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Abstract

This thesis investigates emotions and motivations on téslwd an operational approach. This ap-
proach has both computational and psychobiological rodtee main directions of research are
followed: (1) investigation on the neural substrates of emotional systénough the exploration of
the literature about comparative functional anatomy arnysiathogy; 2) definition the relationship
between emotion, cognition and behaviour through the eaptm of the psychobiological literature
about animal models3] building of computational models constrained by the sesiaf information

1 and 2; 4) testing the behaviour of such models within simulated teloting in simulated environ-
ments. The main focus will be on the interaction between thet®nal and motivational systems and
high level cognitive processes behind adaptive behavide whole study will be informed by the
current psychobiological knowledge about the functiorofdghe neural systems pivoting on amyg-
dala, given that this is considered to be one of the major sioflenteraction between the processing
of internal values and the processing about the past, duarehfuture world outside the organism in
superior vertebrates.
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Chapter 1

Introduction

This chapter outlines the main approaches to emotions iohadggy through a brief historical sur-
vey. Then it presents an excursus over the major fields inhadyological research on motivation
and emotion. Then it describes the building blocks of owrafit to link the current psychological
mainstream theories on emotions with the psychobiologla through a systemic approach based
on embodied computational models. Finally it presents dlinewf the structure of the thesis.

1.1 The Psychobiology of Emotions and Motivations

1.1.1 Psychological theories of emotions

The debate about the nature and the functions of emotions&a thread of the study of psychology
as a science since its beginning. Unfortunately, an operaltunanimous definition of what emotions
are and what they are for has not be found yet within psychcébgesearch. We will proceed through
the main stages of the history of psychology of emotionsngryo find the elements of a possible
operational hypothesis about the adaptive function of enstthemselves and their relation with
physiological reactions and cognitive processes.

One of the first hypotheses on the origin and nature of emetivas developed independently by
two 19th-century scholars, William James (James, 1884Lamnd_ange (Lange, 1912). Their theories
state that the autonomic nervous system elicits physioébgivents such as muscular tension, a rise in
heart rate, perspiration, and dryness of the mouth, in respto events in the outer world. Emotions
are a result of these physiological changes, rather tharglibeir cause. In this view, the cognitive
experience of emotion follows the physiological expressibemotion.

Although the James-Lange theory became popular in the daégtieth century, it soon came
under attack. In 1920, the american physiologist Waltem@arpublished a paper containing several
compelling criticisms of the James-Lange theory and wentoopropose a new theory (Cannon,
1920). Cannon's theory was modified by Philip Bard (Bard,4)9and the Cannon-Bard theory of
emotion, as it came to be known, proposed that emotionalrexpm can occur independently of
emotional expression. Where James argued that emotiohalioeir often precedes or defines the
emotion, Cannon and Bard argued that the emotion ariseafidstnen stimulates typical behaviour.
One of the arguments Cannon used against James-Lange tueigted in observations of animals
with transection of the spinal cord. Those animals, whictysty had deprived of body sensation
below the level of the cut, still exhibited sign of emotioredperiences. Bard described this in a
anatomophysiological way by claiming that subcorticalstures such as hypothalamus and thalamus
process information in order to both regulate the perighsggas of emotions and to provide the cortex
with the information needed for the cognitive processingmibtions. This claim was supported by
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the physiological literature on decorticated animals.

In the meanwhile, behaviourist theories were taking pldoejinating the scene during the first
half of the twentieth century. Behaviourist theorizatidreated emotions as an intervening motiva-
tional variable, often in the sense of a general drive stAmivation theory, by Duffy (1957), can
be seen as a classical example of this trend, stating thatooel major dimension of emotion exists
(activation, arousal).

During the sixties, the criticism made by Magda Arnold andHard Lazarus to the behaviouris-
tic view of emotions, became the root of a cognitive theorgwiotions based on appraisal. In their
view emotions are the product of unconscious evaluation situation while feelings are the con-
scious reflection of the unconscious appraisal (Scherégrgcand Johnstone, 2001). According to
Arnold (1960), the initial appraisals start the emotionadsence and arouse both the appropriate
actions and the emotional experience itself, so that theiplggical changes, recognized as impor-
tant, accompany, but do not initiate, the actions and egpeés. Lazarus et al. (1970) identified two
essential goals for the research on emotional processest, \fihat is the nature of the cognitions
(or appraisals) which underlie separate emotional reastfe.g. fear, guilt, grief, joy, etc.). Second,
what are the determining antecedent conditions of thesgitiogs.” He specified two major types
of appraisal processes which sit at the crux of the appraiséthod: (1) primary appraisal, directed
at the establishment of the significance or meaning of thatdeethe organism, and (2) secondary
appraisal, directed at the assessment of the ability of th@nism to cope with the consequences of
the event. These two processes go hand in hand as the firsligsta the importance of the event
while the second assesses the coping mechanisms. Lazeidexddihe latters into two parts: direct
actions and cognitive reappraisal processes.

The ideas of Arnold and Lazarus failed to have an immedidexebn psychology of emotion,
even though Lazarus’s theorizing strongly influenced stresearch from the moment of its pubblica-
tion. Instead, a theory proposed by Stanley Schachter agtudent Jerome Singer in the late fifties,
became the representative theory of emotions for more thanty years. The theory put together
the James-Lange peripheral theory, the behaviouriste adea general, unspecific arousal, and the
psychological hypothesis that human experience was labgeled on one’s self-observation of a con-
textual behaviour. The so called 'two-factor’ theory of dimp claimed that “cognitions are used to
interpret the meaning of physiological reactions to ow®dents.” (Schachter and Singer, 1962). In
the experiment by which they tested the theory, SchachtiSamger induced symptoms of sympa-
thetic activation using epinephrine and manipulated esndtiference by confronting their subjects
with the emotional behaviour of a stooge. The explanatidgh®fesults given by the authors was that
(1) both cognitive and physiological factors contributestootion, (2) under certain circumstances
cognition follows psychological arousal, (3) in part ,pkogssess their emotional state by observing
how physiologically stirred up they are (Schachter and &ing962). Despite consistent negetive
evidence in the attempts to replicate the results, in thietieig this theory proved to be very influential
(Scherer et al., 2001).

Currently, there are three major theoretical positionstmn functioning of the emotional sys-
tem. First, the work of Antonio Damasio (Damasio, 1994) witthe neuropsychological research,
partly recovering James-Lange tradition, distinguistmes ghysiological affective activation (emo-
tions) from the cognitive processing biased by this adtivaffeelings). Damasio hypothesis is that
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cognitive processes are biased by the emotions, descrilibe @hysiological affective states elicited
by reinforcers. The amygdala and the orbitofrontal corgaxdIthe biasing of the cognitive elaboration
occurring in the ventromedial prefrontal cortex. In partér, emotions act as markers to the cognitive
processing of past, present and anticipated states of tHd.Widney act as ‘somatic markers’, as their
elicitation highly depends on the processing about thestaitthe internal milieu.

Second, the tradition coming from neo-behaviourism of Hultl Tolman defines emotions as
behavioural states elicited by reinforcers. Cardinalkipaon, Hall, and Everitt (2002) state that
“it is useful to consider under the umbrella of emotion thaseral processes by which an animal
judges and represents thialue of something in the world, and responds accordingly”. Adaugy
to Rolls (2000) emotions are states elicited by rewards amispments, including changes in re-
wards and punishments. Reinforcement association of ktiemcoded in the orbitofrontal cortex and
amygdala, is sufficient to elicit emotion-based learningd emaffect behaviour via, for example, the
orbitofrontal-striatal pathway (Rolls, 1999). Rolls definseveral factors accounting for emotions:
(2) the reinforcement contingency2)(the intensity of reinforcement3) multiple associations of
environmental stimuli with rewards or punishmenty;the elicitation of different emotions by differ-
ent primary reinforcersg) the differentiation of emotions elicited by different sedary reinforcing
stimuli sharing a similar primary reinforceg)(the differentiation of emotions elicited on the base of
an active or passive behavioural response being possible.

Finally all the current approaches within the frameworkhad appraisal theories share few major
points (Scherer, Schorr, and Johnstone, 20@})emotions are differentiated by appraisals, each
distinct emotion is elicited by a distinctive pattern of agipal;2) differences in appraisal can account
for individual and temporal differences in emotional resge; 3) all situations to witch the same
appraisal pattern is assigned will evoke the same emofioappraisals precede and elicit emotions,
appraisals start the emotion process, initiating the pygical, expressive and behavioural reactions
and other changes that comprise the resultant emotiorial Sjahe appraisal system has evolved to
process information that predicts when particular ematioesponses are likely to provide effective
coping; 6) conflicting, involuntary, or inappropriate appraisal magcount for irrational aspects of
emotions;7) changes in appraisals may account fo developmentally laridadly induced changes in
emotions. A recent implementation of the appraisal theds¢he component process model (CPM),
by Sander, Grandjean, and Scherer (2005). The author cthigis a systemic approach to the study
of appraisal mechanisms and is characterized by threerésat{i) appraisal is a complex function:
different systems stand behind appraisal at differentlsevé?) the appraisal mechanisms have a
correspondence in the neural systems that can be studiegsyithobiological instruments. (3) The
detailed specification of hypotheses constrained by néwysiplogical data allows an analysis of them
through their implementation in computational models.

