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1. Introduction

One of the main claims of active vision (Ballard,
1991) is that finding data on demand, based on the
requirements of the task, is more efficient than recon-
structing the whole scene by performing a complete
visual scan of it. This aids generalisation and a dra-
matic reduction of the needed visual computations.
Using this strategy, however, generates the need to
learn complex gaze control strategies dependent on
the pursued goals and the properties of scenes and
objects. For example, to be able to find an object in
the environment an agent needs to learn to use sev-
eral sources of information such as spatial relations
of objects and bottom-up saliency of scene regions.
In addition, if the system is genuinely autonomous
it also needs to develop a representation of the ob-
jects themselves, for example of potential targets,
cues and distractors, on the basis of generic reward
signals to be maximized and the visual control policy
used. Most of the models proposed in developmental
robotics do not use adaptive visual control and so are
ill suited to investigate these issues.

In a previous work (Ognibene et al., 2008) we pre-
sented a reinforcement-learning neuro-robotic archi-
tecture, based on neural population codes, which was
able to develop attention control policies by interact-
ing with the environment based on a rewarded reach-
ing task it had to accomplish. In this paper the same
architecture is used to investigate the types of inter-
nal representations that this same architecture de-
velops when exposed to two classes of environments
where objects are organised on the basis of contrast-
ing spatial relations (Figure 1).

A recent view on neural population codes proposes
that neural maps might be used to develop overall
probability distributions of stimuli (Pouget et al.,
2002). On the contrary, this study shows that ac-
tive vision systems tend to develop actions which
actively disambiguate the stimuli and acquire new
evidence only when needed: as a consequence, the
acquired representations do not reflect overall prob-
ability distributions related to stimuli but rather the
contextual relationships between them.

Figure 1: Examples of environments used to test the

model, drawn from two classes of environments L and

R. In each trial, the specific environment was randomly

drawn from L or R with a probability of 75% and 25%,

respectively. Both classes of environments were based on

2 to 5 green cues forming a vertical line, one blue distrac-

tor, and one red target. The cues, distractor and target

were located on the vertexes of a 5× 6 matrix. In L en-

vironments, the target and distractor were located at a

random position respectively at the left and right of the

green line, whereas in R environments were located at a

random position respectively at the right and left of it.

2. The model

Figure 2: The architecture of the model.

The architecture and setup of the model (Fig-
ure 2.), used here in a simulated version, is now
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briefly described but the reader should refer to Og-
nibene et al. (2008) for details. The robotic setup
used to test the model is composed of a camera look-
ing down to a robotic arm. The arm acts on a work-
ing plane consisting of a screen which shows the vi-
sual stimuli of the task.

The architecture of the model is formed by three
main components:
(a) Bottom-up attention component. The input im-
age is used to activate a periphery map which iden-
tifies high-contrast regions on the basis of suitable
filters .
(b) Top-down attention component. The central part
of input image (fovea) is used as input of an actor-
critic model which learns to predict, by suitably ac-
tivating the output map of the actor (vote map),
the spatial position of the rewarded targets with re-
spect to the foveated objects. A potential action
map (PAM), based on leaky neurons, accumulates
evidence, furnished by the actor, on possible loca-
tions of the target while the fovea explores the scene
objects. An overall saliency map integrates informa-
tion from the periphery map and the PAM to select
the next eye movement on the basis of a dynamic
neural competition. All maps of the attention com-
ponents use an eye-centered reference frame.
(c) Arm-control component. Each fixation point, en-
coded in a eye posture map, suggests a potential tar-
get to a arm posture map: when the eye fixates a
location for enough time (3 time steps on average),
the arm posture map triggers a related arm action
on the basis of a second dynamic neural competition.
If the reached object is the target, the system gets a
reward of one, otherwise it gets a small punishment
(mimicking energy consumption).

3. Results and Conclusions

The tests of the model show that it learns an explo-
ration policy which initially assumes to be tackling
an L environment, so first searches the green line
and then, on this basis, the target on its left (two
eye steps). In the presence of an R environment,
this assumption fails and the agent searches the tar-
get directly on the right of the green line rather than
exploring anew. This strategy allows the system to
find the target with only one additional step.

Table 1 shows the activation of the vote map of
two agents respectively trained with L environments
or with both L and R environments (with a fre-
quency of 75% and 25%, respectively), when the
agents foveate either the cue or the distractor (a third
agent trained only with R environments developed
vote maps mirroring those of the L-trained agent:
data not reported).

These results show that the representations un-
derlying the gaze-control policies are not based on a
combination of all possible policies needed to tackle

cue distractor

L

L/R

Table 1: Activation of the vote map when the model

foveates the cue or distractor. L: agent trained only on

L environments for 60.000 trials. L/R: agent trained on

both L and R environments for 60.000 trials.

the two classes of environments. In fact in the lat-
ter case one would expect internal representations to
be a combination of the vote maps needed to tackle
the L or R environments in isolation (e.g., a sum or
a max of the two). Instead, the internal represen-
tations encode the specific exploration routines best
suited to solve the task at hand. This is especially
evident if one considers the vote maps related to the
distractor: when the system is trained with L envi-
ronments, the map does not encode the position of
target but only the action of foveating the green line,
whereas when trained with both L and R environ-
ments the system encodes the action of going to the
right of the green line as in this case the distractor
becomes a good predictor of the target located there.

These strategies exemplify a general principle used
by adaptive active vision system to tackle com-
plex environments. When agents must learn to au-
tonomously and adaptively solve tasks, the represen-
tations they develop reflect the actions that permit
to interact with the environment in order to acquire
new information and solve tasks given the informa-
tion acquired that far, more than the overall statis-
tics of scenes.
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