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Abstract

As any other biological trait, communication can be studied under at least four perspectives:
mechanistic, ontogenetic, functional, and phylogenetic (Tinbergen, 1963). Here we focus on the fol-
lowing phylogenetic question: how can communication emerge given that both signal-producing and
signal-responding abilities seem to be adaptively neutral until the complementary ability is present
in the population? We explore the problem of co-evolution of speakers and hearers with artificial
life simulations: a population of artificial neural networks evolving a food call system. The core of
the paper is devoted to the careful analysis of the complex evolutionary dynamics demonstrated by
our simple simulation. Our analyzes reveal an important factor which might solve the phylogenetic
problem: the spontaneous production of good (meaningful) signals by speakers due to the need for
organisms to categorize their experience in adaptively relevant ways. We discuss our results with
respect both to previous simulative work and to the biological literature on the evolution of commu-
nication.
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1 Introduction

1.1 The Phylogenetic Problem of Communication

The Nobel prize Nikolas Tinbergen, one of the founders of modern ethology, classified ethological ques-
tions into four main categories (Tinbergen, 1963). According to Tinbergen, animal behavior must be
understood from four perspectives:

1. mechanistic: what are the mechanisms (e.g., neural or psychological) which determine the behav-
ior?

2. ontogenetic: what are the genetic and environmental factors that contribute to the behavior’s de-
velopment?

3. functional: what are the effects of a given behavior on survival and reproduction?

4. phylogenetic: how did the behavior evolve during the history of the species?

As Tinbergen suggested, a full explanation of any given behavior (or biological trait) requires not only
detailed answers to all these questions, but also an analysis of the relationships between the different but
clearly related factors (e.g., how the mechanisms underlying a given behavior arise during ontogenetic
development or arose during phylogenetic evolution). Nonetheless, as an heuristical rule, it seems appro-
priate to start studying each kind of problem separately, letting the relationships between them manifest
themselves during this study.
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In the present paper, the behavior that we are dealing with is communication, and the question we
will focus on is the phylogenetic one. Furthermore, as it is true for most, even if by no means all,
investigations in the simulation of adaptive behavior and artificial life communities, our approach is quite
general and theoretically oriented. In other words, we will not address the evolution of any particular
communication system of any given species. On the contrary, we are interested in the general question of
how communication (any kind of communication) can emerge phylogenetically during the evolutionary
history of a species. The rationale for doing this is that communication seems to pose a very general
phylogenetic problem, a problem of co-evolution between signallers (speakers) and receivers (hearers).

The emergence of communication, in fact, requires the co-evolution of both good speakers and good
hearers. Good speakers are individuals that produce signals that systematically co-vary with situations
that are relevant for survival and reproduction. Good hearers are individuals that react to signals in ways
that are appropriate to the situations with which signals systematically co-vary. Good speakers without
good hearers are useless because signals are not understood and reacted to appropriately. Good hearers
without good speakers are meaningless because one cannot react appropriately to signals that do not
co-vary with some relevant feature of the world. As Maynard-Smith (1997) puts it: “It’s no good making
a signal unless it is understood, and a signal will not be understood the first time it is made” (p. 208).
This simple fact renders the emergence of communication tricky. How can communication evolve if the
traits which are necessary for its emergence – namely, good speaking and good hearing capabilities –
taken in isolation are adaptively neutral in that they do not, per se, increase the reproductive chances of
the individuals that possess them?

This phylogenetic problem of communication must not be confounded with an adaptive problem,
which also stems from the complementarity between speakers and hearers. How can communication
systems which do not benefit equally emitters and receivers emerge? Why should speakers send use-
ful signals if they gain no advantage in doing so (as it seems to be the case for many alarm and food
calls)? And why should receivers appropriately respond to signals if they are just being manipulated by
signallers to the interests of the latter (as it seems to be the case for many aggressive signals or mating
displays)? This adaptive problem is clearly related to the co-evolutionary one in that both depend on the
complementarity between signallers and receivers. But they are clearly different problems: the problem
of co-evolution has to do with the phylogenetic question of Tinbergen, while the adaptive problem has to
do with the functional question. Furthermore, the phylogenetic problem seems to be more general: while
communication poses the adaptive problem only in those communication systems in which the interests
of hearers and speakers conflict or at least diverge (Searcy & Nowicki, 2005), the problem of initiating
co-evolution between signallers and receivers is always present.

The rest of the paper is structured as follows. The next two subsections are devoted to briefly review
previous related work in traditional evolutionary biology (1.2) and in the adaptive behavior/artificial
life fields (1.3). In section 2 we describe our model. In section 3 we show the surprising results of
our simulations and propose a possible explanation for them, which represents an interesting solution
to the phylogenetic problem. In section 4 we present a detailed analysis of a single evolutionary run
which makes it possible to fully understand the complex evolutionary dynamics demonstrated by our
simple model. This analysis confirms our hypothesis on the phylogenesis of communication, which we
further test, in section 5, by comparing the standard, base-line, simulation with two control simulations.
Having reached a full understanding of the forces that are at play in our model, in section 6 we discuss
the relevance of our work with respect to both the adaptive behavior community and to the general
(biological) theory on the evolution of communication. Finally, section 7 concludes the paper with a
summary and some general comments.
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1.2 The Biological View: Receiver Biases in the Emergence of Communication

The recent biological literature on communication has focused mostly on manipulative communication,
due to the controversial but deeply influential work of Dawkins & Krebs (1978). 1 These authors gave a
definition of communication which identified it with manipulative behavior: according to Dawkins and
Krebs communication occurs "when an animal, the actor, does something which appears to be the result
of selection to influence the sense organs of another animal, the reactor, so that the reactor’s behavior
changes to the advantage of the actor". This theoretical framework was put forward as a reaction to
the general view of communication of early ethologists (e.g. Tinbergen, 1952) according to which the
function of communicative signals was to ensure the survival of the group or the species. This species-
centered view of natural selection was challenged by the gene-centered view according to which the
basic unit of selection must be the smallest unit of reproduction, that is the gene, and any advantage that
a trait can produce for the species, the group or even the individual must be understood in terms of the
selective advantage of ‘egoistic genes’ (Dawkins, 1976). Hence, the definition of Dawkins and Krebs: a
conception of communication as manipulation was in fact more in line with the new gene-centered view
than the old, cooperative conception of early ethologists.

The historical importance of Dawkins and Krebs’ framework is probably due to the the fact that it
has ever been the only comprehensive theoretical framework on the topic, and one which has produced
a number of interesting empirical predictions (Hauser, 1996). Nonetheless, the identification of commu-
nication with manipulation seems to be unjustified both theoretically and empirically. The theoretical
point is that the adaptive problem posed by communication is symmetrical: pure adaptive reasoning
implies that just as the signaller must get an advantage for sending information, the receiver must get
an advantage in order to respond to signals. Empirically, just as there are communication systems in
which the result of the communicative interaction seems to benefit only (principally) the signaller, such
as the aggressive displays produced when competing for some resources or the begging calls produced
by newborns for receiving extra feeding from parents, there are also communication systems which seem
to provide benefit to both the actors of communication, such as mating calls or signals emitted during
cooperative endeavors like group hunting, and communication systems which seem to benefit only (prin-
cipally) the receiver, such as the food or alarm calls produced by many species. We say “seem to benefit”
because we want to stress that the functional, adaptive role of what we consider communicative behavior
is something that must discover, rather than presuppose. In other words, it is an empirical question who
and to what extent is benefited by (what we perceive as) a communicative behavior, not something that
can be decided a priori, by including it in the definition of communication itself.

While the communication-as-manipulation framework is well-suited for dealing with the first kind
of communication systems, it appears less useful when dealing with cooperative communication, and
completely misleading when dealing with communication systems which seem to benefit principally
the receiver. Indeed, the definition of communication of Dawkins and Krebs was criticized by several
authors (i.e. Maynard-Smith & Harper, 1995; VanRhijn & Vodegel, 1980) but the reply of Krebs &
Dawkins (1984) was to accept some of the criticisms as just little amendments to the basic framework,
and their way of framing the problem of the evolution of communication as the evolution of manipulation
has been informing most of both the theoretical and empirical biological literature (again, see Hauser,
1996).

