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ABSTRACT. We consider a system based on an Elman network for a categorization task. Four objects are inves-
tigated by an automa walking around in circles. The shapes are derived from four version of a cross: square,
thick cross, critical cross and thin cross. Therefore, the input of the system is represented by the distance-wave
relieved by the sensor at each step. We let several parameters vary: starting point and speed of the automa
walk, radius of the circle and size of the shape. The system is trained using a back-propagation algorithm. We
describe the complete setup of the parameters and noises, which the automa will have to face for the predic-
tion/categorization task.

INTRODUCTION

In this paper we consider a model of an automa endowed with a distance sensor, which is able to walk
around objects. On one hand, we are interested in the the capacity of that automa to categorize the object
within a reasonable class of objects, and on the other hand robustness of such a capacity with respect to
variations of the parameters involved in the entire setting, and with respect to noise parameters (see [10],
[14], [9] and [13]).

The model is reduced in our case to facing sequences of distance predictions, which correspond to special
object contours. That task play a key role more in general in the autonomous robotics field, and namely
in artificial active vision. Those distance sequences may be processed by an artificial neural network,
which tries to reproduce biological neuron-like system. There are many different types of such networks;
nevertheless we shall focus our attention on Elman neural networks (see [6], [3] and [2]).

The Elman neural network we consider has the following architecture. It is a feed-forward network
with two layers (see Figure 1 below). The activation functions for the hidden and the output layer are
logistic functions

Φσ(x) = 1
1+eσx , (1)

where the parameter σ will be set to 1. The learning rule we use is the error back-propagation algorithm
(see [11]). Moreover, the learning rate λ will be chosen later on.

This type of network differs from conventional ones in that the input layer has a recurrent connection
with the hidden one (denoted by the dashed lines in the Figure 1). Therefore, at each time step the output
values of the hidden units are copied to the input ones, which store them and use them for the next time
step. This process allows the network to memorize some information from the past, in such a way to
better detect periodicity of the patterns (perception task).

Since our network receives the distance from the pattern as input step by step, we are dealing with a
passive perception (see [7], [16], [8], [5]). We neglect for the moment interaction with the patterns and
active perception (see [12], [15], [1]). Anyway the predition is the main task we shall be involved with (see
[4] and [17]).

The object patterns we are interested in are cross-shaped objects with variable lengths in the arms
and variable ratio between the longer and the shorter arm. We shall investigate which is the best class
of such patterns to be categorized. Our experiments are split in two different periods. The first is the
so-called learning phase, devoted to train the net and to update the weights. The second is the testing

phase, devoted to test the answers of the net with the resulting fixed weights.
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Section 1 is devoted to the complete analysis of the architecture of the Elman neural network (and the
related parameters) and the description of the implemented methods. A motivation for the choice of te
patterns is given as well.

1. METHODS

The Elman neural network we consider has the following architecture. It is a feed-forward network
with three layers: an input layer, a hidden layer, and an output layer (see Figure 1 below). This type
differs from conventional ones in that the input layer has a recurrent connection with the hidden one
(denoted by the dotted lines in the Figure). Therefore, at each time step the output values of the hidden
units are copied to the input ones, which store them and use them for the next time step. This process
allows the network to memorize some information from the past, in such a way to better detect periodicity
of the patterns.

We choose the following architecture. The main characteristic is the copy of the Nh units from the
Hidden Layer to the Input Layer, which has Nh + 1 units, since the first unit is given by the (normalized)
distance measured by the sensor. Moreover we notice that the Output Layer has 1 + No units, where No

denotes the total number of patterns (to be categorized), whereas the first unit is devoted to the prediction
of the next distance step.

I0 I1 I2 · · · INh

H1 H2 · · · HNh

O0 O1 O2 · · · ONo

Input Layer (1 +Nh Units)

Hidden Layer (Nh Units)

Output Layer (1 +No Units)

Elman

Distance Prediction
Patter Prediction

Distance Perception Hidden Layer Copy

Figure 1: The architecture of the Elman Neural Network

The setting for the automa and the pattern is sketched in an xy-plane in Figure 2. Namely, the path of
the automa and the pattern have the following four parameters:

Steps: The total number of steps the automa needs to cover a single lap around the pattern. We
shall denote it by #Steps. Because of symmetry we shall consider multiples of four, therefore we
shall restrict to the reasonable values

#Steps ∈ {36, 40, 44, . . . , 148} . (2a)

The mean value for this parameter is 92 (that is 23 steps for each quadrant).
Starting Point: The angle the automa starts its circle around the pattern. The single angle-step of

the automa will depend on the total number of steps for lap, that is 2π
#Steps . If we let α(n) denote the

angle at the n-th step, we have that

α(n) ∈
{

0,
2π

#Steps
,

4π

#Steps
, . . . , (#Steps − 1)

2π

#Steps

}

, ∀n = 0, . . . , #Steps . (2b)

The parameter α(0) may be either fixed or chosen randomly.

