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Abstract. Recent research has shown that reinforcement learning agents can by 
greatly advantaged of the possibility of learning to select macro actions instead, 
or beside, fine primitive actions. The route usually followed to exploit this idea 
is to build agents with hierarchical architectures that can learn both a repertoire 
of macro actions and a macro policy that selects them, on the basis of the “fi-
nal” reward signals related to the tasks to solve. This research presents a pre-
liminary investigation that follows a different idea: evolving reinforcement sig-
nals that allow an agent to learn a repertoire of macro actions in an initial phase 
of life, and then to assemble and use them to solve different tasks, belonging to 
the same class, in a succeeding phase of life. The idea is preliminary tested with 
a simulated robot that has to search targets following coloured trails in a square 
arena. Results show that the idea is viable and that the emerged reinforcement 
signals allow the robot to develop macro actions that are actually useful to 
solve different tasks in succeeding phase of life. 

1   Introduction1 

In the last fifteen years research has shown that reinforcement learning systems can 
greatly benefit of the possibility of selecting macro actions (or “options”, or “sub-
policies”) instead, or aside, actions with a fine granularity ([4] for a review, [14]). In 
general, macro actions are policies [15], i.e. deterministic or stochastic mappings 
between environment’s states observed by the system and actions that it selects and 
executes in correspondence to them, which can be selected and executed as wholes by 
policies of higher level. Usually macro actions tend to last longer than primitive ac-
tions, i.e. to involve the selection of more than one primitive action [2] [14]. 

The advantages of using macro actions instead of (only) primitive actions are sev-
eral. The first is that they greatly reduce the search space of problems [4] [14]. The 
second is that they tend to improve the exploration of learning systems as they tend to 
allow it to “jump” from region to region of the problem space in comparison to primi-
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tive actions that tend to cause smaller movements in it [8]. The third is that they speed 
the back-propagation of evaluation signals along the states visited before rewarding 
states [8]. 

Macro actions have also drawbacks. One is that they usually require more sophisti-
cated hierarchical architectures with respect to systems using only primitive actions. 
Another important drawback is that macro actions used by a system needs to be a 
sub-set of all the possible ones as these are usually very numerous (in fact macro 
actions are set of state-action couples, and this causes a combinatorial explosion of all 
the possible combinations). The consequence is that as a system must necessarily use 
a sub-set of all possible macro actions, it can only find solutions among a sub-set of 
the possible ones, and this might lead it to find sub-optimal solutions to problems. 

The route that the reinforcement learning research usually follows when it uses 
macro actions consists in building hierarchical systems that learn macro actions and 
the macro policy to select them at the same time while solving tasks that lead to “fi-
nal” rewards (e.g., see [2] [4]). Often the goal of this research is to have systems that 
learn to solve a task faster with respect to plain reinforcement systems using only 
primitive actions. The general goal pursued here is in part different from this. It con-
sists in designing architectures and algorithms that, given a class of tasks, allow a 
system to find a repertoire of macro actions that are suitable to find near-optimal 
solutions to them. 

One possible solution to this problem would be using the standard approach men-
tioned above, based on hierarchical system learning both macro actions and macro 
policy, to allow a system to solve several tasks of the same class in sequence by pre-
serving the macro actions when passing from one to another with the hope that the 
system would develop macro actions suitable for all tasks. This approach would be 
limited by the fact that macro actions developed while solving one task would not be 
necessarily suitable to solve other tasks, so they would be eventually overwritten and 
lost (this is an instance of the classic problem of catastrophic forgetting). 

Here a different route is followed. A genetic algorithm, which is not affected by 
catastrophic forgetting, is used to develop macro actions that are suitable for solving 
few tasks having common features. The genetic algorithm is not used to directly 
search macro actions of systems, but to find “reinforcers”, that is “devices” that pro-
duce reinforcement signals that each evolved system uses in its first phase of life 
(“childhood”) to develop macro actions on the basis of a reinforcement learning algo-
rithm. Each system then uses these macro actions in its second phase of life (“adult-
hood”) to solve tasks that deliver “external” reinforcement. 