The deep influence of this manipulative view of communication is clear in the standard treatment
which biologists have been giving to the phylogenetic problem of communication. In fact, a possible
solution to this problem has been suggested in the biological literature through the notion of the exploita-
tion of the receiver (or sensory) bias (Guilford & Dawkins, 1991; Maynard-Smith & Harper, 2003). The
basic idea is that in order to manipulate the receiver, the speaker could exploit some behavioral bias of
the receiver: if some environmental feature triggers a specific behavior in some organism that has an
adaptive value for another one, the latter can produce signals that resemble that environmental feature in
order to manipulate the behavior of the former for its own interests. This idea is certainly sound and can

1The very brief historical sketch of the biological thought regarding the evolution of communication made in the present
and next paragraphs follows the discussion of Hauser (1996), especially section 2.2.
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probably explain the evolution of several manipulative communication systems. But it seems much less
adequate for explaining the emergence of communication systems which seem to advantage the hearer,
like alarm and food calls which are known to be present in many species, including monkeys, chickens,
squirrels, and dogs (for a recent review, see Searcy & Nowicki, 2005). It seems more reasonable to
suppose that this kind of communication systems could emerge from the opposite mechanism, which
we can call the exploitation of a producer bias. If organisms have some bias to produce behaviors that
systematically co-vary with features of the environment which have an adaptive value, those behaviors
can be used by other organisms as cues for their own purposes. In this way, the biased behaviors become
signals, the organisms that exploit them become hearers and the individuals that produce them become
speakers. But is the idea of a producer bias reasonable? Where could a producer bias come from? Some
recent modeling work (reviewed below) has provided a suggestion: producers might be biased towards
good signaling by the need for organisms to internally categorize experiences in adaptive ways. With
the work presented in this paper we show that this idea of a producer bias is in fact sound, and might
constitute a fundamental way to solve the phylogenetic problem of communication, in both artificial and
natural organisms.

1.3 Related Modeling Work

The study of the evolution of communication and language through computational models is a very lively
field, but most of the research done in this area is specifically devoted to language (i.e. Cangelosi, 2001;
Hurford, 1989; Kirby, 2002; Parisi, 1997; Steels, 2006; for a general overview, see Cangelosi & Parisi,
2002), which is not the focus of the present paper. There are also a number of interesting models which
explicitly address the evolution of (animal) communication (for a recent review, see Wagner, Reggia,
Uriagereka & Wilkinson, 2003). However, most of these models take a functional perspective rather
than a phylogenetic one (according to Tinbergen’s classification). In other words, most of the adaptive
behavior research on the evolution of communication has been focusing on which are the conditions
which can favor the emergence of a communication system, and, in particular, on the adaptive problem
described above (i.e. Ackley & Littman, 1994; Cangelosi & Parisi, 1998; Mirolli & Parisi, 2005a; No-
ble, 1999; Oliphant, 1996). This is odd, since adaptive behavior/artificial life simulations could give a
fundamental contribution especially to the study of phylogenetic problems. In fact, empirical data on the
evolutionary history of species are rather scanty, and necessarily indirect. You simply cannot reload the
tape of evolution and directly observe what happened, or what would have happened in different scenar-
ios. But you can run artificial evolutionary experiments as many times as you want, and by comparing
the results of simulations with different set-ups you can test the influence of any kind of factor on the
(artificial) evolutionary process. In this way, you can use your virtual experiments to guide speculations,
the gathering of empirical data, and the interpretation of the available empirical evidence (Bedau, 1998;
Dennett, 1994; Di Paolo, Noble & Bullock, 2000).

This notwithstanding, there are only very few models in the adaptive behavior literature which di-
rectly deal with the phylogenesis of communication. The first one is the seminal work of Werner & Dyer
(1992). In their work, Werner and Dyer evolved communication in a population of artificial organisms
which were divided in females and males. Females could see approaching males and emit signals but
could not move. On the other hand, males could move and hear the signals emitted by females but
could not send signals and could not see females. Hence, females had to emit signals in order to guide
males to reach for them so that they could mate. The population evolved under what Werner and Dyer
called a ‘XGA’, that is, a genetic algorithm in which fitness is not explicitly calculated: rather, organ-
isms reproduce as soon as a male and a female meet. Both recurrent neural networks and look-up tables
were used as control mechanisms for artificial organisms, and in both cases the population succeeded in
evolving a communication system. Form the point of view of the present paper, the interest of this work
lies in the fact that the authors try to describe the evolutionary history through which communication
emerges. In summary, they divide this history in 5 stages, which can be summarized as follows: (1) at
the beginning, both males and females behave randomly; (2) males who do not move become extinct; (3)
males who only go straight (ignoring signals) take over the population; (4) females evolve signals that
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can help males to find them, and, consequently, males evolve the ability to appropriately respond to these
signals; (5) finally, there is a further improvement of the communication system which help optimize
mate-finding. Although Werner and Dyer’s paper is quite interesting in their trying to give an account
of communication phylogeny, their description is somewhat vague: for example, regarding the transition
between stage (3) and (4), that is, the crucial transition between non-communicating and communicating
organisms, they just say: “Males appeared that turn when in the same row or column as a female. At
this point, females had evolved that produce a signal telling the males how to find them” (p. 667). From
this passage it appears as if the ability to emit useful signals evolves first, and the ability to respond
appropriately to those signals comes later. This would be in line with our hypothesis of communication
emerging through a producer bias, rather than a receiver one, as proposed by biologists. But Werner and
Dyer are not very clear on this point, and they do not report a detailed analysis of whether and why this
is the case. Hence, from Werner and Dyer’s work it is not possible to extract general principles about the
phylogenetic problem which we are dealing with here.

Another very interesting study of the phylogeny of communication is that by Quinn (2001), which
explicitly investigates the problem of the co-evolution of speakers and hearers. Using a genetic algorithm,
Quinn evolved a team of two simulated robots which had to move in the environment while remaining
close to one another. Robots had only proximity sensors and so had to negotiate how to solve the task
by some form of (communicative) interaction, and could not rely on dedicated communication channels.
Evolved robots solve their task in a way that can be summarized as follows: (1) both agents rotate anti-
clockwise; (2) the agent (agent A) which firstly faces the other one (agent B) moves towards it; (3) agent
A stays close to agent B by slightly moving back and forth; (4) as agent B faces agent A it starts moving
backward and is followed by agent A. The back and forth movements of agent A seem to function as
signals for agent B meaning something like “I am here, waiting for you to start moving.” In fact, if an
agent perceives the signal while still rotating, it will start moving backward, taking the leading role. On
the contrary, if an agent perceives the other agent not moving back and forth (that is, not signaling),
it will start signaling and subsequently it adopts the follower role. Quinn presents an analysis of the
evolutionary emergence of such a simple form of communicative interaction. This analysis demonstrates
that the back and forth behavior which functions as a signal evolved by adapting previously existing
behaviors which had other functions to serve a communicative function. In particular, before assuming
its communicative function the back and forth movement served as an obstacle avoidance behavior which
evolved in order to avoid dangerous collisions between two robots moving one towards the other. This
work is particularly important for our purposes in that it demonstrates one way to solve the phylogenetic
problem of emitter/receiver co-evolution: communication might evolve through re-adaptation of non-
communicative behaviors to serve a new, communicative function.

Another study which explicitly addresses the evolutionary origins of communication in artificial
agents is that of (Marocco & Nolfi, 2006). In their work Marocco and Nolfi evolved a group of four
simulated robots for the ability to solve a collective navigation problem: the four robots had to equally
distribute themselves between two target areas, two robots in each area. Robots had proximity (infrared)
sensors, a ground sensor for detecting target areas, a sensor detecting their own produced signals, and
four communication sensors, detecting signals emitted by other robots from four orthogonal directions
(front, rear, left, right). Signals were emitted through a dedicated communication output, with continuous
activation, and could be perceived by other robots only from a small distance. Robots evolved using a
standard genetic algorithm. The best simulation run produced groups of robots which were able to
efficiently solve their task by using 5 different signals: signal A is emitted by a robot that is looking
for a target area and does not detect other signals; signal B is produced by a robot looking for a target
area and detecting another robot sending either signal A or B; signal C is produced by a robot located
in a target area and not perceiving any other signal; signal D is a ‘null’ signal, that is, a zero intensity
signal which is produced by a robot located outside a target area which detects a signal C; signal E
is produced by two robots which are together inside the same target area. Marocco and Nolfi analyze
the evolutionary emergence of the evolved signals, stressing the fact that communication abilities co-
evolve with individual (non-communicative) ones. In particular, they focus on how the meanings of
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signals are grounded not only on robots’ simple sensory-motor interactions, but rather on already evolved
behavioral capacities. For example, the presence of an ability (behavior) to remain in a target area acts
as a prerequisite for the emergence of signal C, which communicates the location of the target areas to
other robots. Marocco and Nolfi do not discuss explicitly the phylogenetic problem we are dealing with
here, but from their analyzes it seems that signaling abilities tend to systematically precede responding
abilities. If true, this is particularly interesting here, because it is strictly related to the hypothesis we
are advancing in the present paper, namely, that communication can evolve due to the exploitation, by
receivers, of already existing producer biases towards good signaling.

Finally, three previous studies which focused on the adaptive problem of communication (the prob-
lem of altruism) are relevant for the present work, in that they represent its immediate inspiration. In a
model very similar to the one presented here, Cangelosi & Parisi (1998) were able to evolve a commu-
nication system which benefits only hearers in a population of ecological neural networks. Discussing
their surprising results, Cangelosi and Parisi suggested that even though in their model there was no
advantage for speakers to produce useful signals, communication could evolve thanks to the link be-
tween communicative behavior and other ‘cognitive’ abilities. The argument runs as follows. In order
to behave adaptively, organisms need to internally categorize experiences in ways that are relevant for
their survival. As a consequence, if communicative behavior depends on the internal representation of
experience, which is true in Cangelosi and Parisi’s simulations and is assumed to be true also in real or-
ganisms, then produced signals will tend to be correlated to adaptively useful categories. As a result, the
evolution of good signallers might be explained as a by-product of their independently evolving ability
to categorize the environment.

