
Integrating Reinforcement-Learning, Accumulator Models, and Motor-Primitives 
to Study Action Selection and Reaching in Monkeys 

 
Dimitri Ognibene (dimitri.ognibene@istc.cnr.it) 

Francesco Mannella (francesco.mannella@istc.cnr.it) 
Giovanni Pezzulo (giovanni.pezzulo@istc.cnr.it) 

Gianluca Baldassarre (gianluca.baldassarre@istc.cnr.it) 
Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche, 

Via San Martino Della Battaglia 44, 00185 Roma, Italy 
 
 
 

Abstract 

This paper presents a model of brain systems underlying 
reaching in monkeys based on the idea that complex 
behaviors are built on the basis of a repertoire of motor 
primitives organized around specific goals (in this case, arm’s 
postures). The architecture of the system is based on an actor-
critic reinforcement-learning model, enhanced with an 
accumulator model for action selection, capable of selecting 
sensorimotor primitives so as to accomplish a discrimination 
reaching task that has been used in physiological studies of 
monkeys’ premotor cortex. The results show that the 
proposed architecture is a first important step towards the 
construction of a biologically plausible integrated motor-
primitive based model of the hierarchical organization of 
mammals’ sensorimotor systems. 

Introduction 
This paper aims to present a model based on the hypothesis 
that sensorimotor systems of organisms are organized on the 
basis of repertoires of sensorimotor primitives (Arbib, 1981) 
that are suitably “assembled” to produce complex behaviors. 
This hypothesis is important both for understanding 
organisms’ functioning and for building artificial intelligent 
systems (Schaal, 1999; Rainer & Tani, 2004). 

The first specific goal that the model pursues is to 
understand how organisms build repertoires of motor 
primitives on the basis of experience. In particular, the paper 
focuses on the acquisition of motor primitives related to the 
production of arm’s postures in space. With this regards, it 
has been shown that neural systems of various animal 
species, from insects and amphibians to mammals and 
humans, are organized around motor primitives that, when 
triggered, tend to accomplish a particular goal. For example 
Giszter, Mussa-Ivaldi & Bizzi (1993) showed that if some 
regions of the spinal cord of frogs are stimulated 
electrically, their lower limbs tend to perform movements so 
as to achieve a specific resting point (posture) independently 
of the starting position. Remarkably, there seem to be a 
relatively small number of these motor primitives, whose 
origin is likely filogenetic, encoded in the spinal cord. 
Similarly, Graziano, Taylor & Moore (2002) showed that if 
the premotor cortex of monkeys is stimulated electrically, 
their arms tend to assume a given posture in space. In 
humans a great part of low-level sensorimotor skills are 

acquired during the first years of life without direct rewards 
and on the basis of self-generated experience (von Hofsten, 
1982). These skills involve the capability of both assuming 
postures in space and generating cyclical movements 
(through “central pattern generators”, cf. Swanson, 2005, 
and Schaal, 1999: the latter will not be tackled here). 

A second specific goal of the paper is to study how 
organisms can assemble motor primitives to accomplish 
complex tasks. Increasing evidence is showing that basal 
ganglia (Kandel, Schwartz & Jessell, 2000) might play an 
important role in this process (Nakahara, Doya & Hikosaka, 
2001; Baldassarre, 2002). Basal ganglia are nuclei that form 
the basis of vertebrates’ forebrain. They receive signals 
from virtually the whole cortex and send signals, via the 
thalamus, to the motor part of it (pre-frontal, premotor and 
motor cortex). Basal ganglia’s dopaminergic neurons are 
involved in classical conditioning tasks where, by 
experience, originally neutral stimuli progressively acquire 
the role of predictors of primary rewards (Shultz, Dayan & 
Montague, 1997). These processes have been successfully 
modeled on the basis of actor-critic reinforcement-learning 
architectures (Barto, Sutton & Anderson, 1983). In 
particular, the functioning of the “critic”, based on the TD-
learning algorithm (Barto & Sutton, 1998), has been shown 
to mimic some aspects of the physiology of basal ganglia’s 
dopaminergic neurons (Houk, Davis & Beiser, 1995). 