The genetic algorithm is not used to directly evolve the macro actions for two rea-
sons. First, information needed to encode reinforcers in the DNA tends to be much 
less with respect to information needed to directly encode macro actions. In fact, 
reinforcers should only encode information that allows the systems to recognize re-
warding states, while macro actions should encode sensorimotor mappings usually 
based on many state-action associations: evolving the former should greatly reduce 
the search space for the genetic algorithm in comparison to evolving the latter. 

The second reason directly involves the ultimate motivation of this work. This 
work is the first step of a research that aims to develop systems that gather experience 
by interacting with the environment without directly tackling specific tasks. The idea 
is to mimic humans and other primates that in their first phase of life freely interact 



with the environment without attempting to solve specific tasks but in order to ac-
quire skills and knowledge that they will exploit in their adulthood [16]. With this 
respect, this research is closely related to previous works that presented systems en-
dowed with learning capabilities driven by “curiosity” [7] [10] [12] [13]. In these 
works systems acquire a general knowledge in terms of capacity to predict the effects 
of own actions with the idea that they can exploit this knowledge in a latter stage. 
More in particular, these systems are endowed with some neural-network “predictors” 
capable of learning to predict the consequences of the system’s actions in a super-
vised manner (that is of learning the association between current state and action 
selected for execution on one side, and resulting new state on the other side). The 
central idea is to train the action selectors of the systems, by reinforcement learning, 
to select actions that lead them to explore regions of the problem space where the 
predictors’ error decreases quickly (the amount of decrease of the predictors’ error is 
used as a self-generated reinforcement signal). As a result the systems tend to learn to 
explore regions of the environment where they increase the amount of “knowledge” 
(i.e. capacity to predict) that they acquire. 

This work moves a first step in the direction of building systems that, as the system 
just reviewed, interact with the environment with the purpose of acquiring general 
“knowledge” and not to solve directly useful specific tasks, but that, contrary to them, 
do not learn to predict the consequences of own actions but learn to act, in particular 
learn repertoires of macro actions that they might exploit in a later stage to quickly 
solve new external-reinforcement based tasks. The bet of this research is indeed the 
hypothesis that the spontaneous interactions with the environment observed in young 
humans and other primates is mainly directed to this purpose. The reader should keep 
in mind this wider goals of the work in evaluating the results presented in the suc-
ceeding sections, that are little more than a proof of concept of the ideas that this 
work start to develop. 

Section 2 will present the simulated robot and the navigation tasks used to test the 
system presented here. Section 3 will present the results of the tests while section 4 
will close the paper by highlight the strengths and weaknesses of the system. 

2 Methods 

As mentioned, in this work a genetic algorithm is used to evolve the reinforcers of a 
population of robots, two for each individual. Each robot uses its reinforcers in its 
childhood to learn two macro actions on the basis of two actor-critic modules. The 
resulting macro actions can then be used by the robot’s “macro actor” (the macro 
policy) to solve a navigation task during the robot’s adulthood. The performance of 
each robot during its adulthood is then used by the genetic algorithm to select indi-
viduals to reproduce. The idea of the whole setup is having a genetic algorithm that 
selects individuals with reinforcers that allow them to develop macro actions during 
their childhood that are good to solve the class of problems they will tackle during 
their adulthood. 
 
The simulated robot. The simulated robot is a mobile robot with a 40 cm diameter 
and a camera assumed to look at a portion of the ground located just in front of the 



robot (40×40 cm). At each cycle the robot samples the colour of the ground in 4×4 
points distributed on a regular grid overlapping the camera image. Each point can be 
blue, red or green and there are colour-specific receptors, thus the retina is made of 
16x3=48 receptors. Moreover, the robot displaces in space by selecting an orientation 
change within [-30, +30] degrees, and a step size within [0, +10] cm. 