The same idea has been re-stated by Marocco, Cangelosi & Nolfi (2003), who tried to evolve a
communication system in a population of neural networks controlling a robot arm whose task was to cat-
egorize objects by physically interacting with them. But in that work, notwithstanding the supposed ‘cog-
nitive’ pressure toward good signal production, the evolution of such a communication system proved to
be very difficult. In fact, a good communication system evolved only in 7 out of 10 replications of the
simulation, even if (a) the networks were cognitively pre-adapted to solve the task before the introduction
of communication, and (b) the speaker was always the parent of the hearer, so that there was a strong
selective pressure for the evolution of communication due to kin-selection.

In a recent paper (Mirolli & Parisi, 2005a), which is the immediate precursor of the present one, we
have shown that a communication system which provides benefits only for hearers is not evolutionary
stable, in a model very similar to the one used in Cangelosi & Parisi (1998), unless other factors prevent
altruistic signallers to be exploited by cheaters. Though we believe that Cangelosi and Parisi’s idea of a
cognitive pressure on the production of good signals is sound, our previous results, together with those
of Marocco and co-workers, cast doubt on it. Indeed, it seems that the supposed cognitive pressure on
the production of good signals cannot be sufficient to explain the evolutionary emergence of an altruistic
communication system, for at least two reasons: first, the cognitive pressure can produce an individual
tendency to produce good signals, but cannot explain why signals are shared in the population; second,
the emergence of a good communication system does not explain its evolutionary stability, that is why
the communicating population is not invaded by mutant individuals that cheat conspecifics by producing
misleading signals. The simulations and analyzes presented in this paper are intended to make clarity
on this topic. In particular, we will present detailed analyzes of the complex evolutionary dynamics
exhibited by our simulations which will serve to answer the following questions: Does the need for
categorizing experience in adaptive ways really constitute a drive towards good individual signalling
behavior? What else is needed for good communication to emerge at the level of the population? And
can these factors, by themselves, render the communication system evolutionary stable? To relate these
questions to the general problems posed by communication which we discussed above: Are producer
biases towards good signaling possible solutions to the phylogenetic problem of communication? Can
they also represent solution to the adaptive problem posed by altruistic communication systems?
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(a)

(b)

Figure 1: (a) Schematic representation of the environment. (b) The neural network (arrows represent
connections from all the neurons of the sending group to all the neurons of the receiving group).

2 The Model

Our model consists of a population of 100 organisms living in a one-dimensional environment (a corridor,
shown in figure 1a). An individual’s behavior is controlled by a neural network and the individual’s
fitness is a function of the number of movements the individual makes and the number and type of
mushrooms it eats during its life. There are 420 possible mushrooms, each different from all the others
in its perceivable properties, encoded as strings of 10 bits in the visual input units of an organism’s neural
network. Half of the mushrooms are edible, in that they increase the fitness of the individual that eats
them, while the other half are poisonous, in that they decrease the individual’s fitness. The architecture
of the neural network is shown in figure 1b: it includes 10 visual input units, 2 communicative input
units, 2 hidden units, 1 motor output unit and 2 communicative output units. The network’s connection
weights are encoded as real values in the range [-4, 4] in the genome of the organisms. The visual range
of our organisms is limited in that the visual input units encode a mushroom’s properties only if the
organism is in the cell immediately preceding the mushroom cell, otherwise the organism sees nothing,
i.e., the activation of all visual input units is set to 0. The motor output unit of the network has a step
activation function which determines whether the organism moves one step forward (if the activation is
1) or stays still (if the activation is 0). In our model signals consist in the two-dimensional vectors of the
activations (in [-1, 1]) of the communicative output units of an organism (the speaker), which are copied
in the communicative input units of another organism (the hearer).

Each individual of each generation lives for 420 trials, one for each mushroom. In each trial the
individual is put in the start cell of the corridor, one of the mushrooms is put at the end of the corridor,
and another individual is chosen randomly from the population to act as speaker. The speaker is placed
near the mushroom and emits a signal through its communicative output units which is received by the
tested organism (the hearer) through its communicative input units. The trial ends either if the hearer
reaches the mushroom and eats it or after 11 input-output cycles. An individual’s fitness increases with
the number of edible mushrooms eaten and decreases with the number of poisonous mushrooms eaten
and the number of movements made. More precisely, fitness is calculated according to the following
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formula:
f(x) =

ane − bnp − cnm

norm
(1)

where ne and np are, respectively, the number of edible and poisonous mushrooms eaten by x, nm is the
number of movements made by x, a, b and c are three constants (set to 30, 5, and 1, respectively), and
norm is the normalization factor (maximum possible fitness) which equals 4200.

After all the individuals of one generation have lived their lives, the next generation is created by
selecting individuals with a probability proportional to their fitness (using the roulette wheel method
with windowing), 2 making them reproduce sexually (with double-point crossover), and mutating the
genes (connection weights) of the offspring with a probability of 0,1%.

Simulations run for 2000 generations, during which we calculate various statistics, the most impor-
tant ones being average fitness and what we call ‘communication system quality’. For a communication
system to be good, three conditions must apply: (a) objects belonging to the same category must be sig-
nalled in similar ways, (b) objects belonging to different categories must be signalled in different ways,
and (c) all individuals must signal in the same way, which implies that the communication system is
shared in the population. In our model, signals are two-dimensional vectors, which can be represented as
points in a two-dimensional space whose coordinates are the activations of the two communicative output
units of speakers. Hence, the communication system of a population consists of two clouds of points:
the points that represent the signals emitted by all the organisms in presence of all edible mushrooms
and the points corresponding to the signals emitted in presence of all poisonous mushrooms. Condition
(a) above is satisfied if the two clouds are small (meaning that mushrooms of the same category are sig-
naled in similar ways). Condition (b) is satisfied if the two clouds are distant from one another (meaning
that mushrooms belonging to different categories are signaled in different ways). Condition (c), which
regards the sharedness of the communication system, is implicitly satisfied by the other two conditions,
since the clouds represent the communication system of the entire population. Our communication sys-
tem quality is calculated as the average between the two measures that make a communication system
good: (1) the mean distance of the points of each cloud from the cloud’s geometrical center, and (2) the
distance between the geometrical centres of the two clouds.

3 Results, with a Possible Explanation

In the scenario of our simulations the emergence of a good communication system would provide an
advantage only to hearers. A hearer who receives good signals could in fact use the received signals for
deciding to approach mushrooms signaled as ‘edible’ or to stay still in the case the received signal stands
for ‘poisonous’. This would allow the hearer to avoid wasting its energy by approaching poisonous
mushrooms and thus would increase its fitness. For speakers, however, there is no benefit whatsoever in
producing good signals. On the contrary, since individuals compete for reproduction, producing good
signals is a purely altruistic trait in that, by giving an advantage to competitors, it indirectly decreases
the reproductive chances of the good signaler. In other words, our simulative scenario poses both the
phylogenetic problem and the adaptive problem due to the altruistic character of this kind of food calls.

The results of 10 out of 50 replications of the simulation, which are representative of all the others,
are shown in figure 2.

The results are quite surprising: average fitness and communication system quality fluctuate cycli-
cally between very low and very high values. This means that communication continually emerges but it
is also continually disrupted. Since this very unstable pattern is present in all the replications of the sim-
ulation, the mechanisms that generate it must be very strong and reliable. What might these mechanisms
be?

2‘Windowing’ consists in reducing the fitness of each subject by the fitness of the worst subject, so that the fitness of all
individuals are >= 0. For an explanation of the details of the genetic algorithm, see Mitchell, 1996 and Mirolli & Parisi, 2005a.
The results reported in the next section seem quite robust with respect to the details of the genetic algorithm: for example,
runs with slightly different mutation rates or with asexual reproduction (i.e. without cross-over) provided qualitatively similar
results.
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Figure 2: Average fitness (gray line) and communication system quality (black line) of 10 replications of
the simulation.

The sudden drops in the communication system quality can be explained by referring to the above
mentioned adaptive problem: that is, as a consequence of the altruistic character of communication. Once
a good communication system has emerged in the population bad speakers are selected against good
speakers because they act as cheaters: they can take advantage of the good signals they receive while
misleading other organisms by producing bad signals. The result is that bad signalers (cheaters) rapidly
invade the population with the consequence of a sudden decrease in the quality of the communication
system. But why a good communication system should emerge in the first place or re-emerge after being
disrupted? Clearly, in our simulation something quite powerful must be at work which is able to solve
the phylogenetic problem, pushing the communication system towards good quality. We hypothesize
that the tendency of communication to emerge is due to two factors.