The third goal of the model is to start to develop an actor 
that is both more soundly related to the brain’s functioning 
and closely integrated with the motor-primitive system. The 
reason is that the “actor” component of the actor-critic 
architecture, that should mimic the basal ganglia’s 
sensorimotor function, has been modeled and related to 
known brain’s physiology in much less detail with respect 
to the critic (Joel, Niv & Ruppin, 2002). The way that will 
be followed to pursue this goal is suggested by Schall 
(2001) who studied monkeys that accomplish oculomotor 
saccades to one of few alternative targets. In these monkeys 
some neurons of the frontal-eye field (premotor cortex) give 
place to a race in which different (groups of) cells 
“accumulate evidence” (activate) in favor of the different 
options: the first (group of) cell(s) that reaches a given 
threshold triggers a saccade towards the corresponding 
target. These processes have been modeled through 
accumulator models (e.g., cf. Usher & McClelland, 2001), 
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probably the best available biologically-plausible models of 
action selection and reaction times. The actor presented here 
assumes that basal ganglia fuel a race in the premotor cortex 
and in this way they select the motor primitives to execute. 

The architecture presented here has been trained and 
tested using the “discrimination reaching task” used by 
Cisek & Kalaska (2005) to carry out physiological 
recordings in monkeys’ premotor cortex (this task showed 
to trigger “races” among the premotor neurons similar to 
those mentioned above). The task is composed of five 
phases (see bottom part of Figure 5): (1) center-hold time – 
cht: the monkey’s hand is positioned on a manipolandum at 
a central starting position of an horizontal plane, and a green 
cue circle appears at the center of a screen set in front of the 
subject; (2) spatial cue – sc: a red and a blue circle (with a 2 

cm radius) appear on the screen at two opposite positions of 
eight possible target locations distributed around a circle; 
(3) memory – mem: a green cue circle appears again at the 
center of the screen; (4) color cue – cc: a color cue, either 
red or blue, appears at the center of the screen: this non-
spatial cue signals which of the two memorized color-coded 
spatial cue locations is the target that the monkey should 
reach; (5) go signal – go: eight green circles appear at all the 
possible target locations: if the monkey reaches the target 
position that matches both one of the two spatial cues and 
the color cue, it receives a reward. In the simulations, the 
first four phases last 1 s. each, while the fifth lasts 16 s. 

The rest of the paper first presents the architecture of the 
model, then presents the results obtained with it, and finally 
concludes illustrating the model’s strengths and weaknesses. 
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adulthood phase: the system learns, by reinforcement 
learning, to accomplish the discrimination-reaching task: 
this learning phase updates the actor-critic’s weights. Now 
the architecture and functioning of the system’s components 
and the two learning phases are explained in detail. 

 

 

 

 

 
 

Figure 2: Errors (gray short segments) of the posture 
controller’s hand between desired postures (black arms) and 
actual postures (dark dashed arms), achieved from various 
initial postures (light dashed arms): (a) posture controller’s 

first version: before training,; (b) first version: after training; 
(c) first version: during a generalization test where the 

controller reaches a target posture in more than one step; (d) 
second version: after training; dots represent the position of 

the 9 units used in the discrimination reaching task. 
 

Perceptual memory This is a map of 27 units xci (c∈{g, r, 
b}; i∈I, |I|=9) assumed to correspond to visual cortex areas. 
These units receive topological excitatory connections from 
the retina (not simulated here) and respond to stimuli with 3 
different colors (green, red, and blue) and 9 different 
positions on the retina. These units are “leaky-integrators”: 

( )([ 1 ,min 11 ++ + ) ]−+= citcitcitcit rκxx x τ  
where min[.] keeps xci < 1, τ is an integration time step (τ = 
0.1), κ is a decay coefficient (κ = 0.1), and rci is a retina’s 
signal caused by the on-off colored cues (rci ∈ {0, 10}). 