The task. In its adulthood the robot navigates in a walled arena that has a ground 
covered with a texture image of 500×500 pixels (Fig. 1). The image represents two 
coloured trails, one green and one red, on a blue background. The robot gets a 
reinforcement signal every time one of the two the front corners of its retina touches a 
circle target which is randomly positioned on one of the two coloured trail. When the 
target is reached it is moved to a new randomly selected location. In the first half of 
the adulthood phase (200,000 cycles), the target’s position is chosen within the green 
trail, while in the second half (other 200,000 cycles) it falls in the red one. Each half 
of the adulthood life represents a separate learning phase in which the robot has to 
learn to select the more convenient macro actions from its repertoire. Notice that this 
task can be considered as a “direction-following” navigation task [6]. The simplicity 
of the task is due to the fact that it was chosen to run the preliminary tests of the 
complex architecture illustrated below. Notice that given the set-up, one could expect 
the robot to develop two kind of macro actions, one consisting in following the red 
trail and the other consisting in following the green trail, and then that in its 
adulthood the robot it would have selected the “red following” or “green following” 
macro actions depending on the position of the targets. This is what actually 
happened, but with a quite unexpected variation of this basic strategy, as will see in 
the next sections. 

. 
 

Fig. 1. The environment in which the robots were evolved and tested, composed of a 
walled arena (main grey square), and two circular trails, one green (light grey rectan-

gular path) and one red (dark grey rectangular path). 



The evolved reinforcers. The mechanism used to generate the reinforcement signals 
is rather simple. The 48 inputs coming from the retina were weighted and transformed 
with a sigmoid function into a real number ranging in [0, 1]. The set of weights 
determined what kind of input the robot preferred and tryed to keep on its retina. This 
value was multiplied with the robot’s speed (normalized in [0, 1]) to have robots 
moving at maximum speed. The evolution process acted by modifying the weights of 
each reinforcer which in turn leaded the robot to learn particular macro action. 

 

 

 

Fig. 1. Left: the whole architecture of the system. Right: the architecture of a macro action. 

The genetic algorithm. As mentioned, a genetic algorithm is used to evolve the 
weights of the reinforcers of individuals (two per individual). The genetic algorithm 
(cf. [99]) evolves a population of 96 individuals for 100 generations. The life of an 
individual lasted 600,000 cycles and was divided in two phases: (a) childhood phase 
(200,000 cycles): each of the two macro actions was trained with one of the two rein-
forces for 100,000 cycles; (b) adulthood phase (400,000 cycles): in this phase the 
robot learned to select the two already trained macro-actions in order to reach targets. 
In the first 200,000 cycles the target was randomly positioned on the green trail and 
in the next 200,000 cycles it was positioned on the red one. The total number of tar-
gets reached by the individuals in the adulthood was used by the genetic algorithm to 
calculate the fitness value and to select the best 16 individuals of the population. Each 
of those individuals generated 6 offspring. The fitness was computed considering 
only the target reached in the last 50,000 cycles in each of the last portions of the two 
adult phase halves, and was normalized [0, 1] on the basis of the maximum theoreti-
cal number of targets that the robot could achieve by moving along one of the two 
trails at maximum speed. The reinforcers of the offspring were obtained from those of 
the “fathers” by randomly selecting 10% of their weights and by adding a random 
value in the range [-1.0,+1.0] to them. 



The actor-critic modules that learn the macro actions. The architecture of the 
system is illustrated in (Fig. 2). The system has an actor-critic module [55] [15] 15for 
each reinforcer developed by the genetic algorithm. During the childhood phase the 
system dedicates 100,000 cycles to train each module on the basis of its 
corresponding reinforcer (so with two reinforces the childhood lasts 200,000 cycles). 
Each module that learns a macro action is a neural-network actor-critic model [15]. 
Each of these modules is composed of two neural networks, an actor and an 
evaluator. The actor is a two-layer neural network with 16 input units, activated by 
the 16 sampled image point, and two sigmoid output units whose activation is used to 
decide the robot’s orientation change and step size. To this purpose, two random 
numbers are drawn from two Gaussian function distributions truncated in [0, 1], 
having standard deviation of 0.3 and centres equal to the activation of the two output 
units. The evaluator, that constitutes the main component of the critic, has the same 
input units as the actor, and one output unit with Sigmoid transfer function ranging in 
[0, 10]. The output unit should learn to return evaluations Vt of perceived states. 
Couples of successive evaluations, together with the reward signal Rt returned by the 
reinforcer of the macro action, allow computing the critic’s surprise St, a signal used 
to train both the actor and the evaluator (see below), defined as follows: 

( ) 1 −−+= tttt VVR S γ  (1) 

where γ is a discount factor (set to 0.9 in the simulations). 
The actor is trained to select actions that lead the system to rewarding states with  a 

modified error backpropagation rule [11]: 

( ) ( )( ) 11 1' −− −−+= itjtjtjtjttjitjit xooooSw w η  (2) 

where wjit is the actor’s weights between input unit i and output unit j, η is a learning 
coefficient (set to 0.1 in the simulations), ojt it the activation of the output unit, o’jt is 
the random number drawn from the truncated Gaussian distribution centred on ojt, (ojt 
(1- ojt)) is the derivative of the Sigmoid function, and xit-1 is the activation of the input 
unit i at time t-1. 