The first factor is the ‘cognitive’ pressure suggested by Cangelosi & Parisi (1998). In order to sur-
vive and reproduce organisms must categorize perceived mushrooms according to their quality, moving
forward in the corridor when they perceive edible mushrooms and staying still when they perceive poi-
sonous mushrooms. For producing this kind of behavior, mushrooms must be appropriately categorized
in the neural network’s hidden units. In other words, in order for an organism to behave efficiently, its
network’s connection weights must be such that mushrooms belonging to the same category elicit similar
activation patterns in the hidden units (similar internal representations), while mushrooms belonging to
different categories elicit different internal representations. But, given the architecture of our organisms’
neural networks, the signal emitted by an organism in the presence of a mushroom directly depends on
the internal representation elicited in the hidden units by the perception of the mushroom. This means
that the adaptive pressure to categorize mushrooms appropriately causes, indirectly, a pressure to pro-
duce good signals: mushrooms belonging to the same category elicit similar internal representations,
which, in turn, tend to elicit similar signals; vice versa, mushrooms belonging to different categories
elicit different internal representations which tend to elicit different signals.

However, this cognitive explanation of the spontaneous emergence of a good communication system
cannot be enough. The cognitive pressure can in fact explain only the fact that each individual tends
to produce good signals, that is, signals that systematically co-vary with the category of the mushrooms
perceived by the individual. It cannot explain why the communication system is shared in the population,
that is, why different individuals tend to produce similar signals, a condition which is necessary for
good communication and which is considered in our measure of the communication system quality.
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(a) (b)

Figure 3: (a) Average fitness (gray line) and communication system quality (black line) of one replication
of the simulation. (b) Zooming in on the 200 generations from generation 400 to generation 600 enclosed
in the dotted lines of graph (a). The dashed lines of graph (b) separate macro-evolutionary phases, while
the dot-dashed lines subdivide this evolutionary period in the 11 sub-phases described in table 1. See
text for details

(Remember that the measure is taken at the populational level, considering the signals emitted by all
individuals). In order to explain the sharedness of the communication system we need to take into
consideration another factor, namely genetic convergence. In fact, if organisms have similar genes (in
particular for the weights connecting the visual input units to the hidden units and the hidden units to the
communicative output units), they will have similar (categorical) internal representations and will tend
to produce similar signals. Genetic similarity can in turn be explained by genetic convergence due to
selection: only a few individuals, the fittest, reproduce in each generation and, as a consequence, their
genes will tend to spread in the population reducing genetic diversity.

This explanation of our results, if correct, might provide a possible powerful solution to the very gen-
eral phylogenetic problem of the evolution of communication. But even if the idea of possible cognitive
pressure towards good signaling has been proposed by several researchers (Cangelosi & Parisi, 1998;
Marocco et al., 2003; Mirolli & Parisi, 2005a), to our knowledge nobody has ever really demonstrated
its presence in any model of the evolution of communication, let alone discussed its possible significance
for the evolution of real communication systems. The rest of the paper is devoted to do just that: test
our explanation of the peculiar results of our simulation (next two sections), and discuss its relevance for
biological theory on the evolution of communication.

4 Evolutionary Dynamics of Communication

4.1 Zooming in on Evolution

In the previous section we have given an explanation of the repeated rise and fall of communication in our
model based on four factors: (1) the cognitive pressure toward spontaneous individual good signalling,
(2) the genetic pressure toward sharedness of the communication system due to the convergence of
the population, (3) the direct benefits brought by responding appropriately to informative and shared
signals, and (4) the pressure against good (shared) signalling produced by the altruistic character of
communication. In order to test this explanation of the complex evolutionary dynamics demonstrated
by our simulations, we take a single run of the simulation, select a portion of it (from generation 400 to
generation 600), and try to analyze this portion in detail. Figure 3 shows the process of zooming in on
the 200 generations we selected.
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phase macro-phase generations description
1 a 400-444 communication is bad and ignored
2 b 445-480 communication improves gradually
3 c 481-485 fitness improves rapidly
4 c 486-495 communication is good and partially exploited
5 c 496-500 fitness improves rapidly
6 c 501-519 communication is fully exploited
7 d 520-541 communication system quality and fitness decrease
8 b1 541-555 fitness decreases but communication improves
9 b1 556-561 communication is good but not understood
10 c1 562-580 fitness improves rapidly
11 c1 581-600 communication is good and partially exploited

Table 1: Evolutionary phases of the analyzed simulation.

We choose this particular portion of this run for analysis because, looking at the dynamics of average
fitness and communication system quality, it seems to clearly exemplify the typical cycle of rise and
fall of communication which repeats itself continually in all the runs. As can be seen from the picture,
we have divided the 200 generations into 11 sub-parts by identifying transitions consisting in significant
changes in average fitness and/or communication system quality. These are summarized in table 1.

For the sake of clarity, we have grouped some of these sub-parts together by identifying 4 macro-
evolutionary phases which can be described as follows:

Phase (a) (generations 400-444): Communication system quality is low and communicative input is
ignored, resulting in an average fitness of about 0.55, which is the maximum value that can be
reached without the aid of communication;

Phase (b) (generations 445-480): Communication system quality improves because of the cognitive and
genetic pressures towards good communication;

Phase (c) (generations 481-519): Good signalling starts to be exploited and fitness increases until it is
near to the maximum value;

Phase (d) (generations 520-541): Bad speakers are selected against good ones because they cheat others
and invade the population: the result is a sudden decrease in communication system quality and,
consequently, fitness.

Once the communication system quality has reached its minimum it starts to grow again (phase (b1):
generations 542-561) until it reaches a very high value, communication re-starts to be exploited, and
fitness increases again (phase (c1): generations 562-600).

4.2 Analyzes

In order to understand the evolutionary dynamics of these 200 generations of our simulation we have
collected a number of statistics and plotted them together in figure 4. An evolving population can be
considered as a cloud of points in a multi-dimensional genotype space. In our case, each dimension
corresponds to one of the 32 connection weights of an individual’s neural network (encoded as real
values in the individual’s genome). The points correspond to the individuals of the population and each
point’s coordinates are the values of the individual’s genes (connection weights). In order to understand
how the population moves in its genetic space we consider the centroid of the population, that is, the
geometrical center of the cloud of points representing the individuals of each generation. In dynamical
systems terms (Beer, 2000), the centroid is a dynamical system moving in discrete time (time-steps
correspond to generations), in a 32-dimensional continuous space (with each dimension bounded in [-
4;4]), with a very complex evolution operator (which is implicitly defined by the rules which govern
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individual life and the selection, reproduction, and mutation operators) and highly stochastic: there is
stochasticity in the individuals’ interactions and in all the genetic algorithm’s operators.

Since the genetic convergence of the population is necessary, according to our hypothesis, for ex-
plaining the sharedness of the spontaneously emerging communication system, an interesting statistic to
take is the genetic variance of our population. But since our explanation postulates different genetic pres-
sures on different sets of genes, we wanted to determine whether those different genetic pressures would
result in different genetic variances. Consequently, we divided our system (the genome of the evolving
population) into three sub-systems corresponding to the three distinct functional roles that different sets
of genes play with respect to communication: the non-communicative genes, the communicative-input
genes, and the communicative-output genes (see figure 5a). Genetic variance for each gene (connection
weight) x (Vx) is calculated, standardly, according to the following formula:

Vx =
∑N

i=1(w̄x − wi
x)2

N
(2)

where N is the number of individuals in the population (i.e. 100), w̄xis the mean value for weight x, and
wi

x is the weight x of the ith individual. Consequently, the variances (V k) for the three categories (k ∈
K) of weights (non-communicative, communicative-input, and communicative-output) are calculated as
follows:

V k =
∑Nk

x=1 Vx

Nknorm
(3)

where Nk is the number of weights of the kth category (i.e. 28, 4 and 4 for non-communicative,
communicative-input, and communicative-output weights, respectively), Vx is the variance on weight
x ∈ k and norm is the normalization factor, so that V k is in [0;1] (since weights are bound in [-4, 4]
the theoretical maximum variance for each gene is 16, obtained when half of the population has a value
of -4 and the other half a value of 4). Figure 4a shows these variances as they change during the 200
generations under analysis.

Figure 4b shows the displacement of the centroids of the three functional sub-sets of genes (non-
communicative, communicative-input and communicative-output) between generation x and generation
x-1. Formally, we plotted the following function:

y(k) = dist(Ck
x , Ck

x−1) (4)

where k is the plotted category (non-communicative, communicative-input and communicative-output),
Ck

i is the centroid of category k at generation i, and dist(a, b) is the euclidean distance between points
a and b.

Figure 4c represents the evolution of the populational communication system itself. As discussed
above, as signals are represented by points in the two-dimensional space of the communicative-output
units of organisms, the communication system can be represented as the two populational centroids of the
points that represents signals emitted in response to edible mushrooms and signals emitted in response to
poisonous mushrooms, respectively. In figure 4c we have plotted the two coordinates of the two centroids
of the signals used for edible and poisonous mushrooms.

