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Abstract

This report presents the architecture and some tests of a software that
can be used for simulating the iCub robot’s arm and for building and sim-
ulating other robots. The software is based on OPAL to inteface either
ODE or NEWTON physical engines, on YARP to allow parallel compu-
tation on multiple machines, and on REFLEX for monitoring simulation
variables.

1 Introduction

The system is based on the sofware OPAL (open source), which allows to work
on two different physical engines, ODE (open source) and NEWTON (we added
to OPAL an interface for this physical engine). The system is extensively based
on YARP (open source), a software for the management of simulations imple-
mented by multiple machines. The report first presents a brief description of
the overall sofware architeture. Then it presents the results of a simulation of
a 2D/2DoF arm model having the parameters of a human arm and controlled
with a muscle model. This simulation is also compared with a simulation run
with a 2D arm simulator implemented from scratch in C++. Finally, the re-
port presents a simulation of a 3D/4DoF arm having the parameters of the
iCub robot’s arm (a robot built within the EU funded project ‘RobotCub’, see
www.robotcub.org). Both sets of simulations were carried out on the basis of
ODE and NEWTON. The experiments allowed comparing the dynamical prop-
erties of the arm exhibited in the latter two modes of operation of the simulator.
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2 The Architecture of the Software System

The simulator is being written with three major objectives:

1. Allowing using various types of physical engines for the simulation of the
interactions and dynamics of physical rigid bodies: at the moment this is
done for the two physical engines ODE and NEWTON.

2. Allowing distributed computation.

3. Allowing monitoring simulation variables writing code at a high level.

Regarding the simulation of interactions and dynamics of physical bodies, we
decided to use an abstraction layer to allow the user to base the simulations on
different physical engines. Unfortunately, there is no actively developed library
that supports more that a single physical engines, so we decided to use OPAL
(Open Physics Abstraction Layer) as a basis to build an interface for different
physical engines. OPAL is a high-level interface for low-level physics engines
used in games, robotics simulations, and other 3D applications. OPAL is based
on a simple C++ API, intuitive objects (e.g. Solids, Joints, Motors, Sensors),
and XML-based file storage for complex objects [3]. At the moment OPAL only
supports ODE. For this reason we implemented an interface for supporting the
basic features of NEWTON, another physical engine commonly used within the
autonomous robotics community.

Robots’ control often require heavy computations (e.g., consisder robots with
cameras), and this might make it impossible to perform the control in real time
by using only one machine. The solution is to use multiple machines to control
various processes related to different aspects of control. However, distributed
computation raises the problem of inter-process communication. This problem
was tackled by extensively using the sofware YARP [2].

Monitoring variables is extremely important when carrying out scientific sim-
ulations. To avoid writing code to monitor all variables in the simulator, we used
a ‘reflection technique’ based on REFLEX libraries (developed at CERN; [4].
Such libraries allowed having a simple protocol on top of YARP for requesting
the monitoring of specific variables during simulations.

3 Simulations

In the following the results of two sets of simulations are shown:

1. Simulation of a planar arm with 2DoF having realistic parameters of a
human arm, and controlled by a λ -model of muscles. The simulation
was carried out on the basis of both ODE and NEWTON, and was also
compared with a simulation based on a dynamic planar arm implemented
from scratch in C++.

2. Simulation of a 3D/4DoF arm having the parameters of the iCub robot’s
arm (see [1]). The simulation was carried out on the basis of both ODE
and NEWTON.
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3.1 Planar Arm with 2 Degrees of Freedom

This section illustrates a comparison between data obtained using different sim-
ulations of a planar 2DoF arm: (1) a simulation run on the basis of the dynamic
equations of a 2D dynamic arm implemented from scratch in C++; (2) a simu-
lation run on the basis of the simulator using ODE; (3) a simulation run on the
basis of the simulator using NEWTON.

In all the three simulations the torques at joints were obtained using a λ-
model of muscles [7], and the arm’s parameters were set as those of a human
real arm [5].

3.1.1 Parameters of the Three Arms

The three arms, assumed to work on the plane, were formed by an upper and
a lower segment respectively measuring 30cm and 40cm. The arms had the
realistic biomechanical parameters proposed in [5]. The ranges of variation of
the shoulder and elbow joint angles were respectively 0/3.14rad and 0/2.8rad.