The evaluator’s weights are updated with a modified error backpropagation rule 
[11]: 

( )( ) 1111 1 −−−− −+= ittttitit xVVSw w η  (3) 

where wit is the weight of the evaluator connecting input unit i with its only output 
unit and (Vt-1(1-Vt-1)) is the derivative of the Sigmoid function. This learning rule 
tends to lead the evaluator to assign evaluations to states that approach the sum of all 
future discounted rewards (cf. [15]): 

...4
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Notice that macro actions are trained only during the childhood of the system, not 
during its adulthood. On the contrary, the trainable macro action is trained each time 
it is selected for execution by the macro actor. The trainable macro action is imple-
mented through an actor as those of the other macro actions, but it does not posses an 
evaluator. Indeed, when it is selected by the macro actor at time step t-1, it is trained, 
at the nest time step t, on the basis of the surprise of the macro evaluator (see below). 



The macro actor and macro critic components. These components have the role of 
learning to select macro actions among those available (including the trainable macro 
action) at each step, and to delegate to them the responsibility to select the actual fine 
action of the robot. The macro evaluator, the main component of the macro critic, is a 
neural network with architecture and learning processes identical to those of the 
evaluators of the macro actions. The macro actor is similar to the actors of the macro 
actions, but has a Sigmoidal output unit for each macro action (three in this case). The 
activations of these units are normalized to 1 to generate three probabilities that are 
then used to randomly draw the actual macro action to which the macro actor 
delegates the selection of the fine action. The macro actor’s weights corresponding to 
the output unit of the selected action, and only these, are trained as follows: 

( )( ) 11 1 −− −+= itjtjttjitjit xooSw w η  (5) 

where in this case St is the surprise of the macro critic. The idea behind this training is 
that with experience the macro actor learns to pass the control to macro actions that 
are capable of dealing with certain portions of the environment. 

3   Results 

This section discusses some results of the preliminary experiments run to test the 
system presented in the previous section. The section first illustrates the dynamics of 
the evolutionary process and then presents the analysis of the robots’ behaviours. 

 
Analysis of the evolutionary process. The evolutionary experiment has been repli-
cated 10 times with different seeds of the random number generator. The graph in 
Fig. 3 shows the fitness of a typical simulation. The average fitness of the population 
grows quickly and stabilises after the 20th generation. The fitness of the best individ-
ual grows quickly as well but keeps a little positive trend until it reaches the maxi-
mum value. 
Two main results are made apparent from the graph. The first concerns the best fit-
ness: this abundantly overcomes the maximum theoretical fitness value that corre-
sponds to 1.0. This can be explained considering that the maximum fitness was com-
puted assuming a robot that moved at maximum speed exactly on the trails. What 
actually happened was that the evolutionary process found a strategy smarter than 
this: it found reinforcers, and hence macro-actions, which led the robot to circle in-
side the trails so as to catch the targets with one of the two front corners of the retina 
(see below for more details). 
The second notable result concerns the average fitness value: this never reaches the 
level of the best individual. This is due to the high variability in the performance of 
the robots from trial to trial. To quantify this variability we tested the best individual 
(i.e. reinforces) of the last generation for 100 trials  in the same environment and 
conditions used during evolution (childhood plus adulthood phases). Fig. 4 shows the 
fitness relative to these tests in ascending order. The fitness drastically varies from 
trial to trial ranging from about 0.5 to 1.6. This result reflects the variability of the 
learning process during the robot’s childhood. In fact, even if the reinforcers used by 



the robot are exactly the same, different initial conditions at the beginning of the 
childhood’s training period lead to different experiences, and in turn these lead the 
robot to learn different macro-actions and hence to obtain different fitness levels in 
the adulthood phase. 
 

