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Abstract. We describe some simple simulations showing two possible adaptive 
advantages of the ability to predict the consequences of one’s actions: predicted 
inputs can replace missing inputs and predicted success vs. failure can help de-
ciding whether to actually executing a planned action or not. The neural net-
works controlling the organisms’ behaviour include distinct modules whose 
connection weights are all genetically inherited and evolved using a genetic al-
gorithm except those of the predictive module which are learned during life. 

1 Introduction 

Organisms respond to current sensory input from the environment with movements 
that change the environment or their body’s physical relation to the environment. 
These changes at least partially determine the successive inputs that the environment 
sends to the organism’s sensory organs but this causal relation is ignored by purely 
reactive organisms which only respond to current input. In contrast, more complex 
organisms can predict what the next sensory input from the environment is going to 
be, given the current sensory input and the movement with which they plan to respond 
to this sensory input. (For possible neural structures underlying the ability to predict 
in primates, see [1], [2], [3].) What are the adaptive advantage(s) of this predictive 
ability? What can organisms with a predictive ability do that organisms without this 
ability cannot do? 

The possible adaptive advantages of being able to predict the sensory conse-
quences of one’s movements have already been discussed in the literature. For exam-
ple, Clark et Grush [4] propose that responding to the predicted proprioceptive input 
resulting from one’s movements may allow organisms to move faster because they 
don’t have to wait for the actual proprioceptive input. In this paper we describe some 
simple simulations that address this question by demonstrating two possible roles of 
the ability to predict: predicted inputs can replace missing inputs from the environ-
ment and predictions of success or failure can help the individual to take decisions. If 
any thing prevents some critical input from reaching the organism’s sensors, the or-
ganism can still behave appropriately by responding to a predicted input that replaces 
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the missing input. If an organism can predict whether or not a planned response will 
produce some desired result, the organism can decide to actually execute the response 
in case of predicted success and avoid executing the response in case of predicted 
failure. In Sections 2 and 3 we describe some simulations using the first scenario and 
the second scenario, respectively. In Section 4 we draw some brief conclusions. 

2 Predicted Inputs Replace Missing Inputs 

To survive and reproduce an organism must reach (and eat) the food elements that are 
randomly distributed in the environment. At any given time the organism’s sensory 
organs encode the position of the single nearest food element and the organism must 
respond by turning towards and approaching the food element. The organism’s behav-
iour is controlled by a sensory-motor neural network with one input unit encoding the 
location of the food element which is currently nearest to the organism, one output 
unit encoding the movement with which the organism responds to the sensory input, 
and two internal units (Figure 1a). An initial population of organisms is generated by 
assigning random connection weights to the neural network that controls each organ-
ism’s behaviour and a genetic algorithm is used to evolve in a succession of genera-
tions networks which have the appropriate connection weights that allow them to per-
form the task. 
 

 
 

Fig. 1. (a) Sensory-motor network (or module) (thick arrows). (b) Predictive module (thin ar-
rows). (c) Same/different module (broken arrows). (d) Implementation module (dotted arrows)  
 

Now imagine that for a variety of reasons (failures of attention on the part of the 
organism, something going across between the food and the organism, etc.) in some 
cycles the input from the nearest food element is replaced by some other, irrelevant, 
input. We simulate all these different circumstances by assigning a randomly gener-
ated activation level to the neural network’s input unit in a certain percentage of in-
put/output cycles. If the organism’s neural network is a simple network mapping sen-
sory input into motor output, in these ‘blind’ cycles the organism is lost. The input 
which replaces the input from food is randomly generated but the organism has no 
way of knowing this and it responds to the randomly generated input as it were input 
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from food. We expect that in these circumstances the organism’s overall behaviour 
will be significantly less effective. But consider a somewhat more complex organism 
with a neural network composed of two sub-networks or modules: the module that we 
have already described which maps sensory input into motor output and a new mod-
ule that predicts what the next sensory input will be, given the current sensory input 
and the planned movement with which the organism will respond to the current input 
(Figure 1b). This predictive module has one input unit encoding the current sensory 
input from the environment and another input unit encoding the planned motor re-
sponse of the organism to the current sensory input, two internal units, and one output 
unit encoding the predicted sensory input from the environment that will appear in the 
next cycle, i.e., after the planned movement is physically executed. (For other simula-
tions using this neural model of the ability to predict, see [5], [6]; for other models of 
learning to predict, see [7], [8]; Ackley and Littman’s [9] work on evolved reinforce-
ment-producing neural networks that guide learning is also relevant here.) 