Radius: The radius of the circle followed by the
automa around the pattern, denoted by R. Yo
mimic range limitations related to the sensor of

real robots we assume the following restrictions

R ∈ [2, 3] . (2c)

Notice that the mean value for the radius is 2.5
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Size: The size of the pattern, denoted by S. It rep-
resents half of the longest arm of the cross pat-
tern. We also let T denotes half of the length of
the shortest arm of the cross (see the Figure 2).
We shall assume some restriction of the size, as
well

S ∈ [SMin, SMax] . (2d)

We shall discuss later the suitable choices for
the lower and the upper bound.

Automa

Pattern

RST xxx

yyy

0

Figure 2: The automa (a point on the external
circle) and the object pattern

Clearly, we have that 0 ≤ T ≤ S ≤ R. Thus, the ratio ρ = S
T has the following restrictions

ρ ∈ [0, 1] . (3)

The choice of that parameter turn out to be very important, since it will uniquely identify the patterns
(together with the size). A discrete set of such ρ’s will be selected for this purpose, as it is explained in the
following SubSection.

1.1. Choice of the Patterns. This SubSection will be devoted to the choice of the total number of the
patterns No to be categorized. That is a crucial task, since it implies both the choice of some parameters,
and the categorization capability of the automa, which we want to maximize.

If we let α(n) = n 2π
#Steps + α0 be the angle at the n-th step, because of the special symmetry of the cross,

we can restrict our attention to α(n) in the angle-interval
[

0, π4

]

, without loss of generalization. We shall
denote by (R cosα(n),R sinα(n)) the position of the automa at the n-th step.
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α(n) = arctan π4

α(n) = arctanρ

α(n)

Figure 3: Computation of the distance d.

If we let d (α(n)) denote the distance of the cross
from the circle at the n-th step. It detects the dis-
tance from the object by the automa sensor, which
we set along the radial direction. We can obtain an
explicit definition for the square d, depending on the
position (before or after) of that angle with respect
to the corner of the cross, that is either

0 ≤ α(n) ≤ arctanρ ,

or

arctanρ ≤ α(n) ≤ arctan π4 = 1 .

Namely, d (α(n)) is the distance from the point (S, S tanα(n)) in the first case, and from (T cotα(n),T) in
the second case. Thus, by Pitagora’s Theorem we get

d2 (α(n)) =















(R cosα(n) − S)2
+ (R sinα(n) − S tanα(n))2 if 0 ≤ tanα(n) ≤ ρ

(R cosα(n) − T cotα(n))2
+ (R sinα(n) − T)2 if ρ ≤ tanα(n) ≤ 1

,

which has the same behavior of d (α(n)), since d (α(n)) is positive. For a deeper investigation we need the
first derivative of d2 with respect to the angle α(n),

∂d2 (α(n))

∂α(n)
=















− 2S(R cosα(n)−S) sinα(n)
cos2 α(n)

if 0 ≤ tanα(n) ≤ ρ
2T(R sinα(n)−T) cosα(n)

sin2 α(n)
if ρ ≤ tanα(n) ≤ 1

.
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Thus, recalling the restrictions for the angle-interval, the derivative has the following sign

∂d2 (α(n))

∂α(n)
≥ 0 ⇐⇒















R cosα(n) − S ≤ 0 if 0 ≤ tanα(n) ≤ ρ
R sinα(n) − T ≥ 0 if ρ ≤ tanα(n) ≤ 1

.

Therefore, we get














d2 (α(n)) decreases if 0 ≤ α(n) ≤ arctanρ

d2 (α(n)) increases if arctanρ ≤ α(n) ≤ π4
,

that means that we shall always find a minimum for α(n) = arctanρ, whereas the maximum is achieved
either for α(n) = 0 or α(n) = π4 . Hence, the distance d(α(n)) has the following critical values

dMin (α(n)) = d
(

arctanρ
)

= R −
√

T2 + S2 , (4a)

dMax (α(n)) = max
(

d(0), d
(

π
4

))

= max
(

R − S,R −
√

2T
)

. (4b)

Thus, four cases may occur in that setting, according to the different mutual positions of the two
maxima and the minimum. Since they depend explicitly on the value ρ, we shall chose four values by
symmetry as follows.