These three approaches share some important featurestHa tiree approaches the physiolog-
ical and behavioural responses are viewed as a consequeadesh evaluation (incentive salience,
novelty) made via the interaction of internal states of ttgmaaism with external states (e.g. Bechara,
Damasio, Damasio, and Lee, 1999; Rolls, 1999; Sander, @@amcand Scherer, 2005). Moreover, in
all approaches the primary evaluations have a role in lgdsigher level cognitive processes.

Some major differences can also be found in the three thedraameworks. First, both Somatic-
marker hypothesis and neo-behaviourism research focubeinteraction between emotions and
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cognitive processes as choice, goal-oriented behavimaslacision making, while appraisal theo-
ries focus on the mechanisms that produce emotions stdringdifferent patterns of evaluations.
Second, somatic marker hypothesis is originally based @gltim that the expression of emotions is
by itself the marker, while both neo-behaviourist traditisee Balleine, 2005) and current appraisal
theories (see Sander, Grandjean, and Scherer, 2005)statled evaluation process stands behind the
emotional expression. This last differentiation is faditogvn as far as research on both sides focuses
on the underlying neural systems. The importance of thecessae processing within amygdala in
both the elicitation of emotions and in biasing decision imglprocesses is leading to a common view
that this associative system is behind, or can bypass, tiyeexpression of emotions.

As current theories are getting more and more close to thehpsyological work of Balleine,
Berridge, Dickinson, Everitt, LeDoux, and current psydotimical research using animal models,
a systemic and unified explanation of all mechanisms behimatiens and motivations is emerging.
One main point of this systemic explanation is that seveftdrént neural systems interactively de-
termine the value of a state of the world at different levdlgagnitive complexity. Furthermore,
the great amount of interaction between the different dea@ponents must be considered within a
dynamical system framework (see the concept of circulasa&iay in Lewis 2005).

1.1.2 Animal models of Conditioning and Affective Processe

The neo-behaviourist paradigm coming from Hull (1943) aotimBn (1932) granted to cognitive
psychology the use of two fundamental classes of instrusnianthe experimental researctt) (n-
strumental and pavlovian behavioural paradigr@site controlling of neurophysiological variables
through lesioning, inactivation and microdialysis tecjug@s. Through the use of animal models cog-
nitive psychology is opening to the experimental study @ tleural systems involved in low-and-
higher-level cognitive processes. The study of emotiomsmativations through animal models ac-
quired a huge amount of new data in the last twenty years. Tdie fields can be distinguished as
works on appetitive pavlovian conditioning, fear condiiitg, instrumental conditioning and goal-
oriented behaviours, incentive salience and hedonic salaed stress. Here we will rapidly go
through these fields of study indicating the different citmttions to the exploration of emotions and
motivations.

In this section, and everywhere in the rest of the thesis lemdastly refer to research on rats.
This choice is due to the huge amount of data that neuroayatwuarophysiology and psychophys-
iology has acquired about the rat nervous system, and, goesdy, to the enormous collection of
experimental works on rats in the last sixty years. Psydilogical studies on appetitive conditioning
(e.g. Blundell, Hall, and Killcross, 2001; Cardinal, Paxon, Lachenal, Halkerston, Rudarakanchana,
Hall, Morrison, Howes, Robbins, and Everitt, 2002; Cardifarkinson, Marbini, Toner, Bussey,
Robbins, and Everitt, 2003; Gallagher, Graham, and HoJla880; Han, McMahan, Holland, and
Gallagher, 1997; Hatfield, Han, Conley, Gallagher, and &ial| 1996; McDannald, Kerfoot, Gal-
lagher, and Holland, 2005; Parkinson, Robbins, and Ey@®®0; Petrovich and Gallagher, 2007;
Petrovich, Holland, and Gallagher, 2005; Petrovich, Setldolland, and Gallagher, 2002; Pick-
ens, Saddoris, Setlow, Gallagher, Holland, and Schoenb20@3; Setlow, Gallagher, and Holland,
2002) and goal-oriented behaviours (e.g. Balleine andiB$tin, 1998; Cador, Robbins, and Everitt,
1989; Corbit and Balleine, 2003; Corbit, Muir, and Balleig®01; Dickinson, 1985; Yin and Knowl-
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ton, 2006) focus of the function of amygdala (AMG), ventratia¢ prefrontal cortex (vmPFC), or-
bitofrontal cortex (OFC) and nucleus accumbens (NAcc),thait interactions in appetitive pavlovian
conditioning and instrumental conditioning processes.

A wide use of lesion techniques is made in which neural coraptsnare lesioned (typically inject-
ing a N-methyl D-aspartate preparation into in the neurgilor® or inactivated (usually through the
injection of a muscimol preparation) before or after onenefstages of the experimental scheduling.

This kind of research allows building a mapping of a neuratemy in which the absence of each
different component can be associated with a specific #élberaf the overall functioning. Possibly
specific sub-functions can be associated with a single caemgar a sub-group of components. This
area can be easily seen as a starting point for the psycloglgiof motivations. Associative learning
mechanisms allow organisms to transfer behaviours fronfageiers to neutral stimuli. Moreover,
these learning mechanisms allow the previously neutralsito bias cognitive processes after having
acquired the value of predictors of reinforcers.

The object of the studies on fear conditioning (Armony, Ser$chreiber, Romanski, Cohen, and
LeDoux, 1997; Blair, Schafe, Bauer, Rodrigues, and LeD@0®/1; Blair, Sotres-Bayon, Moita, and
LeDoux, 2005; Calandreau, Desmedt, Decorte, and Jaffafh; Davis, 1992a,b; LaLumiere, Buen,
and McGaugh, 2003; Lanuza, Nader, and LeDoux, 2004; LeDb@86, 2003; Nader, Majidishad,
Amorapanth, and LeDoux, 2001; BaQuirk, and LeDoux, 2004) is the role of the amygdala in fear
behaviour. Fear related behaviours are historically tte @lass of behaviours to be linked to the
functioning of the amygdala in superior vertebrates. Iro\gingle-cell activity recording is used in
parallel with lesion techniques in order to inspect chariggdasticity. Through the studies some
important features of associative learning within the adajg could be established. Being one of the
first fields in which a psychobiological animal model of an ¢imal state was built, this research
field assumed a pivotal role for the whole psychobiology obgams. Moreover the hypotheses made
at the level of the neural microstructure enlighten howtpdég processes lead to associative learning.

Studies on hedonic value versus incentive salience defindgdamimal models a behavioural
differentiation between the neural systems through whicemtive salience of a stimulus produces
‘'wanting’ behaviours and those through which the hedonigesgiven to a stimulus elicit 'liking’ be-
haviours (e.g. Berridge and Robinson, 1998, 2003; Kelleyarridge, 2002; Peita, Smith, and Ber-
ridge, 2006; Reynolds and Berridge, 2001, 2002; Smith andd@ge, 2005; Tindell, Smith, P&ta,
Berridge, and Aldridge, 2006; Wyvell and Berridge, 2000)ethbdologies in this research field are
based on lesions or inactivations of neural regions too.eSiomportant additional instruments are of-
ten used as the depletion of neurotransmitters in specdioms, pharmacological manipulation and
even more sophisticated techniques as the combinatiorugfrdicroinjections and C-Fos immunore-
activity mapping. This set of methodologies contributesntighten the functional neurophysiology
at the level of specific regions and to associate the actitifferent sub-populations of neurons in a
region to different behavioural patterns (e.g. hedonictieas versus eating behaviours in association
to different neural populations within the ventral pallidu From these works the vision emerges that
emotional neural processes do not share a monolithic ateiatithin neural modules. Instead, differ-
ent functions as goal-oriented action and expression ofi@ional state are processed by different
not completely overlapping neural systems.

Finally, the research on stress (e.g. Amat, Baratta, PdahcB Watkins, and Maier, 2005; Amat,
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Paul, Watkins, and Maier, 2008; Amat, Paul, Zarza, Watkarg] Maier, 2006; Bland, Hargrave,
Pepin, Amat, Watkins, and Maier, 2003; Cabib and Puglisedta, 1994, 1996; Maier, 1984; Maier
and Watkins, 2005; Pascucci, Ventura, Latagliata, Calyid, Ruglisi-Allegra, 2007) look at the in-
teraction of the catecholamines and other neurochemiddtsnvanimal models in controllable and
uncontrollable contexts. The use of depletion and micitgslisiis the main instrument used in these
studies. The result is that the interaction of the activityidferent neurochemicals distributed in
different regions of the brain can be analysed. The psychadpy of stress has so acquired the notion
that controllable and uncontrollable situations elicifatient neural systems leading to completely
different behaviours. Cortical processing is necessathdcevaluation that a situation is uncontrol-
lable and to start a neural process that leads to passivagapechanisms and to the acquisition of
learned helplessness behaviours.