While the network’s entire architecture is fixed and the connection weights of the 
sensory-motor module evolve and are genetically inherited, the connection weights of 
the predictive module are learned during life. (The weights of both modules could 
evolve and be genetically inherited but learning to make predictions during life tends 
to increase the flexibility of one’s predictive abilities.) The predictive module’s 
weights are randomly generated at birth and, early in its life, each individual organism 
learns to predict the next sensory input using the backpropagation procedure. In each 
input/output cycle the predicted input is compared with the actual input (which func-
tions as teaching input) and the discrepancy between the two (error) is used to gradu-
ally change the predictive module’s connection weights in such a way that after a cer-
tain number of learning cycles the predictive module is able to make correct 
predictions. 

How is this predictive ability used? When a ‘blind’ cycle occurs, the organism re-
places the missing input from food with the predicted input and responds to the pre-
dicted input rather than to the randomly generated input. We assume that early in life 
the organism has learned to generate correct predictions, which implies that the miss-
ing input and the predicted input are more or less the same. Therefore, the organism 
can respond to the predicted input as it would have responded to the actual input from 
food, with similar results. We expect that an organism endowed with this predictive 
ability will behave more or less as effectively in the world with ‘blind’ cycles as in 
the world without ‘blind’ cycles. 

How can the organism know when the current input originating in the environment 
is from food and therefore is the input to which it should respond, and when the input 
is not from food but from some other source and therefore it should respond to the 
predicted input rather than to the input originating in the environment? We imagine 
that the organism’s neural network includes two additional modules: a same/different 
module and an implementation module. The same/different module judges whether 
the current input from the environment is the same or different with respect to the 
predicted input. If the two are the same, this means that the current input is from food 
and the sensory-motor module should respond to the actual input from the environ-
ment. If the current input and the predicted input are different, this means that the cur-
rent input is from some other sources and the sensory-motor module should respond 
to the predicted input rather than to the current input from the environment. The im-



plementation module implements this judgment by telling the sensory-motor module 
which input to use. We will now describe these two modules. 

The same/different module (Figure 1c) has one input unit encoding the current in-
put from the environment and one input unit encoding the predicted input which was 
the output of the predictive module in the preceding cycle. In response to these two 
inputs the same/different module generates an output that encodes a judgment as to 
whether the two inputs are the same or different. (This same/different task can be in-
terpreted as a continuous XOR task.) 

The implementation module (Figure 1d) relays this same/different judgment to the 
sensory-motor module. To make it possible for the predicted input, rather than the ac-
tual input from the environment, to control the organism’s behaviour, the output unit 
of the predictive module, which encodes the predicted input, has connections linking 
it to the two internal units of the sensory-motor module. Through these connections 
the predicted input can determine the organism’s behaviour by replacing the actual 
input from the environment. The implementation module has an input unit encoding 
the judgment “same or different” of the same/different module and this unit sends 
connections to both the input unit of the sensory-motor module and the output unit of 
the predictive module (Figure 1d). In this way the implementation module can evolve 
weights for these two connections that tend to inhibit the output unit of the predictive 
module (encoding the predicted input) when the judgment is “same” (the current input 
is from food) and to inhibit the input unit of the sensory-motor module (encoding the 
actual input from the environment) when the judgment is “different” (the current in-
put is randomly generated). 

In the simulations that we will describe the connection weights of the sensory-
motor module, those of the judgment module, and those of the implementation mod-
ule, are all genetically inherited and they are developed using a genetic algorithm. 
Only the connection weights of the predictive module are learned during life using the 
backpropagation procedure. 