Figure 4d shows the comparison between four values: the quality of the populational communication
system, the average quality of the individuals’ communication systems, the quality of the populational
representation system, and the average quality of the individuals’ representation systems. As discussed
above, the communication system quality that we have discussed so far is calculated on the centroids
of signals emitted by all the individuals of one generation for all the edible and poisonous mushrooms.
But we can also calculate the quality of the individuals’ communication systems: for each individual we
calculate its communication system quality by considering the centroids of the signals emitted by that
particular individual. By averaging those quantities over all individuals in a population we can look at
the quality of individual communication systems regardless of the sharedness of communication in the
population. Just as the signal emitted by an individual for a given mushroom is the two-dimensional
point whose coordinates are the activations of the two communicative output units of that individual for
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that mushroom, so the internal representation of that individual for that mushroom is the point whose
coordinates are the activations of the individual’s hidden units when it sees the mushroom. As a conse-
quence, we can calculate both populational and average individual representation quality in the same way
as we calculate communication system quality, but considering the points represented by the individuals’
internal representations of mushrooms in their hidden units instead of those represented by the signals
emitted through the communicative output units.

The last two images of figure 4 show the evolution of the genes of the best individual of each genera-
tion (figure 4e) and of the populational centroid (figure 4f). The two images are bitmaps, where each point
represents in a gray-scale the value of one of the 32 genes of a given generation (with white corresponding
to very low, negative, values and black to very high, positive, values). As usual, genes are grouped ac-
cording to their functional role (non-communicative, communicative-input, and communicative-output).

4.3 Explaining Evolutionary Dynamics

In this section, we will try to understand the mechanisms that underlie the evolutionary dynamics of
our simulation with the help of the various statistics plotted in figure 4. For reasons of space, we will
not describe in detail all that happens during the 11 evolutionary phases that are summarized in table
1, even though this is something that can easily be done. Rather, we will focus just on the macro-
phases described above, with a particular emphasis on those which involve important changes in the
communication system quality of the population, that is, phases (b), (d), and (b1) (see figure 3b). In
particular, we will try to answer the following three questions: (1) How and why does communication
improve during phase (b)? How and why is communication disrupted during phase (d)? How and why
does communication improve again during phase (b1)?

Phase (a): Even though phase (a) is an evolutionary stable phase, with respect to both average fitness
and communication system quality, we can see that during this phase the populational centroid moves
slightly in the non-communicative genetic sub-space, while it does not move significantly in the other
two sub-spaces (figure 4b). This continuous displacement of the non-communicative centroid is due
to the competition between a few genotypes which have different non-communicative genes but are
phenotypically quite similar in that they provide comparable fitness. This is shown by the fact that during
this period some of the non-communicative genes of the best individuals change continually (specifically
genes number 2, 14, 17, 19, 20, 21 and 22, see figure 4e), resulting in corresponding changes in the
populational centroid (figure 4f). The simultaneous presence of competing genotypes during this phase
is demonstrated also by the existence of some genetic variance in the non-communicative genes (figure
4a). 3

Phase (b): Phase (b) is characterized by the slow increase in communication system quality at the
level of the population. How and why does this happen? During this phase, the activity in the non-
communicative genetic space due to the competition between genotypes with equivalent fitness contin-
ues, as demonstrated by the graphs of figure 4a, b, e and f. However, during this competition the best
individual of the population starts to have a different communicative-output gene (the first one, see figure
4e). As a consequence, the communicative-output populational centroid starts to slowly displace itself
(figure 4b) until the population has converged on the new value of the mutated gene (figure 4f). During
this phase signals are ignored because during phase (a) they used to be uninformative (indeed, as shown

3The reason of the relatively high average genotypic variance in the communicative-output genes during the entire period
we are discussing lies in the simultaneous presence of two opposite alleles in the last gene. In fact, high and low values for
that gene alternate in the best individual (figure 4e), while the populational centroid’s gene remains completely stable during
all the 200 generations (figure 4f). Evidently, two alleles of the last gene co-exist in the population throughout this period, due
to the fact that during this period this gene has no effect on fitness nor on communication system quality. This co-existence
is demonstrated by the fact that the populational centroid value for that gene is neither of the two values present in the best
individual, but rather a mean between the two (figure 4f). This means that about half of the population possess one of the two
alleles while the other half possesses the other.
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Figure 4: Analyzes of evolutionary dynamics during 200 generations (from generation 400 to gen-
eration 600) of one replication of the simulation. (a) Average variances of the non-communicative,
communicative-input, and communicative output genes. (b) Displacement of the non-communicative,
communicative-input, and communicative-output populational centroids. (c) Coordinates of the two cen-
troids of the signals used for edible and poisonous mushrooms. (d) Quality of the communication and
representation systems of the population and average quality of individuals’ systems. (e-f) Gray-scale
bitmap of the genes of (e) the best individual of each generation and (f) of the populational centroid;
genes are grouped according to their functional role: non-communicative (non-C), communicative-input
(C-in), and communicative-output (C-out). The lines on or under the graphs divide the 200 generations
under analysis into six evolutionary macro-phases. See text (section 4.2) for details.
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in figure 4c, during phase (a) there was almost no signalling at all, in that the centroids of the signals for
both edible and poisonous mushrooms have a value of about 0). As a result, there cannot be any selec-
tive pressure whatsoever regarding communicative-output genes. And in fact, during this phase average
fitness does not change at all (figure 3). Hence, the new communicative-output gene spreads in the popu-
lation just for genetic drift. But how can simple genetic drift in a single gene produce such an increase in
the quality of the communication system of the population? As we can see in figure 4d, notwithstanding
the slight variability in the non-communicative genes, the population has already converged at the level
of internal representations: the populational representation quality is in fact very good, almost as good
as average individual categorization quality (figure 4d). It is just this convergence on categorized and
shared representations of mushrooms that makes it possible for the spreading in the population of the
new communicative-output gene to bring about a simultaneous increase in both individual and popula-
tional communication system quality. In fact, the new communicative-output gene just makes manifest
in the communicative-output units (in particular in the first unit, see figure 4c) the categorization of
mushrooms already present in the hidden units.

Phase (c): During phase (c) the good signals produced spontaneously by speakers get exploited by re-
ceivers thanks to the appearance of favorable mutations in both the non-communicative and the communicative-
input genes. Thanks to the fact that they permit the exploitation of good signals, these mutations generate
two sudden increases in average fitness. The first fitness increase happens at the beginning of phase (c),
and is due to two sudden jumps of the population in the non-communicative and communicative-input
genetic sub-spaces. These jumps are evident in the sudden stabilization of both the best and the centroid
non-communicative genes (which produces a sudden decrease in non-communicative genes variance
(figure 4a), and in the sudden change in the first linguistic-input gene (figures 4e and f). Those sudden
changes are also evident in the high peaks of the non-communicative and communicative-input centroids
displacement (figure 4b). The second increase in average fitness is due to a further displacement of the
non-communicative genes centroid (figure 4b). In turn, this depends on a favorable mutation in the first
gene of the best individual, which rapidly spreads to the whole population (figures 4e and f).

Phase (d): At the end of phase (c) all organisms both produce similar, useful signals, and correctly
interpret the signals they receive, resulting in very good average fitness (figure 3b). How and why is
communication disrupted during phase (d)? This is clearly due to the invasion of the population by
cheaters. At the very beginning of phase (d) a new mutation occurs in the first communicative-output
genes which makes the mutant individual produce signals which are different from those of all the other
organisms in the population. As is clear from figure 4e, the best individual happens to be one with a new
allele for that gene (figure 4e). This new allele starts to spread in the population, even though slowly,
because individuals that possess this allele cheat the others. When they act as speakers, they produce the
signal that is interpreted as meaning ‘edible’ when there is a poisonous mushroom and the signal inter-
preted as meaning ‘poisonous’ when there is an edible mushroom. As a consequence, hearers are mislead
and obtain lower fitness. The fact that the new allele makes individuals invert their signals, and does not
simply make individuals produce signals that do not distinguish between edible and poisonous mush-
room is demonstrated by the fact that while during phase (d) populational communication system quality
decreases, average individuals communication system quality slightly increases (figure 4d), meaning that
organisms with the new alleles in the first communicative-output gene produce, individually, even better
signals than those with the old alleles, but the new signals have opposite meaning with respect to old
ones. When the new allele has spread in half of the population, the communication system quality of
the population has reached its minimum, because half of the organisms signal ‘edible’ with a high value
in the first communicative-output unit and ‘poisonous’ with a low value in the same unit, as in the pre-
ceding generations, while the other half, with the new allele, do the opposite, signalling ‘edible’ with a
low value in the first communicative-output unit and ‘poisonous’ with a low value. This explains why at
generation 540 the mean value of the first communicative-output unit is 0 for signals emitted for both ed-
ible and poisonous mushrooms (figure 4c), while individual communication system quality is quite high
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(figure 4d). The presence of two opposite alleles in the population of the first communicative-output
gene explains also the peak in the genetic variance of the communicative-output genes (figure 4a): now
there is high variance not only in the last non-communicative gene but also in the first one, that produces
a variance which is about twice as great as that of the preceding generations. Finally, the simultaneous
presence of the two alleles is also manifest in the fact that while the first communicative-output gene of
the populational centroid (figure 4f) changes between a very low value (dark gray) to the mean value (0,
represented by medium gray) to a very high value (bright gray), the best individuals have always either
the dark allele or the bright one (figure 4e). This means that the change in the populational centroid is
due to a change in the proportion of the two competing alleles in the population.