Actor-critic This is a standard feed-forward network with 
25 hidden units, 27 input units (xci), and 10 output units. 
Nine output units (actor), located on a 2D map and with a 
Sigmoid transfer function, select one of the 3×3 possible 
spatial targets for the arm (see introduction). The last output 
unit (evaluator part of the critic), with a linear transfer 
function, produces evaluations Vt of perceived states (see 
below). The actor-critic is a neural implementation of the 
actor-critic architecture (Sutton and Barto, 1998). The 
evaluator’s output is used to compute the critic’s surprise 
St+1, used to train both the actor and the evaluator (see 
below), on the basis of the reward Rt+1 and evaluations 
produced at couples of succeeding states:  

(a) 

( ) tttt VVR S −+= +++ 111  γ  (b) 
where γ is a discount factor (γ = 0.99). 
 
Action selector The action selector is composed of a 2D 
map of accumulator units with activation bj and activation 
potential aj (j,k ∈ A, |A| = 9: for simplicity, in this research 
only 9 units corresponding to the 8 targets, plus the central 
starting position, were used). Each of these units is activated 
by one topologically corresponding unit of the actor. The 
accumulator units have lateral inhibitions and give place to 
a (noisy) competition that integrates in time, and amplifies 
the differences, of the signals coming from the actor. The 
unit whose aj reaches a threshold T (T = 1) wins the 
competition, activates with bj = 1 (the units have a step 
activation function), and triggers the pursuing of the goal-
posture in the posture controller: 
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where δ is a decay coefficient (δ = 0.1), ι is an inhibition 
coefficient (ι = 0.9), εv is a noise component ranging over    
[-0.1, +0.1] and varying in each cycle, εc is a noise 
component ranging over [-0.2, +0.2] and constant for a 
random period ranging over [0, 10] s. Note: εc is very 
important for the actor-critic’s exploration since positive 
and negative values of εv tend to sum to 0 during the races. 
 
Posture controller This component has a 2D layer of input-
units with activation zk (z ∈ Z, |Z| = 20×20 = 400). While 
the component is trained (see below), the input units are 
activated in [0, 1] on the basis of the (x, y) position of the 
arm’s “hand” on the plane and on the basis of a Gaussian 
activation field (see Figure 1): 
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where σ is the standard deviation (set to 3.33 cm) and (xk, 
yk) is the “preferential” hand position of unit k. The 
activation of the units is normalized to have a total 
activation of them equal to 1. When the controller is used to 
reach a target position, only one of these units is activated 



with 1 by the topologically corresponding winning unit of 
the action selector (for simplicity, only 9 units/targets are 
involved by this process). In a second version, the posture 
controller has two further input units with activation α and β 
(α,β ∈ [0, 1]) that encode the current normalized angles of 
the arm. The two versions of the controller correspond to a 
different modeling of the function played by fiber-muscle 
afferents (sensors located in the muscles, such as the Golgi 
tendon-organs, that return information such as muscles’ 
length and tendons’ stiffness to the spinal cord and brain, cf. 
Shadmehr & Wise, 2005). All the input units (in both 
versions of the controller) are connected all-to-all to 2 
sigmoid output units. These output units encode either the 
desired angles of the arm (first version), in which case they 
are denoted as α’ and β’ (α’,β’∈ [0.25, 0.75]), or the 
desired change of these angles (second version), in which 
case they are denoted as ∆α and ∆β (∆α, ∆β ∈ [0, 1]). 
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Figure 3: Weights, after training, of the second version the 
posture controller connecting the input map to the output 

units controlling the elbow (a) and shoulder (b) joints. 
 