The simulation scenario is the following. We start with a population of 100 indi-
viduals whose behaviour is controlled by a neural network with random connection 
weights. The total duration of an individual’s life consists of 3500 input/output cycles 
of the individual’s neural network. These 3500 cycles are divided up into 70 episodes 
of 50 cycles each and, at the beginning of each episode, the individual is placed all 
alone in a bidimensional continuous environment of 100x100 spatial units, in a ran-
domly chosen position and with a randomly chosen orientation. (The division of life 
into separate episodes was introduced to increase variability.) The environment con-
tains 20 randomly distributed food elements. When the individual happens to be 
within 2 spatial units from a food element, the individual eats the food element. The 
food element disappears, the individual’s fitness is increased by one unit, and a new 
food element is introduced in a randomly selected location in the environment, so that 
the total number of food elements is always 20. 

An individual has a facing direction and a visual field of 180 degrees. The neural 
network controlling the individual’s behaviour has one input unit, two internal units, 
and one output unit. The input unit encodes the location of the nearest food element in 
the individual’s visual field as a continuous value ranging from 0.2 to 0.8, with a 
value of 0.5 when the food is right in front of the organism, a value of 0.2 when the 
food is 90 degrees to the right, and a value of 0.8 when the food is 90 degrees to the 



left. The distance of the food is not encoded and the organism can see a food element 
whatever the distance. The input unit sends one connection to each of two internal 
units and the two internal units send their connections to the single output unit (Figure 
1a). The output unit encodes the individual’s movements, and more specifically the 
individual’s turning to either left or right. The output unit’s activation value is con-
tinuously mapped into the interval between 0.2 and 0.8, with 0.2 encoding a maximal 
right turn of 90 degrees, 0.8 a maximal left turn of 90 degrees, and 0.5 the preserva-
tion of the current facing direction. In all cycles, after the turning movement has been 
executed, the individual moves forward 0.5 spatial units in the new facing direction.  

At the end of life each individual is assigned a fitness which corresponds to the 
number of food element eaten by the individual and the 10 individuals with the high-
est fitness generate 10 offspring each. An individual has a genotype which encodes 
the connection weights of the individual’s neural network as real numbers and each 
offspring inherits a copy of its single parent’s genotype. The value of each connection 
weight is mutated with a probability of 20% and the mutation consists in adding to or 
subtracting from the weight’s current value a number randomly selected between 0 
and 1. The 10x10=100 offspring constitute the second generation. All simulations last 
for 1000 generations and all simulations are replicated 10 times.  

2.1 Simulation 1 

Simulation 1 is a baseline simulation in which a population of organisms possessing 
only a sensory-motor module evolves in two different types of environments: an envi-
ronment without periodic random inputs and an environment with periodic random 
inputs. We expect that the population that evolves in the second environment will 
have a significantly worse performance than the population that evolves in the first 
environment. 

In the first environment an individual receives input from the nearest food element 
in all cycles. In the second environment in each cycle there is a 30% probability that 
the input from food will be replaced by a random input. Therefore, in the cycles in 
which the input from food is missing and is replaced by a random input, the organism 
will respond in a way which will tend to reduce its fitness. 

The results show that, in fact, the average fitness of the population living in an en-
vironment where all inputs are from food is higher than that of the population living 
in the environment where some inputs can be random (Figure 2). 
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Fig. 2. Average fitness of a population living in an environment in which all inputs are from 
food and a population living in an environment in which inputs from food are replaced by ran-
dom inputs 30% of the times 

2.2 Simulation 2 

In this and the following simulations the population lives in an environment where 
some inputs can be random. However, the organisms’ neural network is more com-
plex than that of Simulation 1. In Simulation 2 the organism’s neural network in-
cludes a predictive module in addition to the sensory-motor module and each individ-
ual learns early in its life how to predict correctly the next sensory input given the 
current input and the planned response to the current input. In Simulation 2 it is the 
researcher who, in the cycles with random input, substitutes the current input with the 
predicted input. 