In summary, modern research has endowed the psychology wfations and emotions of a
wide range of instruments that permit to deeply explore tigamization of the neural systems and
their relation to behaviour and to acquire quantitativeadat neurobiological constraints. In the next
session we propose a theoretical framework to unify in amagjmnal framework the evidence from
the neuroscience of emotions and motivations.

1.2 Computational Embodied Neuroscience

This thesis presents a proposal to address the issuesetatgethe modern psychology of motiva-
tions and emotions, with a specific attention to the progmesde within psychobiology. The research
approach followed might be termed ‘CEN — Computational Edied Neuroscience’ (cf. Prescott,
Gonzalez, Humphries, and Gurney, 2003, which propose anmasenethod which shares some prin-
ciples with the approach proposed here) . This method aimoaiding general criteria for selecting
models so as to produdieeoretical cumulativityn the study of brain and behaviour. Indeed, the great
amount of empirical data provided by neuroscience, psydyoand the other related disciplines are
seldom integrated by strong and general theoretical eafitaws, thus failing to produce a coherent
picture of the phenomena under investigation. CEN aims &ramme these limits by relying upon
the following principles.

Computational models. The investigation of brain and behaviour conducted on tlsésha empir-

ical experiments and observations (such as those of neenasg; psychology and ethology) should
be accompanied by the instantiation of theories into foroaahputational models, that is computer
programs that simulate the mechanisms underlying braicgsses and produce behaviour as an emer-
gent outcome of their functioning. The rationale behing fhinciple is that brain and behaviour are
complex systems, and theories should be expressed intogtei@tional manner so to give truly gen-
erative accounts of these phenomena. Computational mbdgiscarry in themselves an operational
implementation of a neural hypothesis and are able to farisdictions about behaviour which make

it possible to confirm or reject hypotheses with experimiengisearch.

Constraints from behaviour. The computational models used to instantiate the theoaes to be
capable of reproducing the investigated behaviour, indiitle what is proposed by ‘artificial ethology’
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(Holland and McFarland, 2001). Furthermore, the comparisetween the model and the target
behaviour should be done on a detailed basis (i.e., withreete to the outcomes of specific target
experiments) and possibly in quantitative terms (i.e. jusitwith vague, qualitative comparisons).

Constraints from brain. Challenging models with the request to account for specédltabioural
data is not enough as, given a behaviour, many alternatigdelmoapable of reproducing it can always
be built. For this reason, a second fundamental source aticints for models are the data on the
anatomy and physiology of brain. These data should be usegoinvays. First, for choosing the
assumptions that drive the design of the architecture timmioag, and learning mechanisms of the
models. Second, for testing the low-level predictions poadl by the models (i.e. the predictions
produced at the neural level). This principle comes from potational neuroscience (Sejnowski,
Koch, and Churchland, 1988) urging computational mode&ctmunt for data on brain.

Embodiment. In line with the ideas proposed by the ‘animats’ approachy@iand Wilson, 1991)
and ‘artificial life’ (Langton, 1987), models should be chfgaof reproducing the addressed be-
haviours within ‘whole’ autonomous systems acting on thsidaf circular interactions with the
environment mediated by the body (in particular the sendbes actuators and internal body sys-
tems). Indeed, the brain generates behaviour by formingge ldynamical complex system together
with the body and the environment (Nolfi, 2006), so a full ustiending of brain and behaviour needs
to rely on models that take into consideration this fundaadeact. The principle has two implica-
tions. First, the computational models should involve tineusation of both organisms’ brains and
their body and environment, thus letting behaviours emémga the interactions between those sys-
tems. Second, models should aim at besnglable to realistic setupshat is capable of functioning
with realistic sensors (e.g. retinas), realistic actusmferg. bodies should be governed by realistic
Newtonian dynamics), realistic scenarios (e.g. objectls somplex textures, shapes, and dynamics),
and noise (affecting both sensors and actuators).

Generality. Computational models should aim to reproduce and accoumirfincreasing amount
of data taken from an increasing number of different expenits. This principle is important as it is
a strong drive towards the production of comprehensive atsoand general theories of brain and
behaviour, against the tendency to generate many unredatkchutually incompatible theories each
accounting for only a limited set of empirical data. Thisngiple is in line with the ‘spirit’ of both
‘systems’ computational neuroscience, that aims at exjoigithe functioning of whole brain systems
rather than specific areas or physiological/chemical ma@shas, and the animat approach, that aims
at identifying general principles and explanations of lvédnar.

1.2.1 The features of the built models

Four are the main computational features of the models pteden this thesis: 1) Computational
models are realized at the level of neural systems, withsinitt abstract the activity features of entire
populations of neurons within each neuroanatomic comgonEnis was eased by the absumption
that investigation on the systemic interaction betweertional neural subsystems can be reason-
ably isolated from the study of the detailed dynamic physgiaal processes at the level of the neural
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microstructure.Z) The computational systems are tested as part of the caystdm of robots simu-
lating the organisms of the target experiments within sated environments. Thus activity within the
models can be tested in an open loop with the environmentio@ado the robot’s actions3) Simu-
lated environments reproduce the settings of real expatahenvironments.4) The simulated robots
are tested with the same schedulings as that of well knowererpntal paradigms. Thus simulations
can be directly compared with data from psychobiology.

1.3 The structure of the thesis

The remaining chapters of the thesis are organized as felld@hapter 2 presents a review of all
psychobiological evidence on the role of amygdala in thesdwneural systems involved in emotional
and motivational processing.

Chapter 3 to 5 describe three computational models impléngesome of the systems described
in chapter 2. In particular, Chapter 3 gives a computatidryplothesis about how the associative
learning processes within amygdala influence the actiwatfoapproaching behaviours torward bi-
ologically salient stimuli both via direct elicitation oentral striatum subregions by the basolateral
complex of amygdala and by a general sensitization to duiivaf the ventral striatum through
the amplification of the dopaminergic efflux to it via the e@ation of the mesolimbic dopaminergic
pathway by the central nucleus of amygdala. Chapter 4 shawsdel of how the internal associa-
tive learning mechanisms of the basolateral complex of alalggand those of the central nucleus
of amygdala have different roles in first-order and secomtioconditioning of orienting appetitive
responses. Chapter 5 a model presents of the interactisre®etassociative amygdaloid mecha-
nism and the striastocortical substrates of outcome4agsociation, in generating goal-directed
behaviours.

The two appendices at the end of the thesis offer an outlirteeotomputational mathematical
instruments and methodology adopted throughout the tif&pisendix A) and a table of acronyms
used when referring to different neural components (AppeBjl
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Chapter 2

The Roles of Amygdala in the Affective Regulation of Body,
Brain and Behaviour

Abstract

Despite the great amount of data and theories produced byelieoscientific literature on brain
and behaviour on affective phenomena, current modelsitarkion-cognitive aspects of behav-
ior are often bio-inspired but rarely bio-constrained. $tgaper presents a theoretical account of
affective systems pivoting on amygdala, which aims to$traigeneral framework and some spe-
cific pathways to implement models which are more closefedlto biological evidence. Amyg-
dala, which receives input from brain areas encoding iné¢rstates, innately relevant stimuli,
and innately neutral stimuli, plays a fundamental role inagions and motivations of organisms
as it can implement two associative processes at the coraxddb¥Wan learning, plus it has the
capacity of modulating them on the basis of internal stafé®se functionalities allow amygdala
to have an important role in the regulation of three fundataboomponents of emotions (namely
the regulation of body states, the regulation of brain statia neuromodulators, and the trigger-
ing of a number of basic behaviours fundamental for adaptgtand in the regulation of three
high-level cognitive processes (hamely the affectiveliiafpef memories, the production of goal-
directed behaviours, and the performance of planning/dermgecision making). This analysis
is conducted within a methodological approach which seegbe importance of understanding
brain within an evolutionary/adaptive framework (i.erestsing how systems involving amygdala
increase survival and reproduction of organisms) and whitl &im of isolating general principles
capable to potentially account for the wider possible emgpirevidence in a coherent fashion.

2.1 Introduction

Since the birth of the Cognitive Sciences in the 1950s, thdysof cognitivefunctions (e.g. per-
ception, attention, memory, planning, decision makipghas dominated the sciences of behavior,
relegating research on tim@n-cognitiveaspects of behavior (e.g. motivations, moods, emotiona) to
marginal role. This is true in general for all the discipbroedicated to the study of behavior: for the
empirical sciences, from neuroscience to psychology, anthe ‘sciences of the artificial’ (Simon,
1996), from classical artificial intelligence to the newdilof connectionism, autonomous robotics,
artificial life, and the simulation of adaptive behavior.

From the point of view of the sciences of the artificial, wiilassical artificial intelligence re-
search was exclusively dedicated to the study of cognitamacities, from their very beginning re-
searchers in artificial life and new robotics presented gdoimg works on the affective aspects of
behavior (e.g., see Balkenius, 1993; Cecconi and PariSi3;1Rfeifer, 1993). The reason for this
is related to the significant shift of attention, in the enmeggembodied cognition framework, from
high level cognitive processes to low level ones, and torttortance attributed to the link between
behavior and its biological bases (body, brain, envirortme@ne of the driving ideas of Embodied
Cognition research is that of considering behavior and itiegrfrom an adaptivist point of view, that
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is on the basis of the advantages that they can give in terrosgahisms’ capacity to survive and
reproduce. From this perspective, the motivational andtiemal aspects of behavior are at least as
important (but one could argue even more) than the cogrotes.