 
Fig. 3. Graph reporting the best (thin line) and average (bold line) fitness on the y-axix. The 

fitness was measured during 100 generations of evolution (x-axis). 
 

 
Fig. 4. Fitness of one evolved robot (y-axix) in 100 tests, reported in ascending order. 



Behaviour analysis. The robot evolves two kinds of reinforcers through which it 
learns two different macro actions during childhood: one of them consists in follow-
ing the edge of the green trail and the other one consists in following the edge of the 
red trail. The edge is followed by keeping half of the retina activated with a colour 
(e.g. green) and the other half activated with the background colour, so the robot 
always circles either clockwise or anticlockwise. Surprisingly, the macro actions are 
such that not only the robot follows the edges of the trails, but it is also capable of 
suitably switching behaviour when it happens to follow the edge along the longer, 
external border of a trails (in particular it switches from following the external edge 
of the trail to the internal one). 
In the adulthood phase the robot learns to select the correct macro action depending 
on the positioning of the targets: in particular it mainly selects the macro action con-
sisting in following the green trail in the first 200,000 cycles, when the targets are 
randomly positioned on the green trail, and the macro action consisting in following 
the red trail in the next 200,000 cycles, when the targets are randomly positioned on 
the red trail. To analyze the behaviour of the robot, we traced its position at each 
cycle by drawing a coloured pixel, in correspondence to the centre of its body, indi-
cating which macro-action was selected at this site. 
Fig. 5 shows the behaviour of the best individual of the last generation in one of the 
runs of the experiment. As we are using grey scaled images, we have split the col-
oured traces into separate images, one for each macro action. The black pixels indi-
cate the places where a particular macro action has been selected and the route fol-
lowed by the robot. Fig. 5 refers to the beginning of the adulthood training period and 
clearly shows that the robot starts very early to prefer the first macro action. 
 

 
 
Fig. 5. Macro actions selected by the robot at the beginning of the adulthood training period. 

 



 
Fig. 6. Macro actions selected by the robot at the end of the adulthood training period. 

 
Fig. 6 shows the last part of the adulthood training period. At this stage the robot 
clearly selects the macro action which makes it circle inside the red trail. Similarly, in 
the second half of this phase, when the targets are placed on the green trail, the robot 
learns to select the second macro action (data not shown). 
As mentioned previously, and as shown by these figures, the solution found by the 
genetic algorithm is rather clever: while trying to touch the target with the front cor-
ners of its retina the robot manages to keep its position inside the coloured path, so as 
to minimise the path and time needed to reach the succeeding targets. 
As showed in Fig. 4, the performance of an individual can differ substantially from 
trial to trial and this is even more evident if one observes the robot behaviour. Fig. 7 
shows how the same reinforcer leads to two drastically different macro actions in two 
different trials. In the first trial the robot learns a useful behaviour that consists in 
following one of the two coloured trails. In the second trial the robot remains trapped 
in the border and does not succeed to come back to the centre of the arena. The ex-
planation of this is that the reinforcers lead with a certain probability (about 25%, see 
Fig. 4) to macro actions that are highly efficient but (e.g., recall the capacity to switch 
the border of the trail followed) but not very robust, as they lead to bad behaviours 
the remaining times. A possible explanation of this is that this strategy is “tolerated” 
by evolution as at least one of the descendants of the same father in one generation 
have the chance to incur in a suitable childhood’s experience, and hence to develop 
very good macro actions, whereas their “brothers” will receive low fitness and will 
not reproduce. In this way the behaviours of these lucky, sophisticated individuals 
will continue to survive along the generations. 
 



               
 
Fig. 7. The same reinforcer produces different macro actions in different trials. 

4   Conclusions and future work 

This paper presented a novel approach and an experimental setup to evolve “rein-
forcers” that allow a mobile robot to learn macro actions in its first phase of life 
(childhood), that are suitable to tackle classes of different tasks in its second phase of 
life (adulthood). Preliminary results suggest that this approach is viable and can be 
applied to more complex tasks. 
Our next objective is to apply this framework to more complex environments in order 
to try to evolve more than two macro-actions’ reinforcers, and in particular to obtain 
macro actions which are used by the system to solve more than one navigation task. 
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