The results of the simulation show that the organisms are very fast at learning to 
predict correctly the next sensory input from food given the current input from food 
and the turning movement with which the organism plans to respond to the current 
input. The prediction error goes to almost zero after only four episodes of an individ-
ual’s life, which means that during most of its life an organism is able to generate cor-
rect predictions of the next input from food. Since in the cycles in which the input 
from food is missing the researcher replaces the random input with the predicted in-
put, this has the consequence that random inputs cannot disrupt the organism’s per-
formance. In fact, the results of the simulation indicate that the performance of these 
organisms in an environment where some inputs are random tends to be as good as 
the performance of the organisms living in an environment without random inputs 
(Figure 3). 
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Fig. 3. Average fitness of a population living in an environment with 30% random inputs when 
the organisms learn early in life to predict the correct input from food and the random input is 
replaced by the predicted input from food. The two curves of Figure 1 are also shown for com-
parison 

2.3 Simulation 3 

In Simulation 2 the organisms learn to predict the next input from food but it is the re-
searcher who substitutes random inputs with predicted inputs. In Simulation 3 we add 
a same/different module to the organisms’ neural network which gives the organisms 
more autonomy. The same/different module judges whether the input from the envi-
ronment is “same or different” with respect to the predicted input, allowing the organ-
ism to know if the current input from the environment is from food or random. The 
connection weights of the same/different module are also encoded in the inherited 
genotype and they evolve together with the connection weights of the sensory-motor 
module. However in Simulation 3 it is still the researcher who, if the same/different 
module’s output is “same”, causes the sensory-motor network to respond to the input 
from the environment, whereas if the judgment module’s output is “different”, he or 
she substitutes in the sensory-motor module the actual input from the environment 
with the predicted input generated as output by the predictive module. 

The results of the simulation show that the genetic algorithm is able to develop ap-
propriate connection weights for the same/different module, allowing the organism to 
decide most of the time correctly whether the predicted input and the actual input are 
the same or different. The researcher replaces the input from the environment with the 
predicted input if the judgment is “different” and it allows the sensory-motor module 
to respond to the input from the environment if the judgment is “same”. Since the 
evolved weights of the same/different module are not perfect, the organisms’ per-
formance tend to be less good than that of the organisms living in the environment 
without random inputs but significantly better than the performance of the purely sen-
sory-motor organisms living in the environment with random inputs (Figure 4). 
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Fig. 4. Average fitness of a population living in an environment with 30% random inputs when 
the organisms learn early in life to predict the correct input from food and are able to judge if 
the input from the environment is “same” or “different” with respect to the predicted input. If 
the judgment is “same”, the researcher will cause the organisms to respond to the input from 
the environment, whereas if the judgement is “different”, the researcher causes the organisms to 
respond to the predicted input rather than to the input from the environment. The two curves of 
Figure 1 are also shown for comparison 

2.4 Simulation 4 

This is the final simulation in which, unlike the preceding simulations, the researcher 
has no role in determining the organism’s behaviour, the organisms are completely 
autonomous, and every aspect of their behaviour emerges spontaneously through evo-
lution and learning. The implementation module is added to the organisms’ neural 
network and the genetic algorithm is responsible for all the connection weights of 
their network, except those of the predictive network which are learned during the in-
dividual’s life and therefore are not genetically inherited. 

The results of the simulation show that it is possible to develop completely 
autonomous organisms that know when it is appropriate to respond to the input from 
the environment and when it is appropriate to ignore the input from the environment 
and respond to the predicted input. After a certain number of generations the imple-
mentation module develops the appropriate connection weights that allow the imple-
mentation module to inhibit the actual input from the environment and to cause the 
predicted input to determine the organism’s behaviour in the cycles in which the input 
from the environment is random and therefore is different from the predicted input. 
On the other hand, when the input from the environment is from food and therefore is 
the same as the predicted input, the implementation module’s connection weights al-
low the module to inhibit the predicted input and to leave to the actual input from the 
environment control on the organism’s behaviour. These entirely autonomous organ-
isms also perform significantly better than the purely sensory-motor organisms living 
in the environment with random inputs (Figure 5). 
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Fig. 5. Average fitness of a population living in an environment with 30% random inputs when 
the organisms learn early in life to predict the correct input from food and they are able both to 
judge if the input from the environment is “same” or “different” with respect to the predicted 
input and to use this judgment to decide whether to respond to the actual input from the envi-
ronment or to the predicted input. The two curves of Figure 1 are also shown for comparison 
 