3.1.2 Muscles’ λ-model

Each segment of the three arms was controlled by a couple of flexor/extensor
muscles acting at the shoulder and elbow joints. According to equilibrium point
hypothesis [7], every muscle is controlled by a parameter λ specified by the
central nervous system. The λs of each couple of extensor/flexor muscles are
used to generate two opposing torques, Te and Tf , as follows:

Te = ρh(exp(α[λe − q − µq̇]+)− 1)

Tf = ρh(exp(α[−λf + q + µq̇]+)− 1)
(1)

where q is the joint angle (in radiants), q̇ is its first derivative (angular speed),
λ is the static threshold of motoneuronal recruitment, µ the coefficient of the
reflex damping torque, ρ is the strength of the muscle, h is the muscle moment
arm, and α is a function-form parameter. λ̃ = λ− µq̇ is the dynamic threshold
of motoneuronal recruitment. When q > λ̃, the muscle produces a torque with
a level that is an increasing function of [λ̃ − q]+. The torques from equation
(1) are filtered by a second-order low-pass filter to mimic the gradual muscle
activation due to calcium-dependent processes:

Mk + τ1Ṁk + τ2
2 M̈k = Tk (2)

where k refer to either the extensor or flexor muscle, M is the muscle torque
that gradually reaches the steady-state value T , and τ1 and τ2 are the time
constants of the filter. The dependence of the muscle force on the sliding of
muscle filaments is accounted for with a linearized version of Hill’s relationship
[9], nk = Mk(1+aq̇), where n is the torque and a the intrinsic muscle damping.
Finally, the net torque acting on a single joint is computed as T = ne − nf .
The controller issues the EPs related to the shoulder and elbow to the λ model
through two parameters, Rshoulder and Relbow. These parameters determine the
couple of λ values for each joint on the basis of the following equations:

λe = R + C, λf = R− C (3)
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where C is a further variable corresponding to different levels of co-activation
(stiffness) of antagonist muscles. Generally it is assumed that the nervous sys-
tem regulates the Cs and Rs independently, so, given the scope of this work,
the Cs were set to constant values.

All the parameters of the λ model were set to the same values used in [8],
obtained with physiological measurements, with the exception of µ, τ1 and Cs
(shoulder and elbow). µ was set to 0.3s vs. an original value of 0.075s. The
reason was that in [8] EPs were gradually changed, so a small µ was sufficient
to guarantee the necessary stabilizing damping effect (see equation (1)). On
the contrary, in some experiments reported here the EPs (and hence the λe − q
and the related torques) change quite abruptly, so a higher µ allowed having a
higher stabilizing damping effect. This also causes torques to reach high values
with respect to [8] and so τ1 was set to 0.12s vs. the original 0.02s. Finally, Cs
were set to 3.0Nm/rad vs. the original 2.0Nm/rad as here only two couple of
antagonist muscles were used vs. the three couples used in [8].

3.1.3 The Dynamic Arm Model Programmed from Scratch

One of the three simulations was carried out on the basis of a 2D 2DoF planar
arm programmed from scratch in C++. In this simulation, the torques values
obtained from the λ model were used by the dynamic arm model to obtain the
angular position, the angular speed and the angular acceleration of the arm
segments using standard Lagrangian formulations [6]:

B(q)q̈ + C(q, q̇)q̇ + D(q̇) + g(q) = T− JT(q)h (4)

where q = [α, β] is the vector of the angles, q̇ = [α̇, β̇] the vector the angular
speeds, q̈ = [α̈, β̈] the vector of the accelerations of the shoulder/elbow joints,
B(q) the inertia matrix, C(q, q̇) the matrix accounting for Coriolis and cen-
trifugal effects, D(q̇) the matrix related to friction (here assumed to be null),
g(q) the torque due to gravity (here null), T the total torques applied to the
joints, and JT(q)h the torques due to the interaction with the environment
(here null).

3.1.4 Data of the Comparison

Figures 1, 2 and 3 show the dynamics of torque, acceleration, speed and angle of
the two joints of the arm in the case in which it was simulated using respectively
the program from scratch, NEWTON and ODE. In this experiments the three
arms moved to two different positions in sequence. The integration time step
used was 0.01.

4 3D Arms with 4 Degrees of Freedom

These set of simulations used two robotic 3D/4DoF arms with the parameters
of iCub robot’s arm [1], shown in table 1. A rendering of the arms is shown
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Figure 1: Joint position, angular speed, and angular acceleration of the two
joints of the dynamic arm model programmed from scratch. Data were collected
applying torques obtained with a lambda model moving the arm to two different
positions in sequence. Integration time step: 0.01.
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Figure 2: Joint position, angular speed, and angular acceleration of the two
joints of the NEWTON arm model. Data were collected applying torques ob-
tained with a lambda model moving the arm to two different positions in se-
quence. Integration time step: 0.01.
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Figure 3: Joint position, angular speed, and angular acceleration of the two
joints of the ODE arm model. Data were collected applying torques obtained
with a lambda model moving the arm to two different positions in sequence.
Integration time step: 0.01.

in Fig. 4. The 4 degrees of freedom of the arms, all implemented with hinge
motorized joints, were as follows: (1) Adduction/abdution at the shoulder; (2)
Flextion/extention at the shoulder; (3) Supination/pronation at the middle of
the upper-arm link; (4) Flextion/extention at the shoulder at elbow. The two
arms were simulated using respectively NEWTON and ODE. A simple Propor-
tional Derivative controller with gravity compensation (PDgc) was used in order
to obtain the torques to apply to the two arms.