The capacity of survival and reproduction of organisms ddpen several different abilities, for
example the ability to find food and water, the ability to mewthat one’s own body gets damaged,
and to recover when this happens, the ability to find a sexaréher willing to copulate and reproduce,
the ability to escape from predators, the ability to find dahle place for resting and sleeping, and
so on. If an agent has to satisfy all these needs, a crucidah4atality’ raises, namely the ability to
manage the interactions between all these activities. $bime moments an organism has to solve
the problem of satisfying a certain need whereas in other embsnit has to solve the problem of
satisfying another need, @achmoment it must solve the problem of establishing which néwdiksl
be attended. Affective systems allow organisms to solveigedy such a problem, that is to choose
which is the activity that has to be accomplished in each nmbme

In sharp contrast with what happens in real organisms, Galifsystems tend to be designed to
accomplish only one or a very few well designed tasks, formgda finding the foodpr navigating
in a complex environmengr categorising a certain objedy grasping and manipulating objects,
coordinating with other agents, and so on. In such kinds ehtmgthe problem of selecting which
activity to pursue in each moment does not raise because ihenly one activity that they can and
must pursue in every moment. This is the reason why even ifidhieof the simulation of adaptive
behavior the study of motivations and emotions has alwageived little attention. In the last years,
the realization of the extreme importance that the non-itivgriactors of behavior play in organisms’
behavior (Arbib and Fellous, 2004; @amero, 2005; Parisi, 2004) has significantly boosted the-nu
ber of researches dedicated to these aspects in the fieldffiofa life and autonomous robotics (e.g.
Avila-Garcia and CAamero, 2004; Balkenius and Mar, 1999; Caamero, 1997; Mirolli and Parisi,
2003; Montebelli et al., 2007; Murphy, 2002; Venditti et 2009).

The relationship between this kind of research and the eécapsciences is quite weak, when not
completely absent. Generally speaking, the artificialaypst developed in these fields are, at most,
biologically inspired bio-inspired but not really biologically constrainetip-constrainegl In other
words, the empirical knowledge on the behavior of naturghoisms is at most occasionally used
as a source of interesting ideas, but is not systematicadig fior constraining the design of artificial
systems, nor for testing their empirical predictions. Sachate of affairs has both its motivations and
its potential advantages. For example, a certain divisfoalmur between empirical and artificial
scientists is necessary. Furthermore, the freedom of noghbmnstrained by available data and
knowledge can lead to the development of new ways of framidgooblems and of investigating
them (i.e. to new ‘research paradigms’), and to the disgooEnew interesting specific problems and
principles. Finally, it must also be considered that a gigamt proportion of artificial life research has
technological rather than scientific aims, and, from a tetdgical point of view, taking into account
how natural organisms work is not a need but, at most, an tyomoy.

On the other hand, at least from the scientific point of viéw, ¢urrent state of affairs has also
important limits. The biological sciences, and the neucadrsces in particular, have been producing a
huge amount of knowledge on all the aspects that are relésanhderstanding organisms’ behavior.
Furthermore, this empirical knowledge seems to be dooméetttease at an even higher pace in the
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near future. For this reason, trying to incorporate thisvikkedge more systematically in the design
of artificial systems is likely to produce a fundamental gesiimpact in our ability to build artificial
systems with behavioral capacities more similar to thosetdral organisms. This, in its turn, would
no doubt considerably increase the impact that researcHitinial system has on the behavioral and
brain sciences. In fact, if it is undeniable that the lattscighlines are producing a great amount of
relevantdata, it is also true that integrativiheoriesthat are able to explain these data and predict
new ones are quite scarce. Bio-constrained computatioodéls represent very promising tools for
developing such kind of theories.

With respect to the latter point, itis important to stresd the method followed here is centered on
the principles ofComputational Embodied Neuroscience ‘CEN’, cf. Mannella, Mirolli, and Bal-
dassarre, 2009a). According to this approach, behavialibeain are seen as means through which
organisms adapt to the environment in order to increasegherival and reproduction chances, so a
true understanding of brain passes through the compradreathow it is structured, functions and
learns in order to produce adaptive behaviour. MoreoveN GtEesses the importance of producing
general modeldirected to capture fundamental principles underlyingszhdifferent behaviours and
brain phenomena instead of ad-hoc models which addresdlmmlgutcome of specific behavioural
or neuroscientific experiments. These two principles algdayl the compilation of this review which
is indeed supposed to furnish a general framework, but alsw specific roadways, to design and
implement models having a unifying theoretical scope.

In this paper we contribute to the study of non-cognitiveeasp of behavior in artificial system
by providing a theoretical framework on behavior that isdabgn the available empirical knowledge
regarding one of the parts of the brain that is at the centeéh@fmotivational-emotional systems
of higher organisms, namely the amygdala. In particularyiliepropose a general brain architec-
ture centered on the amygdala, and a number of specific hgpedhon the various functional roles
that amygdala plays in the regulation of both affective anghitive processes. The neuroscientific
and behavioral data taken into consideration mainly refditérature on rats, however the principles
proposed and reviewed in the article can usually be extetaawre complex mammals (in particu-
lar, non-human primates and humans) as they are very gearetaenerated by parts of the central
nervous system of rats which have homologies in all such angpecies. Our general framework
is intended to boost the design and implementation of bic&ly-constrained computational mod-
els, as the ones presented in previous works (Mannella,liMiamd Baldassarre, 2007; Mannella,
Zappacosta, and Baldassarre, 2008).

The rest of the paper is structured as follows. Section 2oRiges a general overview of the
amygdala and of the various roles that it plays in the fumaimrganization of adaptive behavior.
Section 2.4 illustrates the three main functioning prifesghat characterize amygdala as the main
locus of classical-conditioning associations. Sectidnp2esents the three basic functions that amyg-
dala plays in the regulation of emotional responses. Se2t®shows the three higher-level functions
that amygala plays by interacting with cognitive process$ésally, section 2.7 concludes the paper.
Note that the acronyms used throughout the paper are listbe iAppendix (table B.1).
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2.2 Amygdala’s roles in adaptive behavior: overview

Amygdala (Amg) is an almond-shaped group of nuclei locatgdimeach medial temporal lobe of
the brain (figure 2.2). Amg is an important component of savbrain subsystems involving the
hypothalamus, insular cortex, brain stem, basal forebhsgpocampus, basal ganglia, and prefrontal
cortex, and it has been associated with a wide range of fumgtincluding emotional regulation,
learning, action selection, memory, attention, and pdicep

The fundamental hypothesis that underlies the framewookgwed in this paper, and schema-
tised in figure 2.1, is that amygdala is the place where mastsatal conditioning associatiohs
are acquired on the basis thfree basic mechanismw/hich roughly correspond to thteree major
sub-componenis which Amg can be divided, that is CEA, BLA, and MEA:

1. CEAassociates neutral stimuli (conditioned stimuli, ‘CS¥editly to basic responses (uncondi-
tioned responses, ‘UR’) that are strictly related to orgars’ survival and reproduction on the
basis of the experienced co-occurrence of these neutrallstind the stimuli that are innatély
linked to such basic responses by evolution (unconditisteduli, ‘US’). The result of this
process is the formation of CS-UR associations.

2. BLA associates neutral stimuli (CS) not directly to the basspoases (UR) but rather to the
unconditioned stimuli (US) that are innately associatethtse responses on the basis of the
CS-US co-occurrences experienced during lifetime. Theltre$this process is the formation
of CS-US associations.

3. MEA modulates CEAs and BLA's representations of stimuli andésponses (in particular,
URs and USs) on the basis of internal body states (i.e. onabis bf the current needs of the
organism).

Amg performs these functions on the basishoée main classes of inputs

1. Body states informatigncoming from visceral systems, that either constitute nd@@ned
stimuli or modulate the representations of unconditiortedidi and responses.

2. Innately relevant informationcoming from somatosensory, gustatory, and olfactoryesyst
that represent unconditioned stimuli.

3. Innately neutral informationcoming from visual, auditory, polimodal, and associatwveas,
that represent stimuli that can be conditioned (i.e. assedito unconditioned stimuli and/or
responses).

The basic unconditioned responses (UR) strictly relatezlitgival and reproduction that amyg-
dala is able to associate to innately neutral stimuli arehoée different types, that, in our view,
constitute the fundamental aspects underlyffgctivebehavior:

*Other classical conditioning associations involving feample basic reflexes like eye blinking are known to be stored
in the Cer (Thompson, Swain, Clark, and Shinkman, 2000). ddfse, all classical conditioning processes involve also
other parts of the brain beyond Amg and Cer, such as the bimsuclei and PFC.

Note that, in the whole paper, we will use the expressiongamed’, ‘unconditioned’ or ‘innate’ to refer to resposse
that might be either innate or developed during the very filgises of life under strong genetic guidance and general
environmental constraints (cf. Arias and Chotro, 2007).
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1. Regulation of body stateaccomplished through the links to the sympathetic, panasyhetic
and hormonal systems.