We have also done a control simulation aimed at clarifying a question which inevi-
tably arises with organisms that are able to predict the next input from the environ-
ment and to respond to this input rather than to the actual input from the environment. 
If the organisms’ predictions are generally correct, why should the organisms ever 
want to respond to inputs from the environment instead of simply responding to pre-
dicted inputs? An organism which can predict correctly the next sensory input from 
the environment which will result from its actions, might pay attention and respond 
only to the very first input from the environment and then ignore all subsequent in-
puts, always responding to the predicted inputs rather than to the actual inputs. Such 
an organism would live in a mental world rather than in the real world but its per-
formance in the real world would be as successful as that of an organism responding 
to the real world.  

This is not very plausible, however. Real organisms cannot live entirely in their 
mental (predicted) world, completely ignoring the inputs from the external environ-
ment. The reason is not only that the real world is much more variable and unpredict-
able than their mental (simulated) world but also that their prediction abilities are not 
perfect. In fact, even in our very simple and predictable world it is not possible for our 
simple organisms to always live in their mental world, ignoring the real world. Even 
if their predictions are generally correct, they are not completely correct - as indicated 
by the fact that the error in the backpropagation learning procedure never goes exactly 
to zero - and the errors of successive predictions tend to be cumulative. To demon-
strate this point we have run another simulation in which the organisms are allowed to 
receive an input from the environment (from food) only in the single first cycle of 
each episode and they respond to the predicted inputs in all subsequent cycles of the 
episode. The results show that the average fitness at the end of the simulation is less 



than 200 points compared to almost 600 points of the population in which the organ-
isms have access to the actual input from the environment in more than two/thirds of 
the input/output cycles (Figure 2). 

3 Predicted Success or Failure Help to Take Decisions 

In our second scenario, to survive and reproduce an organism has to throw a stone 
towards a prey animal in such a way that the stone reaches and hits the prey. Stones 
can be of 10 different weights and the prey can be at 10 different distances. Therefore, 
in any given occasion to hit the prey the organism has to throw the stone with the 
force appropriate to the weight of the stone currently in its hand and to the current dis-
tance of the prey. The organism’s behaviour is controlled by a sensory-motor neural 
network (Figure 6a) with one input unit discretely encoding the weight of the stone 
(10 numbers equally spaced between 0.1 and 1.0), another input unit discretely encod-
ing the distance of the prey (10 numbers between 0.1 and 1.0), and one output unit 
continuously encoding the force of the throwing behaviour (between 0.1 and 1). An 
output value which is less than 0.1 is interpreted as a refusal to throw the stone in that 
trial. A table defines the “physics” of the situation by specifying, for each pair of 
stone weights and throwing forces, the distance covered by the stone. The prey is con-
sidered as hit by the stone if the stone falls within a threshold distance from the prey. 
The network’s connection weights are genetically inherited and are evolved using a 
genetic algorithm with the same parameter values of our preceding simulations. We 
compare this simulation with another simulation in which the organism’s neural net-
work includes a predictive module and an implementation module (Figure 6b). The 
predictive module generates a yes/no prediction as to whether or not the planned force 
with which the stone will be thrown will allow the stone to actually hit the prey. The 
implementation module relays this prediction/judgment to the sensory-motor module, 
inhibiting the throwing behaviour if the prediction is “failure” and allowing its physi-
cal execution if the prediction is “success”. This more complex neural network repre-
sents an advantage for the organism if executing physical movements implies an ex-
penditure of both time and energy for the organism. By not executing throwing 
behaviours that would result in failures, the organism will spare both time and energy 
(and perhaps avoid the flight of the prey) and therefore would increase its fitness. To 
implement this idea an individual’s fitness is decreased by a fixed quantity for each 
physically executed throw. 
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Fig.6 (a) Sensory-motor module (thick arrows). One input unit encodes the weight of the stone 
currently in the organism’s hand, another input unit encodes the distance of the prey, and the 
output unit encodes the force with which the stone will be thrown. (b) Predictive module (thin 
arrows) and implementation module (dotted arrows). The predictive module has three input 
units, respectively encoding the stone’s weight, the distance of the prey, and the force of the 
planned throwing behaviour. The module’s output unit encodes a yes/no prediction on the suc-
cess or failure of the throwing behaviour. The implementation module is made up of a single 
connection linking the output unit of the predictive module to the output unit of the sensory-
motor module. The implementation module inhibits the throwing behaviour if the prediction is 
“failure” and it releases the execution of the behaviour if the prediction is “success” 