Childhood phase (posture controller’s learning) During 
this phase the posture controller is trained to perform 
movements that allow it to reach particular target points on 
the horizontal plane with its “hand”. The target points to 
reach are encoded as (x*, y*) Cartesian coordinates and are 
used to activate the input 2D map of the controller (these 
points are assumed to correspond to the hand’s position 
perceived by the retina). In particular, each unit of the map 
activates within [0, 1] on the basis of its Gaussian receptive 
field. Training, mimicking self-generated experience, is 
based on direct inverse-modeling (cf. Kuperstain, 1988): the 
idea behind this procedure is that the system produces 
random movements of the arm and learns to associate the 
performed action (network’s output pattern) with the 
resulting position of the hand (network’s input pattern): in 
the future this association will allow the system to perform a 
suitable action when assigned a goal in terms of hand’s 

position to reach. The detailed steps of the procedure are as 
follows: (1) only second version of the controller: the 
current angles of the arm are used to activate the two (α, β) 
input units; (2) both versions: a random action (∆α, ∆β) is 
drawn in terms of variations of the current arm’s angles 
within [-10°, +10°] and without violating the limits of the 
arm’s degrees of freedom; (3) both versions: the arm 
performs the movement corresponding to (∆α, ∆β); (4) both 
versions: the new angles (α*, β*) of the arm, and position 
(x*, y*) of the hand, are recorded; (5) first version: an error 
backpropagation algorithm (Rumelhart et al., 1986; learning 
rate 0.1) is used to train the posture controller network to 
associate (x*, y*), taken as input, with (α*, β*) used as 
desired output (in this case, during action execution the 
posture controller reaches the posture (α’, β’) that it 
associates with (x*, y*), starting from the current (α, β), 
through a “servomechanism” that issues commands (∆α, 
∆β) the arm having maximum size of 10°); second variant: 
an error backpropagation algorithm (learning rate 0.1) is 
used to train the posture controller network to associate (α, 
β) and (x*, y*), taken as input, with (∆α, ∆β) used as 
desired output. These training procedures should lead the 
posture controller to perform movements that allow it to 
reach the desired goal (x*, y*), encoded in the input-unit 2D 
map, from any initial posture (α, β). 

 
Figure 4: Moving average (1000-step window) of rewards 
obtained by the system during 600,000 trials of learning. 
 

Adulthood phase (actor-critic’s learning) During this 
phase the actor-critic component is trained (cf. Sutton and 
Barto, 1998) to select the correct target in the discrimination 
reaching task. During training Rt+1 is set equal to 1 if the 
arm reaches the correct target within 16 s. after the go signal 
and 0 otherwise. Each time an action is selected and 
implemented, Vt+1 is set to 0 and the trial is terminated. The 
evaluator portion of the network (i.e. the unit that produces 
Vt) is trained, at each time step t and through an error 
backpropagation algorithm (learning rate 0.1), to associate 
the following desired output to the perceived state xt: 

11  ++ + tt V R γ  
The actor’s output unit of the selected action is trained, 

through a backpropagation algorithm and only in 
correspondence to the state xt where the action was selected, 
with the following desired output (learning rate 0.4): 
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where ET is the duration of the execution of the action. This 
learning process has the following desired effects: (a) the 
evaluator’s evaluations Vt of the perceived states xt tend to 
approach γT, where T is the average number of cycles that 
separates xt from the perception of R=1; (b) the signal sent 
to the action selector’s accumulator unit corresponding to 
the executed action is increased if St+1 > 0, in 
correspondence of xt, so that this action will have higher 
chances to win the race when xt is encountered again, while 
it is lowered if St+1 < 0; (c) the signal sent to the other 
actions’ accumulators is not changed. 
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Figure 5: Top: activation, during one trial, of the 27 memory 
units corresponding to the 9 target positions and 3 colors 

(green: dashed lines; blue: continuous lines; red: bold lines). 
Bottom: activation of the green, blue and red cues on the 

screen during the trial: the boxes cover the duration time of 
the phases of the task (see introduction). 