Phase (b1): How and why does communication quality increases again during phase (b1)? Phase
b1 is just a continuation of phase (d). The population keeps on moving in the communicative-output
space (figure 4b) towards convergence on the new allele for the first communicative-output gene (figure
4a) because this gene continues to provide a relative selective advantage due to cheating. As a result,
populational communication system quality starts to increase again (figure 4d), as the population con-
verge to the new signalling behavior: low values in the first communicative-output unit for ‘edible’ and
high values for ‘poisonous’ (figure 4c). The reason why average fitness keeps on decreasing during this
phase while communication system quality increases (figure 3b) is the same that explains the conver-
gence of the population to the new allele for the first communicative-output gene: even though the new
communicative-output gene makes speakers produce good signals, those signals are misinterpreted by
hearers, which have communicative-input genes adapted to the previous communication system, which
was just opposite to the new one. As a result, average fitness remains at its minimum value for a few
generations.

Phase (c1): Finally, at the beginning of phase (c1) a series of mutations occur that allow the population
to re-adapt to the new communication system. Chronologically, changes in the fourth, second, and first
communicative input genes and in the last non-communicative gene of the best individuals (figure 4e)
are rapidly followed by analogous changes in the populational centroid (figure 4f). As a consequence,
the population rapidly displaces itself in both the communicative-input and non-communicative sub-
spaces (figure 4b). At generation 580 the population has converged in both the communicative-input and
non-communicative genetic spaces (figure 4a), good signals are partially exploited, and nothing relevant
happens any more.

In conclusion, we can say that the analysis of the dynamics of the population during the 200 genera-
tions we have taken into consideration has clearly confirmed the overall interpretation of the continuous
rise and fall in both communication system quality and average fitness that we have provided in section
3. But this is not enough. Even if our analysis has been demonstrated to be correct for the evolution-
ary period we have studied, we cannot still be sure that the same is true for all the periods of all the
replications of the same simulation. In other words, the analysis of a single run is not enough for the
extrapolation of general principles. In order to test whether the tendency towards the emergence of com-
munication due to cognitive and genetic pressures, is general rather than relative to a single run of the
simulation, we compare the average results of 50 runs of the simulation discussed so far (which from
now on we will call the base-line simulation) with those of two new control conditions, which we call
the no-cognitive-pressure and the no-communication simulations. This is done in the next section.

5 Control Experiments

5.1 The No-Communication and No-Cognitive-Pressure Simulations

The no-cognitive-pressure simulation runs exactly as the base-line simulation but organisms have neural
networks with a different architecture, shown in figure 5b.
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Figure 5: Comparison between the neural network used in the base-line and no-communication simu-
lations (a) with that used in the no-cognitive pressure simulation (b). Connection weights are grouped
according to their roles in communication: non-communicative (thick arrows), communicative-output
(thin arrows), and communicative-input (broken arrows).

The difference is that in this condition there are two groups of hidden units (composed by 2 neurons
each): one receives connections from both the visual and the communicative input units and sends con-
nections to the motor output units, the other receives connections from the visual input units and send
connections to the communicative output units. In this way we artificially avoid any impact of cate-
gorization on communicative behaviour: since the communicative output does not depend on the same
neurons on which the motor output depends, with the new architecture there cannot be any cognitive
pressure towards good signal production. 4

Organisms of the no-communication simulation have the same neural network as those of the base-
line simulation (figure 5a) but in this case communication is not allowed. In other words, in the no-
communication simulation organisms cannot send signals and, consequently, tested individuals never
receive any communicative input. Under such conditions, the only way for an individual to behave cor-
rectly is to move towards the mushroom until the mushroom is close enough to be clearly perceived and
then to decide whether to eat the mushroom or refrain from doing so. As a consequence, the maximum
fitness that can be obtained by the individuals of the no-communication simulation is 0.55. The reason is
that these organisms must always pay the cost of moving towards mushrooms: a cost that can be avoided,
when the mushroom happens to be poisonous, by organisms that receive reliable signals (in the simu-
lations with communication). Note that the communicative weights (those that link the communicative
input and output units with the hidden units) are never used in this simulation, so they are adaptively
neutral and subject to genetic drift. Nonetheless, we can still test what signals are produced by the net-
works located near to a mushroom and, consequently, measure the communication system quality of the
no-communication simulation even if signals are never used.

5.2 Results

Figure 6 shows the results of the 3 simulations (base-line, no-communication, and no-cognitive-pressure)
in terms of communication system quality (a) and average fitness (b).

The results (averaged over 50 replications of each simulation) clearly support our hypothesis regard-
ing the cognitive pressure towards the emergence of a good communication system. The communication
system quality in the no-communication simulation is quite high (about 0.5, see figure 6a), being not
much lower than the value reached in a ‘kin-selection’ simulation (about 0.6) which was good enough
to allow the population to reach almost maximum fitness (the kin-selection simulation and its results are

4We also ran a no-cognitive pressure simulation without the second group of hidden units, connecting directly the visual
input group to the communication output group. This simulation gave qualitatively identical results as those of the reported
simulation.



18

(a) (b)

Figure 6: Communication system quality (a) and average fitness (b) of the base-line, no-communication,
and no-cognitive-pressure simulations. Average results of 50 replications.

reported in Mirolli & Parisi, 2005b). This means that the need to categorize mushrooms and the genetic
convergence of the population are sufficient to produce a good communication system even in popula-
tions in which communication is not allowed and the communicative-output weights are subject to ge-
netic drift. Furthermore, the fact that the quality of the communication system in the no-communication
condition is considerably higher than in the base-line condition (about 0.35) means that, if signals are
used, there is a direct selective pressure against good speaking, due to the altruistic character of commu-
nication.

The results of the no-cognitive-pressure simulation confirm our analysis. If we prevent any influence
of cognition on signal production by manipulating the architecture of the neural network, a good com-
munication system never emerges, resulting in an average communication system quality of about 0.2,
which is considerably lower than that of the base-line condition.

The results in terms of average fitness (figure 6b) are quite clear. In both the no-communication and
the no-cognitive-pressure simulations fitness reaches the maximum value achievable without communi-
cation: in the first case because communication is not allowed, in the second case because signals are
useless and cannot be exploited. Since the organisms of the base-line simulation can sometimes take
advantage of communication, their average fitness is a little (but not much) higher.

In figure 7a we have plotted the variances of non-communicative and communicative-output connec-
tion weights of the base-line simulation (as usual, we show the average results of 50 replications).

There is indeed a considerable genetic convergence since both variances are very low, which ex-
plains the sharedness of the spontaneously emerging communication system, but the communicative-
output weights have a much higher variance (about 0.1) than the non-communicative weights (about
0.01). The explanation is to be found in the selective pressure against good signal production due to
the altruistic character of communication. As we have seen in the previous section, the cheaters which
invade the population when the communication system is good are those organisms that, due to mu-
tations, have communicative-output weights that are different from those on which the population has
converged and which, consequently, let them produce misleading signals. In other words, the variance
of the communicative-output weights is higher than the variance of the non-communicative weights be-
cause each time the population has genetically converged and the quality of the communication is high,
there is a strong and reliable pressure to possess communicative-output genes that differ from those of
the population, in order to cheat competitors.

This analysis is further confirmed by the comparison between the variances on the communicative-
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Figure 7: Average variances on the non-communicative and communicative-output weights of the base-
line simulations (a) and average variances on the communicative-output weights of the base-line, no-
communication, and no-cognitive-pressure simulations (b). Average results of 50 replications of the
simulations.

output genes in the three conditions: base-line, no-communication, and no-cognitive-pressures (figure
7b). The three different values reflect the different pressures on those genes in the three conditions. In
the no-cognitive-pressure simulation, since there is no spontaneous tendency, in individuals, to produce
a good communication system, the low variance of communicative-output weights (about 0.03) is ex-
plained by the genetic convergence of the population. The fact that the variance of communicative-output
weights in the no-communication condition is higher (about 0.06) and tends to grow after reaching its
minimum is due to the fact that in that simulation there is no pressure whatsoever on the communicative-
output genes, so they are subject to genetic drift. (While in the no-cognitive-pressure simulation there
is some mild pressure to generate bad signals). Nonetheless, the variance of the communicative-output
genes is still higher in the base-line simulation than in the no-communication simulation. This con-
firms our hypothesis that when communication is used there is a reliable selective pressure against good
speakers, resulting in a pressure against the genetic convergence on the communicative-output weights:
mutations on those genes that generate cheaters are rewarded by selection and spread in the population.