Square Case: The maximum is achieved for 0, and the minumum. The only possible choice is
ρSquare = 1.

Thick Cross Case: The maxima are achieved for 0 (absolute maximum) and π4 (relative maximum),

and the minumum for ρ. The admissible range for ρ is
( √

2
2 , 1
)

, with mean value ρThick = 0.853553.

Critical Cross Case: The maxima are achieved for 0 and π
4 (both absolute maximum), and the

minumum for ρ. The exact value is ρCritical =

√
2

2 = 0.707107.
Thin Cross Case: The maxima are achieved for 0 (relative maximum) and π

4 (absolute maximum),

and the minumum for ρ. The admissible range for ρ is
[

0,
√

2
2

)

, and by symmetry we shall choose

ρThin = 0.56066.

1.2. Input Normalization. In order to let the scale be uniform, the output scale is set to be equal to the
input one. Thus, the first input, devoted to the distance perception (denoted by I0 in Figure 1) is given by
the following expression

I0(n) =
Distance Measured by the Automa Sensor

RMax
∈ [0, 1] , ∀n = 0, . . . , #Steps . (5)

The plot of the detected distance at each step describes a wave (see the Figure 4). The first output, devoted
to the distance prediction (denoted by I0 in Figure 1), is in the interval [0, 1] as well, because of the logistic
function.

In order to prevent the network from categorizing patterns only by some `̀ special´́ distances (either
over or lower come critical bounds), we can impose that every set of wave pattern has a points that fall
within a fixed range, let’s say

d(n) ∈ [dMin, dMax] , ∀n = 0, . . . , #Steps . (6)

Indeed, we may set the range for the parameter S, given by (2d) in such a way that the correspondent
range for the distance, given by (6) is invariant for any of the four cases. Therefore, none of the figure will
be alloed to exceed that range. Namely, depending on the pattern case, the relations are as follows.

Square and Thick Cross: In the square and the thick cross case, we have R − S ≤ dMax and R −
√

1 + ρ2 S ≥ dMin, that is

S ∈
[

R − dMax,
R−dMin√

1+ρ2

]

. (7a)

Critical and Thin Cross: In the critical and the thin cross case, we have R − ρ
√

2 S ≤ dMax and
R −
√

1 + ρ2 S ≥ dMin, that is

S ∈
[

R−dMax

ρ
√

2
, R−dMin√

1+ρ2

]

. (7b)
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Recalling that the mean value for R is 2.5, we shall consider

dMin = 0.5 , dMax = 2 . (8)

Therefore, recalling the choices for the ratios ρ’s made above, the corresponding ranges and mean values
for the size parameters will be

Square: S ∈
[

0.5, 2√
2

]

, with mean value SSquare = 0.957107;

Thick Cross: S ∈
[

0.5, 2√
1+ρ2

Thick

]

, with mean value SThick = 1.010604;

Critical Cross: S ∈
[

0.5
ρ
√

2
, 2√

1+ρ2
Critical

]

, with mean value SCritical = 1.132993;

Thin Cross: S ∈
[

0.5

ρ
√

2
, 2√

1+ρ2
Thin

]

, with mean value SThin = 1.187561.

The Figures below represent the four different cases and the relativa wave-plots. In the latter plots the
x-axis represent the step n variable, and the y-axis represent the (normalized) distance d at each single
step (we chose #Steps = 64 for simplicity).
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(a) Square Case
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(b) Wave of the Square with ρ = 1 and SSquare = 0.957107
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(c) Large Cross Case
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(d) Wave of the Large Cross with ρ = 0.853553 and SThick = 1.010604
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(e) Critical Cross Case
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(f) Wave of the Critical Cross with ρ = 0.707107 and SThick = 1.132993
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(g) Thin Cross Case
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(h) Wave of the Thin Cross with ρ = 0.56066 and SThick = 1.187561

Figure 4: The four different values of ρ (radius R = 2.5)

1.3. Noises. There are several types of noises one can introduce in the setting. We choose to restrict our
scope to the following three ones.
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Angle Error: Error in the angle step α(n). The
angle may be longer or shorter than the correct
one.
A percentage of 0.05% is set for this type of error.
Furthermore, we assume that this type of error
is memoryless and thus, there is no cumulation
of the automa path errors.