4.0.5 PDgc controller

The torques issued to the arms were computed on the basis of a PD controller
with gravity compensation term [10]; the equation of this controller is as follows:

T = g(q) + KPq̃−KDq̇ (5)

where T is the vector of torques applied to the joints, g(q) the gravity compen-
sation term, KP is diagonal matrix with elements equal to 10, q̃ is the difference
vector between the desired angular joint position and the current angular joint
position, KD is a diagonal matrix with elements equal to 1, and q̇ the vector of
current angular speed at joints.
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Figure 4: The starting position of the two simulated 3D/4DoF arms. The shown
joint angles are taken as being at 0◦.

Table 1: Top: Parameters for the 3D arms, taken from the iCub robot. Bottom:
Joints’ parameters of the 3D arms. Joints’ angles are taken as being 0◦ at the
starting position shown in Fig. 4, and positive in the direction of the joint axis
versor.

Shape Length Radius Mass Inertia

Arm cylinder 0.15 m 0.02 m 1.15 kg
Ixx = Iyy = 0.0023;

Izz = 0.0002 (cylinder
aligned along z axis)

Forearm cylinder 0.13 m 0.015 m 1.25 kg
Ixx = Iyy = 0.0018;

Izz = 0.0001 (cylinder
aligned along z axis)

Joint type Joint limits Max Torque
on all axis

Shoulder

Card. axis (0, 1, 0):

32 Nm
Cardanic (2DoF) + −120◦/60◦

Hinge (1DoF, at the Card. axis (1, 0, 0):
middle of the arm) −60◦/90◦

Hinge, −90◦/90◦

Elbow Hinge (1DoF) −90◦/60◦ 18 Nm
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4.0.6 Data of the Comparison

Figures 5 and 6 show the shape of torque, acceleration, speed and angle for
all four joints of the two arms, respectively implemented with NEWTON and
ODE, when the arms moved between two desired angular positions (from A to
B and then back to A).

In the simulations the integration time step was set at 0.002 seconds. How-
ever with Newton it was possible to have stable simulations with time step up
to 0.01, whereas with ODE a time step higher than 0.002 produced instabilities.

9



500 1000 1500 2000
0

0.5
1

angle of shoulder 0

[r
ad

]

[s/10]

500 1000 1500 2000
−10

0
10

speed of shoulder 0

[r
ad

/s
]

[s/10]

500 1000 1500 2000
−100

0
100

acceleration of shoulder 0

[r
ad

/s
2 ]

[s/10]

500 1000 1500 2000
−10

0
10

torque at shoulder 0

[N
m

]

[s/10]

500 1000 1500 2000
0

0.5
1

angle of shoulder 1

[r
ad

]

[s/10]

500 1000 1500 2000
−10

0
10

speed of shoulder 1

[r
ad

/s
]

[s/10]

500 1000 1500 2000
−100

0
100

acceleration of shoulder 1
[r

ad
/s

2 ]

[s/10]

500 1000 1500 2000
−10

0
10

torque at shoulder 1

[N
m

]

[s/10]

500 1000 1500 2000
0

0.5
1

angle of shoulder 2

[r
ad

]

[s/10]

500 1000 1500 2000
−10

0
10

speed of shoulder 2

[r
ad

/s
]

[s/10]

500 1000 1500 2000
−100

0
100

acceleration of shoulder 2

[r
ad

/s
2 ]

[s/10]

500 1000 1500 2000
−10

0
10

torque at shoulder 2

[N
m

]

[s/10]

500 1000 1500 2000
0

0.5
1

angle of elbow

[r
ad

]

[s/10]

500 1000 1500 2000
−10

0
10

speed of elbow

[r
ad

/s
]

[s/10]

500 1000 1500 2000
−100

0
100

acceleration of elbow

[r
ad

/s
2 ]

[s/10]

500 1000 1500 2000
−10

0
10

torque at elbow

[N
m

]

[s/10]

Figure 5: Angular position, angular speed, angular acceleration for the four
joints of the arm implemented with NEWTON. Integration time step: 0.002.
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Figure 6: Angular position, angular speed, angular acceleration for the four
joints of the arm implemented with ODE. Integration time step: 0.002.
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