6 Discussion

In this section, we discuss our work with the respect to both computational models of the emergence of
communication (6.1) and the biological literature on the evolution of communication (6.2).

6.1 Synthetic Modeling of the Emergence of Communication

The work presented in this paper clearly demonstrates the soundness of the hypothesis that the emergence
of communication can be favored by a cognitive pressure towards spontaneous good signalling. Indeed,
we have shown that the need to categorize stimuli in adaptive ways can act as a powerful cognitive pres-
sure to individually produce good signals, while the sharedness of the communication system between
different individuals of the same population can be favored by the genetic convergence of the population
itself. These two factors, taken together, generate a ‘producer bias’ which can represent an important
factor for the solution of the phylogenetic problem of communication. But can this producer bias, by it-
self, solve also the adaptive problem of communication? In our simulations the emerged communication
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system is continually disrupted by the invasion of the population by cheaters, but in the simulations re-
ported by Cangelosi & Parisi (1998) the cognitive and genetic pressures were enough for communication
to both evolve and remain stable. What is the explanation for this difference?

From our analysis, it seems clear that the cognitive pressure cannot be sufficient, by itself, for the
evolutionary stability of a communication system which gives benefits only to one of the two actors of
a communicative interaction (in our case the hearer). The reason is that a population of altruistically
communicating individuals is always subject to be invaded by cheating individuals which benefit from
the received signals but do not reciprocate (or lie, thus misleading competing individuals), unless some
other factor does not prevent this from happening. In Mirolli & Parisi (2005a) we have shown three
possible factors which can block the invasion of cheaters in a communicating population: kin selection
(Hamilton, 1964), the social learning of the communication system through docility (Simon, 1990) and
the use of signals not only for communication but also for individual purposes (see also Mirolli & Parisi,
2006) such as as memory aids. Other possible factors are sexual selection through the handicap principle
(Zahavi, 1975; Grafen, 1990; Bullock, 1998) and reciprocal altruism (Trivers, 1971; Axelrod, 1981).
Why, then, does the communication system in the simulations of Cangelosi and Parisi turn out to be
evolutionary stable even though none of the factors discussed above are present?

A possible answer lies in the genetic algorithm used by Cangelosi and Parisi, in particular in their pe-
culiar mutation operator. As in the present work, in Cangelosi & Parisi (1998) the neural networks’ con-
nection weights are codified in the genome of organisms as real values. But in their simulations weights
are initialized in the range [-1; 1] and each weight has a probability of 10% of being mutated by adding to
the current value a random number in [-1; 1]. As a result, weights have no limits. This peculiar way of
implementing the mutation operator might prevent the invasion of cheaters for the following reason. As
demonstrated by our analysis of evolutionary dynamics, during the periods in which the communication
system quality is low, received signals are ignored. Consequently, communication-output connection
weights are under genetic drift in that they do not affect the fitness of any organism: neither that of the
speakers, which is never influenced by its own produced signals, nor that of the hearers, since hearers
ignore incoming signals. But a genetic drift without any limits on the connection weights is likely to
produce weights of very high absolute values. And a mutation which changes a weight’s value by adding
a random number in the interval [-1; 1] will tend to be behaviorally uninfluential for weights with very
high absolute values. This is especially true for the signalling behavior of the organisms simulated in
Cangelosi & Parisi (1998), since the transmission function of ‘linguistic’ neurons in that simulation is
the step function, whose value can be changed only by changing the sign of the input received by the
neurons. The consequence is that once a good communication system has emerged as a result of cog-
nitive and genetic pressures, cheaters cannot emerge because mutations on the communication-output
connection weights are completely neutral in that they cannot affect signaling behavior.

On the contrary, in our simulations mutations can change radically the value of connection weights
(the mutated value is substituted by a random value always in the same range), so cheaters can emerge
when a mutation to one of the communicative-output connection weights changes the signalling behavior
of an organism. The same is true for the robotic experiment of Marocco et al. (2003), in which connection
weights are coded as strings of 8 bits and mutations act on each bit. In this way, all the bits coding for a
single weight can change simultaneously and, in general, a mutation in one single bit (for example in the
bit coding for the weight’s sign) can have a radical effect on the value of the weight and, consequently,
on communicative behavior. And in fact, the cognitive pressure towards good signalling is not sufficient
for the emergence of communication in their robots.

The mutation operator used by Cangelosi and Parisi has two fundamental problems, one theoretical
and one practical. Theoretically, it seems not to be biologically plausible. In real organisms, mutations
can happen in many different ways (see Maki, 2002) and they can always have any kind of effect on the
mutating gene: from no effect to the substitution of the codified protein. Hence, there seems to be no bi-
ological analogous to the mechanism, present in the simulations of Cangelosi and Parisi, which prevents
a gene which has been subject to genetic drift from having non-neutral mutations. This may sound as a
poor argument since, in a sense, any mutation method used in current genetic algorithms (including the
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one used in the simulations of the present paper) can be considered to be biologically implausible. The
reason is that the genotype-phenotype mappings are typically highly biologically unrealistic (as it is the
case for the current work, in which the genotype is constituted by connection weights which are directly
mapped to an individual’s phenotype). But in addition to the general problem of working on unrealistic
genotypes, the mutation operator used by Cangelosi and Parisi has the further specific problem of tend-
ing to prevent the occurrence of non-neutral mutations in genes which have been subject to genetic drift.
This can have important consequences on a population’s evolutionary dynamics which can in turn pro-
duce misleading results. Pragmatically, the reason for not adopting the kind of mutation operator used in
Cangelosi & Parisi (1998) is that it is too easily subject to falling in local maxima. In general, during a
genetic search, some parts of the genome tend to evolve early and other parts lately (either because some
part of the genome codes for a trait which is a precondition for the evolution of the trait coded from other
parts or simply because of chance). With a mutation system like the one we are discussing, the genetic
drift of the genes which are not functional during a given evolutionary phase can prevent the subsequent
adaptive evolution of those genes just because they have reached absolute values which are too high with
respect to the range on which mutations act. Consequently, this kind of mutation operator can seriously
compromise the evolutionary process.

Another take-home message for modelers which are interested in the emergence of communication
in artificial agents (be they simulated or real robots) regards the importance of studying the evolution of
communication together with the evolution of other, non-communicative behaviors. This is something
which several other researchers have already been arguing for (i.e. Nolfi, 2005; Quinn, 2001; Werner
& Dyer, 1992). The usual argument, to which we completely subscribe, stems from taking a functional
perspective: communication is an adaptive trait which is shaped by its function. Hence, communica-
tion can only be understood if it is grounded in the environmental and social needs of communicating
organisms. But our work suggests another, practical, reason for making communication emerge from
the needs posed by other non-communicative tasks. The reason is that the need for internally categorize
experiences in adaptive ways for purposes other than communication can play a major role in solving the
phylogenetic problem of communication. As our no-cognitive pressure simulations demonstrate, if the
evolution of producer biases towards communication is not allowed, it is much more difficult to evolve
a communication system in artificial organisms. And this is true even for cases in which communication
would be very useful and the adaptive problems posed by some communication system are not present
or solved by other factors, such as kin selection. And if the only thing that agents have to do is to
communicate, the presence of producer biases is prevented.

Furthermore, the favorable effect that having to represent one’s environment in adaptive ways can
have on the emergence of communication can show up only if the control systems of agents permit this
to happen. This is the case for neural networks but not for other kinds of control system used in the
adaptive behavior literature on the evolution of communication such as look-up tables (e.g. Di Paolo,
1998; MacLennan & Burghardt, 1993; Steels, 1996). Neural networks, as the control systems of real
organisms, that is brains, process information in a parallel and distributed way, and the same processing
units are involved when perceiving different situations and for producing different behaviors. It is the
link between communicative and non-communicative behavior which tends to result in producer biases
towards communication. If the control system of an artificial agent is a look-up table, in which the
relationships between each possible perception and each possible action are completely independent the
ones from the others, the emergence of a producer bias would be very unlikely, and only due to chance.
On the contrary, neural networks make the interdependencies between different behaviors explicit, thus
providing a systematic mechanism for the emergence of producer biases.

This implies two different views of ‘modules’ in control systems. In a neural network, and very
likely in the brain itself, modules are purely functional but structurally they can include and use subsets
of units (neurons) that are also included in and used by other modules with different functions. On the
other hand, in non-neural computational models such as look-up tables modules are both functionally
and structurally distinct entities. If cognitive pressure and producer bias really exist and have an impor-
tant role in explaining the evolutionary emergence of communication, neural models appear to be more
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appropriate than non-neural models to capture the evolutionary emergence of communication.

