                           
b All the results are averaged over 10 replication of the simulation with different 

initial conditions (random connection weights). 
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different categories are represented differently, that is, the different clouds are 
distant from each other. So, for assessing goodness of categorization we use two 
measures: (1) cloud size, calculated as the average distance between all the 
points belonging to a cloud and the cloud’s geometric center, averaged over the 
four clouds, and (2) distance between clouds, calculated as the average distance 
between the centers of the four clouds. We analyse the categorization 
performance of the trained neural network in two conditions: ‘vision’ and 
‘language’. 

The vision condition corresponds to the situation described above, in which 
the clouds are the network’s internal representations given the objects as visual 
input. In the language condition the network perceives the objects together with 
their names (random instances of the four words corresponding to the four 
categories). In this condition we present both kinds of input, then we calculate 
the linguistic hidden unit activations given the linguistic input, and then we 
measure the sensory-motor hidden unit activations given both the visual input 
and the activation arriving from the linguistic hidden units.  

Figure 3. Network’s internal representations (clouds) before learning (a) and after learning in the 
vision (b) and language (c) conditions. See text for details. 

Figure 3 shows the internal representations of objects before learning (a), 
and after learning in the vision (b) and language conditions (c). While before 
learning the four clouds are big and highly overlapping and so the network 
cannot discriminate between different kinds of objects (fig. 3a), after learning 
objects’ categories are clearly distinguished in that each class of objects occupies 
one of the four corners of the network’s representational space (fig. 3b). In other 
words, during training the network has learnt to categorize objects by decreasing 
the average size of the clouds (fig. 2b, left and middle bars) and by increasing 
the average distance between the clouds (fig 2c, left and middle bars). This is 
just another example of the well-known categorical perception effect (Harnad et 
al.1995). What is more interesting is the effect that language has upon 
categorization: as you can see comparing the internal representations in the 
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vision (fig. 3b) and the language (fig. 3c) conditions, categorization is 
consistently facilitated when objects are perceived together with their ‘names’. In 
fact, the four clouds are both significantly smaller (fig. 2b middle and right bars) 
and more distant from each other (fig. 2c middle and right bars). 

4. Discussion and conclusions 

We have described a neural network model of early language acquisition. The 
model assumes that during her first year of life the child separately learns various 
sensory-motor mappings (reaching, manipulating, categorizing objects) and 
various sound-related abilities (recognizing sounds, repeating her own sounds 
and the sounds produced by others). It is only at the end of the first year that 
language learning begins. The two separate networks that are responsible, 
respectively, for the sensory-motor mappings and for the sound-related abilities 
become functionally connected and language learning consists in learning the 
connection weights linking the two networks. These weights allow the child to 
produce linguistic sounds in the appropriate circumstances and to react 
appropriately to the linguistic sounds produced by other individuals. 

But language also changes the way in which the child categorizes reality. 
Input-output mappings require categorization. Categorization is to make the 
internal representations (patterns of activation in the network’s internal units) of 
different inputs more similar if the different inputs must be responded to with the 
same action, and more different if the inputs must be responded to with different 
actions (Di Ferdinando & Parisi 2004). All organisms categorize reality. And 
infants categorize reality during their first year in order to generate the 
appropriate input/output mappings. But our model shows that language can 
influence cognition by inducing better categorization of non-linguistic inputs. 

Our model can also be considered as a general model of the integration of 
multiple sensory-motor mappings in the brain. Much activity in the brain consists 
in exploiting the co-variations observed in experience to establish correlations 
between different sensory-motor mappings. For example, visual-motor mappings 
are correlated with proprioceptive-motor and tactile-motor mappings in such a 
way that given one type of input the brain can predict the other one. Language is 
but one example of this type of integration between various non-linguistic 
sensory-motor mappings and the sensory-motor mapping from heard sound to 
pronounced sounds. Given a visual input from an object, the brain generates the 
internal representation of the word (sound) that designates the object. Or, given a 
word (sound), the brain generates the internal representation of the visually or 
haptically perceived object designated by the word. 
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However, language is somewhat different from other types of integration 
between different sensory-motor mappings. While other correlations between 
different sensory-motor mappings are not arbitrary, language is arbitrary - and 
this may require a species-specific genetically inherited basis for language 
learning. Given a visual input from a new object, the brain can predict how the 
visually perceived object would feel if touched. In contrast, given a new object 
the brain cannot predict what is the word that designates the object or, given a 
new word, the brain cannot predict which object is designated by the word. 
Furthermore, variations in how the same word is pronounced do not predict 
variations in the object designated by the word. Another important difference 
between language and other types of integration between different sensory-motor 
mappings is that the overall space of variation of heard or pronounced linguistic 
signals appears to be much smaller than the space of variation of the objects or 
actions that are designated by the linguistic signals. This is particularly important 
for categorization because it might contribute to explaining why language makes 
our sensory-motor categories more distinctive and more compact. Finally, 
language may be different because the sensory-motor mapping from heard to 
pronounced words can easily become a circular or closed circuit. When one sees 
an object, the visual input from the object does not only generate the internal 
representation of the word that designates the object but it can generate the 
actual sound of the word through private or inner speech. 

In fact, unlike animal communication systems, human language is not only 
used to communicate with other individuals but it is also used to communicate 
with oneself, either externally (private speech) or internally (inner speech). In the 
simulations described in the paper, the language which arrives to the neural 
network is produced by another individual. We intend to further explore how 
language influences categorization by applying our neural network model to 
private speech and inner speech, trying to answer the following question: How 
an individual categorizes reality when he or she is exposed to reality and at the 
same time to language stimuli that the individual him- or herself generates, either 
externally or internally? 
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