2. Diffuse brain modulationaccomplished through the links to the four main neuromatduy
systems.

3. Triggering of unlearned behaviaraccomplished through the links to the various centers that
control such basic behaviors.

Finally, amygdala has at least other three main outputsugir which it can make cognitive
processes modulated by emotional states, thus allowingrttegge of new cognitive functionalities:

1. Affective labeling accomplished through the reciprocal connections withHig which is
responsible for the encoding and consolidation of episotimories: these connections allow
Amg to include motivational and emotional elements in su@muories and to enhance their
encoding and recall.

2. Goal-directed behavigraccomplished through the connections targeting the NAREToop,
which is responsible for the higher-level stages of actielection: these connections allow the
affective state of an organism to influence the selectiorebfaliors acquired through operant
conditioning.

3. Planning and decision-making@ccomplished through the reciprocal connections with ,PFC
which hosts many important cognitive processes such asimgprkemory, attention, and pre-
diction: these connections allow affective states to imfigethe processes taking place in PFC,
thus guiding top-down attention, monitoring of action extamn, complex decision making, and
planning.

2.3 Anatomy of Amygdala

Three major groups of amygdaloid nuclei can be distingulstsethe main loci where the various pro-
cesses implemented by amygdala take place (Fig. 2.2): swldiaral amygdaloid complex (BLA),
the central extended amygdala (CEA), and the medial exte(MEA)

2.3.1 BLA: afferent projections and internal connectivity.

LA is the principal input gateway of Amg (see figure 2.3). LAee/es afferent connections directly
from the thalamus, from various sensory and associatitexcareas, and from the brain-stem (Maren,
2005; McDonald, 1998; Par Quirk, and LeDoux, 2004; Piéken, Jolkkonen, and Kemppainen, 2000;
Sah, Faber, Armentia, and Power, 2003). These connectilows l2A to gather information about
the distal world (e.g. through visual and auditory sens@sdl information about the proximal world
(e.g. through visceral, somatosensory, and gustatornosnsA wide amount of data show that Ld
is the place where USs (visceral, gustatory, somatosenandyCSs (visual, uditive) information first
converges within Amg (Maren, 2005; Pitken, Stefanacci, Farb, Go, LeDoux, and Amaral, 1995;
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Figure 2.1. Overview of the Amg: a scheme indicating the main functiolaged by Amg and the main brain anatomical
areas through which it implements such functions. The giagibates the three main classes of input received by Aneg, th
three basic mechanisms it implements, the three types pfibtlirough which it regulates the emotional systems, aad th
three main influences it exerts on higher cognitive processe

Romanski, Clugnet, Bordi, and LeDoux, 1993). Neverthelsegeral data show that, within Ld in
rats, gustatory, visceral and somatosensorial projextimm cortex are restricted to Lda whereas
visual and auditive projections terminate within Ldp (Mai2dd, 1998). There is also clear evidence
about a separation of the projections from Lda and Ldp to Lda projects mainly to Lvl whereas
Ldp projects mostly to Lvm (McDonald, 1998; Pétken, Stefanacci, Farb, Go, LeDoux, and Amaral,
1995). As a consequence, it seems plausible that at ledsiffihe gustatory, visceral and somatosen-
sory information remains relatively segregated from sgnsdormation at the level of the lateral dor-
sal amygdaloid nucleus. Lv has efferent projections to Botimd AB. both B and AB also get direct
projections from gustatory, visceral, and somatosens@gsaand projections from high-converging
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Figure 2.2.  Nuclear divisions and subdivisions of rat amygdala. Acragy AB (accessory basal amygdaloid nucleus),
B (basal amygdaloid nucleus), BL (basolateral amygdalaicleus), BLA (basolateral amygdaloid complex), BNST (bed
nucleus of the stria terminalis) CEA (central extended amay@), CM (central medial amygdaloid nucleus), CL (central
lateral amygdaloid nucleus), CLC (central amygdaloid aus] lateral capsular subdivision), ITC (intercalatedeijd A
(lateral amygdaloid nucleus), Ld (lateral dorsal amygiafaicleus), Lvl (lateral ventrolateral amygdaloid nudgu.vm
(lateral ventromedial amygdaloid nucleus), MEA (medialeexled amygdala), Md (medial amygdaloid nucleus, dorsal
part), Mv (medial amygdaloid nucleus, ventral part).

areas such as vmPFC and Hip (McDonald, 1998;dighn, Jolkkonen, and Kemppainen, 2000; Price,
2003; Sah, Faber, Armentia, and Power, 2003). One featuhésdevel is that olfactory information
seems to be predominantly directed to AB whereas no inpooléactory projections have a direct
connection with B (McDonald, 1998; Sah, Faber, Armentia, Bawer, 2003). Thus within BLA con-
vergence between CSs and USs should take place in two gj@sised in sequence: (a) at the level of
Lv visceral, somatosensory and gustatory information jl4Baverges with bimodal auditory-visual
information; (b) at the level of BL information about USs gerges with highly integrated polimodal
information from hippocampal, cortical associative andical prefrontal areas. Notably, within the
two rostro-ventral axex of BLA, the LvI-AB axis is reached the olfactory signals, whereas the
Lvm-B axis has no direct olfactory information.

2.3.2 CeA: afferent projections and internal connectivity

CeA is reached by afferent intra-amygdaloid projectionsfiLA, BL and MeA (see figure 2.3). LA

projections are both direct and undirect. The direct ptajes reach CLC. The undirect reach CM

through a double inhibition (disinhibition) pathway basetdtwo ITC (see figure 2.2 and figure 2.5).
CeA also receives afferent external projections comingnftiee same thalamic and cortical areas,
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Figure 2.3. the general connectivity organization within BLA. For neanatomic data see McDonald (1998), Jolkkonen
and Pitknen (1998), and De Olmos, Beltramino, and Alheid (2004)

unimodal and polymodal, which project to LA and BL (Jolkkarend Pitianen (1998); McDonald
(1998); Sah, Faber, Armentia, and Power (2003), see figdle Rloreover, gustatory, visceral and
somatosensory information reaches CEA directly. Withid\Qbere is a widespread convergence of
signals carrying internal and external information, atadtént level of elaboration, coming from LA,
BLA and from other brain areas and ending in CLC and CM (seeadi@u). CLC is the main point
through which BLA modulates CEA. MEA mainly projects to CL@dCL. Within CEA, projections
from CLC and CL mainly converge within CM.

2.3.3 MEA: afferent projections and internal connectivity.

Afferent intra-amygdaloid projections to MEA come mainkpin BLA, in particular from Lvm
(De Olmos, Beltramino, and Alheid, 2004; Ritken, Jolkkonen, and Kemppainen, 2000; &itn,
Savander, and LeDoux, 1997; Sah, Faber, Armentia, and P20@38), Afferent projections of MEA
from outside Amg come from two kind of brain areas. Firstréhare projections from Hyp, coming
mainly from VMH, LH and PVN (De Olmos, Beltramino, and AlheRD04; Pitkanen, Jolkkonen, and
Kemppainen, 2000). These projections reach both Mv and MtenuSecond, MEA gets projections
from high associative areas such as vmPFC, Hip, and PC. Phejgetions reach only its dorsal part,
Md (De Olmos, Beltramino, and Alheid, 2004).

2.3.4 Amygdala: efferent projections to other functional gstems.

While LA efferent connections are mainly directed to CeA #lid these two latter components,
together with MEA, have a wide range of targets within thevoas system. Such efferent connections
are organised into four major pathways.
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Figure 2.4. The general connectivity organization within CeA . For reaumatomic data see McDonald (1998), Jolkkonen
and Pitknen (1998), and De Olmos, Beltramino, and Alheid (2004)

Thalamus

Figure 2.5. The afferent indirect pathway of CeA based on ITC (modifiestfiPaé, Quirk, and LeDoux 2004).

CeA is the first major output gateway of Amg through which gukates whole body and brain
states and triggers some unlearned behaviours. In pantjcdDeA efferent connections are mainly
directed to the brain stem, where they target regions suitted®\G controlling unlearned behavioural
reactions (e.g. startle and freezing), and other brairegystsuch as Hyp controlling unlearned body
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reactions (Davis and Whalen, 2001; Nader, Majidishad, Aapanth, and LeDoux, 2001; RaQuirk,
and LeDoux, 2004; Phelps and LeDoux, 2005). CeA has alsceetfeonnections directed to sites
that play a fundamental role in regulating diffuse brainvatton, and also in enhancing important
learning processes, such as LC, VTA, and Raphe (Fudge anithBmi2003; Piténen, Jolkkonen,
and Kemppainen, 2000; Rosen, 2004; Weidenfeld, NewmaiR, {&r, and Feldman, 2002). These
are in fact key control centres of, respectively, the neurdutators norepinephrine, dopamine and
serotonin (5-HT), which play an important role in regulgtitihe sleep/vigilance cycle, the overall
brain arousal, attentional processes, and molecularioeaatnderlying learning.