6.2 Evolution of Communication

As discussed in the introduction, the fact that communication requires two independent capabilities,
speaking (producing useful signals) and hearing (understanding perceived signals), poses two related
problems: an adaptive problem and a phylogenetic problem. The adaptive problem is a problem of altru-
ism: why should speakers produce good signals if they gain no benefit in doing so? And, conversely, why
should hearers respond adequately to signals if they don’t receive any advantage from that? Notwith-
standing the emphasis of the biological literature on manipulative communication, the situation seems
to be completely symmetrical, both theoretically and empirically. And the existence of natural commu-
nication systems that seem not to benefit both speakers and hearers needs to be explained either by kin
selection or by the handicap principle or by some other means.

But besides the adaptive problem there is the more general phylogenetic problem: what evolutionary
paths can lead to the emergence of communication systems, since speaking and hearing abilities are
complementary and hence adaptively neutral if they are not both present at the same time? The biological
literature has provided a partial answer to this question with the concept of a receiver (or sensory) bias:
if some stimuli trigger in some organism a behavioral response that advantages another organism, the
latter can produce signals that resemble those stimuli in order to manipulate the behavior of the former.
In this way, the problem of co-evolution is by-passed through the exploitation of behavioral biases in
the receivers which are assumed to be present for reasons other than communication. There are several
reasons for receiver biases to be present. In particular, they can be both the results of selective processes
independent from communication (for example, detection of prey), and non-selected, incidental traits
which are simply consequences of how the sensory systems and the brain of a species are formed (see
Endler & Basolo, 1998; Guilford & Dawkins, 1991). Since its introduction in the biological literature
on the evolution of communication the concept of a receiver bias has inspired a lot of both empirical
(e.g. Basolo, 1995; Proctor, 1992; Ryan, Fox, Wilczynski & Rand, 1990) and theoretical/computational
research (e.g. Arak & Enquist, 1995; Ryan, Phelps & Rand, 2001).

In the present paper we have argued for the complementary idea of the exploitation of a producer bias,
which has been so far highly overlooked in the biological literature on the evolution of communication.
In fact, though ideas similar to that of producer bias have appeared in the literature under the label of
‘intention movements’ (i.e. movements necessarily preceding an action; see, e.g., Krebs & Dawkins,
1984; Tinbergen, 1952), these ideas have not received enough theoretical attention and have not inspired
any substantial empirical research. The reason for this is, we suppose, twofold: first, as discussed in the
introduction, the idea of producer biases is fundamentally related to informative communication, while
the influential conception of communication of Dawkins and Krebs has led the biological literature to
focus on manipulative communication; second, ideas similar to the producer bias have mostly been
discussed in relation to the adaptive problem of communication (in particular in relation to the handicap
principle: see, for example, Lotem, Wagner & Balshine-Earn, 1999; Noble, 1998), while they have
never been explicitly and clearly proposed as a possible general solution to the phylogenetic problem of
communication.

We argue that just as the exploitation of receiver biases is an important mechanism which can trigger
the evolution of manipulative communication systems, the exploitation of producer biases can play an
analogous role in the historical emergence of communication systems which (principally) benefit hear-
ers, like alarm and food calls. Furthermore, the simulations presented in this paper suggest also one
possible mechanism which can lead to producer biases: namely, the cognitive pressure due to the need
for organisms to internally represent stimuli according to adaptively relevant categories. In fact, as our
simulations have shown, good categorization of stimuli can result in the spontaneous production of good
signals which can be thus be exploited by hearers.

But is the hypothesis of a cognitive pressure towards good signalling behavior plausible? Does it hold
only for our simulations and related artificial systems? Or is it also a possible candidate for explaining
the evolutionary emergence of real communication systems? We think that the hypothesis is indeed
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plausible and that it should be taken in consideration when trying to explain the evolutionary emergence
of animal communication systems, in particular those which seem to benefit principally receivers. After
all, the only assumption which needs to be made for our hypothesis to work is the link, in the organisms’
brains, between communicative and non-communicative behaviors. In fact, if such a link exists, then
the need for individuals to categorize the environment in adaptive ways will generate a bias towards the
production of useful signals. And this assumption seems quite reasonable: what should signals reflect if
not what an organism have in their mind/brain?

Note that notwithstanding our use of a representationalist jargon, the hypothesis of possible cognitive
pressures towards good signaling does not depend on taking a representationalist stance in the represen-
tationalists vs. dynamicists debate. Even the most radical enthusiast of the dynamical approach to
cognition and the most critic or skeptic on the use of the notion of representation for explaining adaptive
behavior (Beer, 2003; Brooks, 1991; Harvey, 1996) acknowledges that an organism’s behavior depends
also on internal (neural) dynamics. Hence, the same single assumption is needed, from a dynamical sys-
tems point of view, for accepting the possibility of a possible cognitive pressure towards good signaling:
namely, the assumption that signaling behavior is internally linked to the brain structures that govern also
other non-communicative behaviors. In fact, for an organism’s behavior to be adaptive, different adaptive
conditions will be correlated with different internal dynamics, which in turn will tend to be reflected in
different signaling behavior. But this is exactly what the hypothesis on a cognitive pressure towards good
signalling states: that produced signals will tend to spontaneously reflect adaptively relevant situations
due to the need for organisms to cope adaptively with their environment.

Our hypothesis is also empirically testable. One way to test it is the following. Take an animal
capable of sending signals. Train it to send a signal in at least two situations which differ from the point
of view of the animal’s survival (in presence of edible vs. poisonous items, as in our simulation, or for
asking two significantly different kinds of things, like food vs. a partner for mating). Our hypothesis of
the cognitive pressure on good signalling predicts that the animal will tend to spontaneously differentiate
between the signals emitted in the two different situations.

It is of the most importance that a first confirmation of this prediction can indeed already be found
in recent empirical experiments on Japanese monkeys performed by Hihara, Yamada, Iriki & Okanoya
(2003). In these experiments a monkey was trained to produce a generic call in two different conditions:
(a) for receiving food and (b) for receiving a tool with which it could reach a distant food. Surprisingly,
without any reward for doing so, the trained monkey started to spontaneously differentiate the sounds
emitted in the two conditions. The authors of the experiments interpret their striking finding as the
result of a change, in the monkey, from emotional to intentional vocalizations. But the spontaneous
differentiation of monkey’s calls can be explained, less speculatively, by the simple fact that in the two
conditions the monkey’s brain was in two different states: one corresponding to the need for a piece of
food and the other corresponding to the need of a tool with which to reach the food. As predicted by
our hypothesis, different internal states, be they ‘conscious’ (as Hihara et al. suggest), ‘intentional’ or
‘emotional’, tend to produce different (communicative) behaviors. To put it shortly: what you have in
mind will influence what you say. The signals an organism produce will tend to reflect the way in which
the organism categorizes its experience.

Finally, we would like to note that the hypothesis that communication might phylogenetically emerge
thanks to the exploitation of producer biases is far more general than the hypothesis of the cognitive
pressure towards spontaneous good signalling. In fact, though we think that the need to adaptively
categorize the environment does constitute a strong mechanism for producer biases to appear, there is no
reason for producer biases to have exclusively cognitive origins. On the contrary, there are good reasons
to suppose that other, non-cognitive, mechanisms can equally generate producer biases. Indeed, it is
reasonable to think that most emotional communication might have evolved thanks to producer biases:
since emotional states are associated with specific internal bodily changes (e.g. changes in heart rate,
blood pressure...), the visible consequences of these changes can be exploited by ‘receivers’ to infer the
emotional state of the ‘producer’, thus resulting in the evolution of an emotional communication signal
through a non-cognitive producer bias.
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7 Summary and Conclusion

In this paper we have presented a simple model which was intended to shed some light on an important
and very general problem posed by the evolution of communication, that is, the phylogenetic problem
posed by the apparent necessity of the simultaneous co-evolution of both good signal production and
good signal understanding, which seem to be two completely independent abilities. Our evolutionary
model demonstrated a quite unusual behavior: a sort of limit cycle, present in all the replications of our
simulations, in which both individuals’ fitness and the quality of the communication system continually
oscillate between very low and very high values. In order to understand the mechanisms that produce this
striking result, we used two methods. First, we isolated a typical cycle of rise and fall of communication
that takes place in one replication of the simulation and we analyzed the evolutionary dynamics during
this period. Second, we compared the average results of the base-line simulation with two other simu-
lations in which we disabled communication (no-communication simulation) or we changed the neural
networks which control the behavior of our artificial organisms in such a way that cognition was entirely
separated from communication (no-cognitive-pressure simulation). The results of our analyzes suggest a
possible general solution to the phylogenetic problem of communication: that is, the possibility for com-
munication systems to emerge thanks to the exploitation, by receivers, of producer biases which are due
to the need for organisms to categorize perceived stimuli in adaptively relevant ways. We think that the
idea of producer biases is both sound and largely unexplored in the biological literature on the evolution
of communication, and might represent an important addition to the complementary very well know idea
of receiver bias. Indeed, just as the idea of the exploitation of receiver biases have proven to be quite
powerful in explaining the evolutionary emergence of manipulative communication systems (like mating
signals sent by males to attract females), we think that the idea of the exploitation of producer biases is
likely to play an analogous role in explaining the evolutionary emergence of informative signals, like the
alarm and food calls used by many species.
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