 

Results 
The training of the posture controller during the “childhood 
learning phase” (1,000,000 cycles; learning rate 0.1) was 
successful: the error of the first version of the controller 
(output equal to desired posture (α’, β’)) decreased from 
6.11 cm to 1.08 cm (average for 10,000 cycles) while the 
error of the second version of it (output equal to desired 
movement (∆α, ∆β)) decreased from 18.64 cm to 0.74 cm 
(Figure 2). For its higher performance, the first version of 

the posture controller has been used in the experiments with 
the whole system illustrated below. 

Interestingly, in both versions the controller exhibits a 
relevant generalization capability: it is capable of reaching a 
target from any starting posture and to any reachable point. 
Notably, in the case of the controller’s second version this 
requires more than one step, a condition for which it has 
never been trained (see Figure 2). This performance is based 
on the weights corresponding to the proprioception input 
units (α, β) and to the map input units (encoding (x*, y*)) 
that tend to have opposite signs. These weights cause the 
output pattern (∆α, ∆β) to becomes null only when the 
current posture (α, β) is such that the hand is on the desired 
position (x*, y*). In the case of the controller’s first version, 
the weights emerged tend to encode the desired angles in an 
almost direct fashion (Figure 3). 
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Figure 6: Accumulator units’ activation potential during a 
race of one trial: the bold curve corresponds to the winning 

unit that decides the target-posture of the arm. 
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The training of the system (actor-critic) in the “adulthood 

learning phase” lasted 600,000 trials. The system learned to 
reach all the 16 possible targets (given by 8 positions × 2 
colors) with a success of 95.78% on the last 10000 trials 
(Figure 4). Residual errors were due εc noise. Note that the 
two real monkeys trained by Cisek and Kalaska (2005) had 
a performance of 75% and 96%. 

The analysis of the system’s functioning shows that the 
memory units maintain a sustained activation during the 
task (Figure 5): this fuels the race of the accumulator units 
until one of them reaches the threshold, wins the 
competition, and triggers the posture controller to pursue the 
target posture corresponding to it (Figure 6). 

Green:           Blue:            Red:             

During training the system progressively learns to inhibit 
the selection of actions in the phases before the go signal 
(this happens after 4 s. from the start of the trial), and to act 
as fast as possible, that is 1.5 s. on average after the go-
signal itself (cf. Figure 7). Note that, with accumulators 
activated with 0 at the go-signal, the selection’s maximum 
theoretical speed is about 1.1 s., being τ = 0.1, δ = 0.1, and 
maximum values of yj = 1.0). 

Conclusions and Future Work 
This paper presented a model that is novel under several 

aspects: (a) the model proposes a first integration of an 
actor-critic architecture, one of the best biologically-



plausible models of conditional and instrumental learning 
and basal ganglia, with an “accumulator model”, one of the 
best biologically plausible models of action selection; (b) 
the model integrates the action-selection component with a 
goal-based repertoire of actions learned on the basis of self-
generated experience; (c) the model presents a working 
hypothesis, in the form of an integrated motor primitive-
based architecture, of the possible macro-organization of the 
sensorimotor system of mammals. Overall the results 
presented, although preliminary in many respects (see 
below), indicate that the architecture represents a integrated 
working hypothesis on the overall organization of 
vertebrates’ motor behavior that is computationally-sound. 

 

 
Figure 7: Histogram of reaction times of the system. 

 
The model has also important limitations, that will be the 

starting point for future work: (a) the input portion of the 
system is a simple 27-cell map: the system should be tested 
with a more realistic input component; (b) the actor-critic 
portion of the system learns on the basis of an error 
backpropagation algorithm: can this be replaced by a more 
biologically plausible algorithm? (c) the experiments have 
shown that the model functions with 9 sensorimotor 
primitives: would it scale to larger numbers? (d) the 
accumulator model allows selecting only discrete and 
locally represented actions: is it possible to allow it to select 
actions represented continuously and in a distributed fashion 
(cf. Doya, 2000)? (e) the model does not fully takes into 
account empirical evidence on dopamine pathways, for 
example evidence on the different time courses of learning 
taking place in basal ganglia and prefrontal cortex 
(respectively fast and slow: see Pasupathy & Miller, 2005). 
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