BL has a major efferent pathway directed to NAcc (Baxter anairigly, 2002; Cador, Robbins, and
Everitt, 1989; Pitlanen, Jolkkonen, and Kemppainen, 2000; Sah, Faber, Arapemtil Power, 2003;
Setlow, Holland, and Gallagher, 2002). This is the secondyAmmajor output pathways through
which Amg can exert an indirect influence on striato-cotticaps sub-serving habit (S-R) and goal-
oriented action selection by transferring Pavlovian itisenvalues to instrumental behaviours.

BL has also an important strong connection to vmPFC, impiaetedirectly through reciprocal
connections with OFC and indirectly through reciprocalmegtions with Hip, on its turn connected
with vmPFC (McDonald, 1998; Richter-Levin, 2004; Rolls 080 Saddoris, Gallagher, and Schoen-
baum, 2005). This constitutes the third major Amg’s out@mihpgvay. Through this Amg can influence
the behavioural regulatory processes taking place in vim@RE& downstream pre-motor, motor areas
and loops with dorsomedial striatum), including workingmuey, reasoning, decision making, plan-
ning, and goal-oriented action selection. In this regaitis connections between Amg and PFC can
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be considered as a fundamental bridge between sub-caegtivational processes involving overall
brain and body internal states and cortical high-level dognprocesses.

BL has also efferent connections directed to CeA, and thisval BL to exert control on the
whole range of behavioural reactions and body/brain réguigprocesses on which CeA has control
(Pitkanen, Jolkkonen, and Kemppainen, 2000).

MeA efferent intra-amygdaloid projections reach Lv and Blclei (Pitkinen, Savander, and Le-
Doux, 1997), while amost all MeA projections outside Amg &alyp as target (in particular VMH,
LH and PVN) (De Olmos, Beltramino, and Alheid, 2004).

2.4 The roles of amygdala in classical conditioning

Individual learning plays a fundamental role in the adaptdehavior of organisms, especially in
the most sophisticated ones like mammals. For this reasomaé psychology has devoted great
efforts to the study of learning processes. In particufathe last century a huge body of empirical
data have been collected around the two main experimentadligens of ‘classical conditioning’ and
‘instrumental conditioning’.

Classical conditioningor Pavlovian conditioninyrefers to the experimental paradigm in which a
certain basic behaviour such as salivation or approachlRy,(that is innately linked to a biologically
salient stimulus such as food ingestion (US), gets assatiata neutral stimulus like the sound of
a bell (CS), after the neutral stimulus is repeatedly preskbefore the appearance of the salient
stimulus. Such acquired associations, as mentioned ifoeezR, are briefly referred to as ‘CS-US’
or ‘CS-UR’ associations (Lieberman, 1993; Pavlov, 192&,ssow).

Instrumental conditioningor operant conditioninirefers to an experimental paradigm in which
an animal, given a certain stimulus, such as a lever in a dagestimulus, ‘'S’), learns to produce a
particular action such as pressing the lever (the respdRdejf the performed action consistently
leads to a rewarding outcome, such as the access to foodisloa$e, the acquired associations are
briefly referred to as ‘S-R’ associations (Domjan, 2006 n8kr, 1938; Thorndike, 1911).

The current most influential models of conditioning phenonemehose based demporal-diffe-
rence reward prediction erro(Schultz, 2002; Schultz, Dayan, and Montague, 1997; Sztand
Dickinson, 2000; Sutton and Barto, 1998), suffer of varibostations (cf. Berridge, 2007; Dayan,
2002; Mannella et al., 2007; Redgrave and Gurney, 2006; Redgt al., 1999). For example, they
tend to conflate classical and instrumental conditionimgl, they do not take into account the influ-
ences of internal states on the acquisition and express$iconditioned responses. On of the reasons
of these limits is that such models have been developedmiitiei machine learning framewaork, with
the aim of building artificial intelligent systems capabfeatonomously learning to perform actions
useful for the user. As a result, they are more suitable feedtigatinginstrumental conditioning
phenomena but less adequate to explain Pavlovian onesiiaygbBalleine, 2002; O'Reilly, Frank,
Hazy, and Watz, 2007).

From the scientific point of view, the available empiricablriedge indicates that the basal ganglia
represent the main neural substrate of the S-R associatmpusred through instrumental condition-
ing (Bar-Gad, Morris, and Bergman, 2003; Barto, 1995; Yid &mowlton, 2006), while amygdala
represents the main neural substrate where the assosiatiguired through Pavlovian conditioning
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are stored (Baxter and Murray, 2002; Cardinal, Parkinsatl, Eind Everitt, 2002).

A crucial question on classical conditioning regards theureaof the acquired association be-
tween the CS and the UR: is this association direct (CS-URpwdl (Hull, 1943) suggested, or does
it pass through the unconditioned stimuli (CS-US-UR), add®ahimself seemed to claim (Pavlov,
1927)? The long-lasting debate on this topic (Lieberma®31%eems now to have settled in fa-
vor of both hypotheses: there is in fact strong empiricallentce supporting the co-existence of both
CS-UR and CS-US associations (Dayan and Balleine, 200pprticular, the available empirical evi-
dence suggests that CEA stores CS-UR associations, whidesRires CS-US associations (Cardinal,
Parkinson, Hall, and Everitt, 2002; Mannella, Zappacoastal Baldassarre, 2008). The rest of this
section describes our hypotheses on the specific mechathisgt8mg might exploit to implement
these two basic functionalities and to modulate them on &séskof the current internal states.

2.4.1 CEA as the locus of US-UR associations

All animals are genetically endowed with a set of basic resps that have a high direct relevance
for their survival and reproduction. These responses Igelorthree classes: (a) internal responses
directed to regulate the states of the body of the organissudsed in section 2.5.1); (b) neuromod-
ulatory responses that influence the general states of #tire durthe relative activity of different parts
of it (discussed in section 2.5.2); (c) basic behaviorgboeses (discussed in section 2.5.3). These
responses are innately linked to specific stimuli so thatnwdngiven stimulus is perceived, the ap-
propriate responses are automatically triggered. For pl@mvhen an animal perceives the odour of
a predator its heart-rate speeds up (body), its generahates increases (brain), and its body might
freeze (behavior).

In the case of complex animals living in a complex and dynawicld it is not possible for
evolution to a-priori associate the appropriate respottsal the possible stimuli that the animals can
encounter during life. The solution that evolution foundha problem is endowing animals with a
learning system that associates the basic (unconditiaesgpnses to the (conditioned) stimuli that
are systematically experienced in conjunction to (as preskors of) the relative basic (unconditioned)
stimuli. In our view, CEA is the part of the brain that learmslastores these CS-UR associations.
In fact, CEA has been shown to be necessary for the acquisitial expression of both aversive
and appetitive conditioned reactions (e.g., startle andzing behaviors in fear conditioning: see
Lanuza, Nader, and LeDoux, 2004; Nader, Majidishad, Amamnép and LeDoux, 2001; Shi and
Davis, 1999; and orienting and approaching behavior in tipmeconditioning: see Hatfield, Han,
Conley, Gallagher, and Holland, 1996; Parkinson, Roblaind,Everitt, 2000). For example, Hatfield,
Han, Conley, Gallagher, and Holland (1996) showed that GEsfohs impede the capacity of rats to
acquire the association between an unconditioned resgonisating) and a conditioned stimulus
(light), while lesions of BLA do not affect this capacity.

CEA is able to make these associations thanks to its patteenoectivity (see figure 2.7). From
the efferent side, CEA constitutes the main output gatewadnag, sending projections to several
brain areas that control all three kinds of basic, unlearasgonses (affecting the body, the brain, and
basic behaviors, see section 2.5). On the afferent side, €E&ives external projections from both
the brain areas having information about unconditioneduti(i.e. visceral, somatosensory, olfactory
and gustatory) and from those having information about tmmebd stimuli (i.e. visual, auditory,
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polimodal, and associative) (Jolkkonen and &itkn, 1998; McDonald, 1998; Sah, Faber, Armentia,
and Power, 2003). Furthermore, both these kinds of infdonaitrrive to CEA also indirectly, via its
afferent projections from BLA, in particular from LA, whiatonstitutes the principal input gateway
of the whole Amg: in fact, also LA receives information on babnately relevant and on neutral
stimuli required for classical conditioning associatightaren, 2005; McDonald, 1998; RgrQuirk,
and LeDoux, 2004; Pitknen, Jolkkonen, and Kemppainen, 2000; Sah, Faber, Arapemtd Power,
2003). CS-UR associations seem to involve both the intéfrah BLA) and the external (from the
rest of the brain) afferent projections to CEA since LA lesicometimes impede these associations
to take place (Blair, Sotres-Bayon, Moita, and LeDoux, 20Gfuza, Nader, and LeDoux, 2004),
while in other cases they do not (Hatfield, Han, Conley, @léa, and Holland, 1996).

Figure 2.7 provides a schematization of how CR-US associgtcan take place within CEA
through the modification of the afferent connections gonoegifconditioned stimuli (CS), represented
both within LA and outside Amg, to the unlearned responsdg)(lthanks to the experienced co-
occurrence of innately relevant stimuli (US) and such umled responses (the scheme is both a
simplification and an elaboration of the computational mdiazt we used for simulating experiments
on second-order conditioning in normal and BLA lesioned,raf. Mannella, Zappacosta, and Bal-
dassarre, 2008, and also section 2.5.2).