 
The results of the simulation show that this is actually the case. Compared with or-

ganisms with a simple sensory-motor network, organisms with added predictive and 
implementation modules reach a higher fitness at the end of the simulation (5000 gen-
erations) (Figure 7).  
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Fig.7 Average fitness (number of successful throws) across 5000 generations for a population 
without an ability to predict if a planned throw will be a success or a failure, a population which 
learns this ability during life, and a population in which the ability to predict is learned during a 
period of life in which the individual’s fitness is not being measured (infancy) 



As in the preceding simulations, both the weights of the sensory-motor module and 
the single weight of the implementation module are genetically inherited and they 
evolve in a succession of generations, whereas the weights of the predictive module 
are learned during life. 

The model that we have described may also suggest a possible evolutionary expla-
nation for the emergence of “infancy”. The interpretation of infancy as a “safe” period 
of learning has been proposed and discussed in variety of context and by many au-
thors, e.g., in evolutionary psychology [11], attachment theory [12], and in Hurford’s 
[13] model of early language learning periods. In the present context infancy can be 
defined as the initial period of an individual’s life in which the fitness of the individ-
ual is not being evaluated by the selection mechanism because the individual is pro-
vided with the needed resources by other individuals (parents) so that the individual is 
free to learn some abilities (e.g., the ability to make predictions) that will be useful 
when the individual becomes an adult and its behaviour will be crucial for the indi-
vidual’s survival and reproduction. To test this model we have compared two simula-
tions. In one simulation an individual’s fitness is measured since the individual’s 
birth, and therefore it includes the period of the individual’s life in which the individ-
ual has not yet learned to make correct predictions and therefore cannot exploit the 
fitness advantages of being able to predict (not executing throws that would result in 
failures). In other words, there is no infancy. Individuals are born as adult in the sense 
that no one takes care of them and their fitness is evaluated from birth. In the other 
simulation we add infancy. The individual learns to predict during a number of addi-
tional input/output cycles that precede its regular life as an adult. The individual’s fit-
ness is measured only when the individual becomes an adult and it already knows 
how to correctly predict the consequences of its actions. The results of the new simu-
lation, also shown in Figure 7, demonstrate that learning useful abilities during a pe-
riod in which other individuals provide the individual with the needed resources, i.e., 
during infancy, leads to a higher fitness. This may be an important selective pressure 
for the emergence of infancy. 

4 Discussion 

Complex organisms may be able to predict what sensory input will result from their 
planned but still non executed motor responses to the current sensory input. Why 
should organisms develop this capacity? What might be its adaptive value? In this pa-
per we have described some simple simulations aimed at providing some answers to 
these questions. The ability to predict the next sensory input might allow an organism 
to replace a missing input with the predicted input. If for some reason the appropriate 
input from the environment is missing (due to obstacles, distractions, or other rea-
sons), the organism can respond to the predicted input which corresponds to the miss-
ing input. Another adaptive advantage of the ability to predict is to be able to judge 
whether or not a planned action will produce the expected result enabling the individ-
ual to avoid physically executing expensive actions whose predicted result is not the 
desired one. Given these, and other (see, e.g., [9]), advantages of being able to predict 
the results of one’s actions we can expect that organisms possessing the appropriate 



prerequisites, such as the ancestors of humans, will evolve neural architectures (such 
as the very simplified architecture of Figure 1) that make it possible for them to pre-
dict the results of their actions and to use their predictions to generate more effective 
behavior. The pressures for evolving an ability to predict may have also been pres-
sures for the emergence of infancy as the initial period of an individual’s life espe-
cially dedicated to learning to predict. 
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