Angle Error

Figure 5: Angle Error

Sensor Error: Error in the sensor. The distance
d of the automa from the pattern may be longer
or shorter than the correct one. Therefore, the
corresponding plot for the wave is not smooth.
A percentage of 0.05% is set for this type of er-
ror. Again, we assume that this type of error is
memoryless and thus, there is no cumulation.

Sensor Error

Figure 6: Sensor Error

Ratio Error: Error in the cross ratio. The four discrete values of the ratio ρmay be slightly different
from the given one. That is a topological deformation. A percentage of 0.05 is set for this type of
error.

Figure 7 shows how the (normalized) wave-plot is effected by these three errors. The dotted line repre-
sents the wave-plot in case of absence of noises.

8 16 24 32 40 48 56 64 nnn

ddd

Figure 7: Effects of the Noises in the Thin Cross Wave

It could be interesting to investigate the alternative assumption of a cumulative error, with the neces-
sary assumption of active perception.

1.4. Goals. Two kind of goals may be defined for our neural network.
a) Finding special regularities. The system should be albe to capture rhythms, lengths and similar

phenomena, either with respect to the step scale, and the distance one.
b) Keeping robustness. The system should be able to accept a reasonable generalization of the

regularities achieved, that is it should be unaffected by noises.
The two goals listed above may be re-phrased in terms of properties of the wave-plot in the xy-plane,

where x denotes the step n, and y stands for the distance d. Namely, the first goal is immediately reduced
to the periodicity and the positions of the critical points (minima and maxima). The latter task deserves
a more detailed analysis, since it is related to suitable transformations of the variables x and y.

For this purpose we consider the following linear transformations of x and y

x 7−→ axx + bx (9a)

y 7−→ ayy + by (9b)

where ax, ay and bx, by are real coefficients. It is interesting to understand the relation of those parameters
with the four parameters involved in our setting, given by (2). Suppose that we start with a configuration

C = {#Steps, α(0),R, S
}

. (10)

Assuming that we fix the ratio ρ, in any case we have the following description.
axaxax: It detects `̀ stretching´́ along the x axis, and corresponds to inverse variations of the total number

of steps, #Steps, or equivalently the speed of the automa. We obtain a new configuration

C′ =
{

1
ax

#Steps, α(0),R, S
}

. (11a)
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It must be positive, and its effects change according to ax < 1 (enlarging), or ax > 1 (shrinking).
Figure 8 shows how the wave of the thin cross (see Figure 4(h)) is effected by the transformation
x 7−→ 1

2 x. The dotted line represents the wave before the transformation.

1

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
nnn

ddd

Figure 8: Linear transformation of the Thin Cross Wave with ax =
1
2

bxbxbx: It detects the `̀ translations´́ along the x axis, and corresponds to opposite shifts of the initial
angle step α(0) of the automa. We obtain a new configuration

C′ = {#Steps, α(0)− bx,R, S
}

. (11b)

Figure 9 shows how the wave of the thin cross (see Figure 4(h)) is effected by the transformation
x 7−→ x + 3. The dotted line represents the wave before the transformation.

1

8 16 24 32 40 48 56 64
nnn

ddd

Figure 9: Linear transformation of the Thin Cross Wave with bx = 3

ayayay: It detects `̀ stretching´́ along the y axis, and corresponds to variations of both the size of the cross
pattern S, and the radius R of the automa walk. We obtain a new configuration

C′ =
{

#Steps, α(0), ayR, ayS
}

. (11c)

Figure 10 shows how the wave of the thin cross (see Figure 4(h)) is effected by the transformation
y 7−→ 1

3 y. The dotted line represents the wave before the transformation.

1

8 16 24 32 40 48 56 64
nnn

ddd

Figure 10: Linear transformation of the Thin Cross Wave with ay =
1
3

bybyby: It detects the `̀ translations´́ along the y axis, and corresponds to equal shifts of the radius R of
the automa walk. We obtain a new configuration

C′ =
{

#Steps, α(0),R+ by, S
}

. (11d)
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Figure 9 shows how the wave of the thin cross (see Figure 4(h)) is effected by the transformation
y 7−→ y − 0.5. The dotted line represents the wave before the transformation.

1

8 16 24 32 40 48 56 64
nnn

ddd

Figure 11: Linear transformation of the Thin Cross Wave with bx = −0.5
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