Triggering of
unlearned
behaviours

Regulation of Diffuse brain
body states modulation

Innately Innately Body state
neutral relevant information
information information

Figure 2.7. CEA: schematization of the learning of CS-UR associatiaghs (arrows) on the basis of the pre-existing
unlearned US-UR associations (thick arrows). AncronynmegAamygdala), CEA (central extended amygdala) LA (lateral
amygdaloid nucleus).

2.4.2 BLA as the locus of CS-US associations

Direct CS-UR associations have a clear adaptive advantagehas two limits. First, among the
unconditioned responses that can be triggered by CEA (ancehean be associated to conditioned
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stimuli through CS-UR learning) there is not the productidhearning signals, for example the pro-
duction of phasic dopaminergic bursts (Schultz, Dayan,Madtague, 1997; Schultz and Dickinson,
2000) or noradrenergic bursts (Berridge and Waterhoud@3)2@vhich are usually at the basis of
learning. Various facts indicate that this is the case.tFEC&A has inhibitory GABAergic efferent
connections McDonald (1998), for example reaching VTA pidg dopamine (DA) or LC produc-
ing norepinephrine (NE). When this type of connections ndacget areas having neurons producing
neuromodulators, they tend to produce modulatory toninadgyinstead of phasic signals as those
usually used to trigger learning (cf. section 2.5.2). Secavhile CEA lesion disrupts the capacity
to show CS-UR associations, it does not disrupt the capatitonditioned stimuli to be used as
reinforcements in second-order conditioning (HatfieldnH@onley, Gallagher, and Holland, 1996).
Third, the direct association of stimuli with basic reangowould not allow using of conditioned
stimuli for influencing more complex cognitive processasolder to overcome these limits the brain
needs a mechanism limk neutral stimuli to unconditioned stimukso that the presentation of a CS
can recall the associated US and both trigger the phasitshoirsieuromodulators driving learning
and modulate high-level cognitive processes.

There is plenty of evidence that BLA is the part of the braiattlearns and stores CS-US as-
sociations. In fact, BLA has been shown to be necessary:.ofd)dving second-order conditioning
phenomena, where a conditioned stimulus (e.g. a light)dd as a secondary reward in extinction (i.e.
without first order reward) to condition a second neutrahstus (e.g. a tone) (Hatfield, Han, Conley,
Gallagher, and Holland, 1996): this can rely on BLA gluta@ngic connections directly or indirectly
targeting neurons of neuromodulators, suitable for cauphasic responses (e.g., see figure 2.8 for
DA); (b) for influencing high-level cognitive processesdescribed in detail in section 2.6.

BLA is able to make these associations thanks to its convigcffigure 2.8). As discussed above,
LA (which is part of BLA) is the main input gateway of the whadeng, receiving information both
regarding USs (from visceral, gustatory, olfactory, anmatosensory areas) and regarding CSs (from
visual, auditory, polimodal and associative areas). Furnttore, the areas of BLA that receive these
two kinds of information are reciprocally interconnectéuljs permitting the associations between
CSs and USs to take place.

Interestingly, the internal connectivity within BLA seerts suggest that the convergence be-
tween CSs and USs takes place in two sites organised in segjué) at the level of Lv (which is
a part of LA) visceral, somatosensory and gustatory inféiong(USs) converges with auditory and
visual information (Maren, 2005; Piélkhen, Stefanacci, Farb, Go, LeDoux, and Amaral, 1995; Ro-
manski, Clugnet, Bordi, and LeDoux, 1993); (b) at the le¥dBlo, information about USs converges
with highly integrated polimodal information from hippauogal, cortical associative and cortical pre-
frontal areas (McDonald, 1998; Pé&ken, Jolkkonen, and Kemppainen, 2000; Price, 2003; SakyFa
Armentia, and Power, 2003). This hierarchy in BLAs intdro@nnectivity suggests that USs can be
associated with stimuli of different levels of complexifyom the simplest, unimodal stimuli that are
typically used in classical conditioning experiments (éights or tones), to complex objects, context,
or places, like in conditioned place preference experiméiroi and White, 1991; McDonald and
White, 1993).

Finally, the representations of USs (that can be recalleddspciated CSs) can control three
different classes of systems thanks to different sets of Riff&rent projections (see figure 2.8):
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(a) projections to Hip (McDonald, 1998; Richter-Levin, 200NAcc (Cador, Robbins, and Everitt,
1989; Pitkanen, Jolkkonen, and Kemppainen, 2000), and PFC (Roll§, Z#h, Faber, Armentia, and
Power, 2003) allow conditioned stimuli to influence cogmtfunctions (for details, section 2.6); (b)
projections to neuromodulatory systems (e.g., VTA and Slp©®A, reached by BLA through LH
and PPT (McDonald, 1998; Piken, Jolkkonen, and Kemppainen, 2000)) allow conditicatigaluli
to act as second-order reinforcements by producing theétgdiursts that are supposed to drive learn-
ing; (c) intra-amygdaloid projections to CEA (Sah, Fabemantia, and Power, 2003) allow CSs to
trigger all the URs normally triggered by the associated.USs

Figure 2.8 represents a schematization of the BLA funatigniCS-US associations are learned
through the modification of the collateral connections thathin BLA link the representations of
the unconditioned stimuli (innately linked to their resfieunconditioned responses) and the condi-
tioned ones (the scheme is both a simplification and an edéibarof the computational models that
we used for simulating real experiments on both secondramaleditioning, Mannella, Zappacosta,
and Baldassarre, 2008, and devaluation, see Mannella]livand Baldassarre, 2007, 2009a, and
section 2.6.2).
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Figure 2.8 BLA: schematization of the learning of CS-US associatiahgn(arrows) on the basis of the pre-existing

unlearned US-UR associations (thick arrows). AncronymsigAamygdala), BL (basolateral amygdaloid nucleus), CeA
(central amygdaloid nucleus), LH (lateral hypothalamé®,T (pedunculopontine tegmental nucleus), SNpc (sulistant
nigra, pars compacta), VTA (ventral tegmental area).

Finally, it is important to mentioned that all the CS-US adative properties and other properties
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discussed so far in relation to BLA are likely implementeddbyider whole system formed by BLA
and OFC, a region of PFC with which BLA exchanges dense reciprintarconnections. In this
respect, it would be more correct to say that such assoeiaiivctions are produced by the whole
BLA-OFC ‘system’ instead of by BLA alone. Experiments inviolg lesioning either BLA or OFC
show in fact that it is very difficult to dissociate the furais of BLA and OFC (Pickens, Saddoris,
Gallagher, and Holland, 2005; Roesch and Schoenbaum, 3@886gnbaum, Saddoris, and Stalnaker,
2007), although recent investigations are starting to stiat/ OFC is more closely involved with
working memory processes whereas BLA is more closely reélagelearning CS-US associations
(Schoenbaum et al., 2003, cf. also section 2.6.3).

2.4.3 MEA as the locus of the modulation of USs and URs by inteal states

The mechanisms for which an organism can learn to associagtely neutral stimuli to innately
specific responses strictly linked to survival and repréidnds really useful only if there is a way to
modulate these associations according to the currenhaitstate of the organism. For example, let’s
consider feeding behavior. Even in presence of the stirhali have been repeatedly experienced as
predictive of food, it is useful to trigger all the responselated to feeding (e.g. orienting, approach-
ing, salivating, etc.) only when the energy level of the aigan is low (i.e. when it is hungry), but not
when the organism is satiated. Otherwise when encountarnitgce where there is plenty of food an
animal would indefinetely continue to produce feeding exlaesponses, thus risking, for example, to
die of thirst. As discussed in section 2.1, regulating wikiciu of activity an organism pursues in each
moment is exactly the function of a well designed motivagicsystem. The regulation of organisms’
activities on the basis of its current internal state is whakes organisms’ behaviproactive(i.e.
controlled by their needs) rather theeactive(i.e. completely determined by external stimuli).

The need to flexibly and efficiently modulate basic uncoodigd responses on the basis of the
current state of the body might even represent one of the mmmirtant reasons why the CS-US
system in BLA has evolved to supplement the probably moreliaS-UR system in CEA. In order
to understand why, let’'s consider the case of food devalnaifihere can be two types of devaluation:
‘temporary’, for example when the organism is satiated, ‘apdmanent’, for example when a food
resulted to be toxic (e.g., its ingesting was followed byseauor stomachache).

Temporary devaluation could in principle be faced even witly a CS-UR system: if the current
state of the body modulates directly the unconditionedaeses related to feeding (e.g., orienting,
approaching, and salivating) then these responses cotgdriporarily blocked regardless of the stim-
ulus that would trigger it (be it unconditioned or conditgal). But the same solution is not viable for
permanent devaluation: an animal cannot permanently labéeding responses, otherwise it would
die of starvation. With a direct CS-UR system, even the gmiufor which the permanent devaluation
is done at the level of the US is satisfying. In fact, such Sotucould not prevent the execution of
preparatory feeding responses eventually triggered byli@lssd to the food, with the result of an
inefficient activity directed to an devaluated, even daagsifood.

A CS-US system allows preventing these drawbacks. The meigsiiat in such a system de-
valuation can be done at the level of the US. The devaluatedduShus inhibit the URs that are
innately associated to it without preventing other stinbalirigger those responses when neither the
devalued US nor the CSs linked to it are present. This wouldkwequally well for both temporary
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and permanent devaluation.

While a considerable amount of empirical research has beeicated to understanding the roles
of CEA and BLA in CS-(US)-UR associations, much less worklesn done for clarifying the exact
neural mechanisms through which unconditioned respongesadulated by the internal states of
organisms. The available empirical evidence suggeststisas exactly the function of the third main
group of Amg nuclei, namely MEA. First of all, there is eviderthat MEA does indeed play a role in
regulating the triggering of basic behaviors on the basth®fktate of the body: for example, lesions
to MEA have been shown to produce disturbances to feedingviimhthat lead to obesity (King,
2006), which depends on the incapacity of regulating tlggaiing of an unconditioned behavior (e.g.
feeding) on the basis of the current state of the body (eeggletrel of hunger). Second, MEA has just
the right kind of connectivity for supporting this modulatdunction (see figure 2.9). In fact, MEA is
reciprocally connected to Hyp (in particular VMH, LH, and RMDe Olmos, Beltramino, and Alheid,
2004, Pitkanen, Jolkkonen, and Kemppainen, 2000), which is the maitecef information regarding
the current states of the body. Moreover, MEA sends effargmnbitory GABAergic projections to
both CEA and BLA (De Olmos, Beltramino, and Alheid, 2004 ;kBiten, Savander, and LeDoux,
1997), and receives excitatory connection from BLA.

Figure 2.9 represents a schematization of how MEA could nadellboth US and UR representa-
tions in BLA and CEA on the basis of the current body statesceOmrepresentation of US in BLA
gets activated (either directly, or via the activation obasociated CS), it tends to activate the respec-
tive representation in MEA. If the parts of the brain represw the state of the body (e.g. the Hyp)
inform MEA that that US is devalued, the corresponding umMEEA gets fully activated and can in-
hibit both the representation of the stimulus in BLA and thgresentations of the corresponding URs
in CEA. For the effectiveness of temporary devaluation.(egused by free feeding and satiation),
it is necessary that inhibitory connections from MEA to CBRA have both fast learning and fast
forgetting, so that, for example, when the organism is sadithey grow up and inhibit the related US
and UR whereas when its hungry they decrease so permittuiig.

This schema might also explain a last important phenoméamwn asincentive learningBal-
leine and Dickinson, 1998; Balleine and Killcross, 2006)owed in experiments where the current
value of a US (say ‘USa’) is transferred to another US (saybY8nly if the animal can experience
USb after the devaluation of USa. In fact, if USb is not reexignced after devaluation of USa the
connections from its representation in MEA and the one in BhAd the relative URs in CEA) has
not grown up, thus not inhibiting the responses to the aagetiCSs. On the other hand, as soon as
USh is re-experienced when the animal is in a sated congttierinhibitory connections immediately
grow thus preventing the associated CS to trigger the untoned responses.

2.5 The roles of amygdala in emotional processes

According to the framework presented here, Amg has evolvefficiently associate all the innate re-
sponses (URs) that are directly important for organisms/igal and reproduction to innately neutral
stimuli (CSs) that are repeatedly experienced as pregicthose stimuli (USs) that trigger those
responses. This section illustrates in detail the operaifahis fundamental function of Amg with

respect to the three classes of unconditioned responggsatien of body states (section 2.5.1), dif-
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Figure 2.9 MEA: schematization of the modulation of Pavlovian asstaies based on internal states, plastic connections
(thin arrows) and innate connections (thick arrows). @igdlges denote inhibitory connections whereas arrow edyeseal
excitatory connections. Ancronyms: Amg (amygdala), BLAgblateral amygdaloid complex), CeA (central amygdaloid
nucleus), MeA (medial amygdaloid nucleus).

fuse brain modulation (section 2.5.2), and triggering deamed behaviors (section 2.5.3). Recall
(see section 2.2) that the processes regulating thesekimas of basic responses are here assumed
to be essential components of emotions.

2.5.1 Regulation of body states

The regulation of body states based on external events iadafuental functionality for complex
organisms which have a several needs to satisfy. For exaifple organism is going to eat, it will
be useful for it to prepare digestion with salivation and meréase of blood flow to the guts. But if
a predator suddenly arrives, the same organism has to prépdrody for fighting or flighting, for
example by suddenly redirecting the blood flow to the musdieseasing the heart rate, increasing
glucose release, etc.

Thanks to its associative properties, Amg can transfehaie body regulations from stimuli that
innately trigger them to stimuli that are learned to be prexuts of them. The adaptive advantages
rendered by these processes are evident: body states cagulated in advance with respect to
the events that make them useful. These processes areemhpiuthe laboratory by the classical
experiments of Pavlov, in which a dog learns to prepare itlytho digestion by salivating in advance
when it hears a bell that has been systematically assoaiatiethe delivery of food.

Many of these body regulations take place via the influenagb@fautonomic nervous system’
(‘ANS’, working aside the Central Nervous System, ‘CNS"hiah includes the sympathetic and
parasympathetic nervous systems (‘SNS’ and ‘PSNS’, réispdg. The SNS is always active at
a basal level (‘sympathetic tone’) and becomes more activingl times of stress. With stress the
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SNS prepares the body fight-or-flightresponses in that it boasts arousal and energy generation an
inhibits digestion. In particular, it diverts blood flow aywérom the gastro-intestinal tract and skin
via vasoconstriction, enhances blood flow to skeletal nassahd lungs, dilates bronchioles of lungs,
increases heart rate, dilates pupils, inhibits perig4[3avis and Whalen, 2001, Iversen, lversen, and
Saper, 2000). The PSNS has a complementary function wigiece$o the SNS: in general, it can be
said to prepare the body torest-and-digesimode of behaviour in that it promotes calm action and
digestion. In particular, in absence of salient stimuli anchpelling needs PSNS dilates blood vessels
leading to the gastro-intestinal tract, constricts thenbhiolar diameter in lungs, diminish heart rate,
causes constriction of pupils, stimulates salivary glaactetion, accelerates peristalsis, and cause
erection of genitals (Iversen, Iversen, and Saper, 2000).

Amg influences the SNS and the PSNS mainly via CeA (Davis andl&vih 2001): in partic-
ular, through its efferent connections directed to varinuslei of Hyp, mainly LH, PO, and PVN
(Jolkkonen and Pitknen 1998; Knapska, Radwanska, Werka, and Kaczmarek 2887igsire 2.10),
and through efferent connections to the brain-stem andphmlscord (Davis and Whalen, 2001).
Through the connections to LH, CeA can influence thirst anagleu (that is, the perception of the
internal lack of water and food); through the connectionB@it can modulate urination, heart rate,
and blood pressure; and through the connections to PVN CeAnflaience gastric reflexes, blood
pressure, and temperature regulation.

The innervations to PVN are also very important as they allm# to control thenypothalamic-
pituitary-adrenal axiswhich, via the Pituitary gland (or ‘hypophysis’), has a orajole in the regu-
lation of the network of body hormones (lversen, Iversen, @aper, 2000). Hence, through this axis,
CeA can influence virtually all internal processes, inagdivater retention, blood pressure, tem-
perature regulation, male aggression, uterine contrasmd lactation, the production of extrogens,
analgesy and metabolism of nutrients (lversen, Iverseth Saper, 2000).

2.5.2 Diffuse brain modulation

Like the regulation of body, the regulation of diffuse brabates plays a central role for organisms
that have to satisfy several different needs. In fact, thitopmance of different activities and actions
requires the differential involvement of different braireas and the functioning of such areas with
different modes. The modulation of brain activity is accdistged in two ways: (a) indirectly, via
the body, through the activation of endocrine glands thiaasee hormones in the blood (hormones
regulate both the body and brain states); (b) directly, ki@ activation of ancient nuclei of neu-
rons that release the four principal neuromodulators: tbegamineserotonin(5-HT), and the three
catecholaminelopamingDA), norepinephringNE; also named ‘noradrenaline’), aadetylcholine
(ACh).

The neuromodulators are produced in two main ways, thatteehdve different effects on target
neurons:

1. Tonic productiorinvolves a prolonged populational activation of the neusdaiatory neurons,
typically induced via their diffused GABAergic disinhimh, which leads to the accumulation
of the neuromodulator in the extrasynaptic space. The nfé@nteof tonic production of neu-
romodulators is the general modulation of the targetedsarea
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Figure 2.10. Body states regulation: schematization of how amygdaléitores to regulate the body states via the sympa-
thetic, parasympathetic and hormonal systems. AncronghtB (nucleus ambiguus), CEA (central extended amygdala),
DMX (dorsal motor nucleus of the vagus nerve), Hyp (hypathals), LH (lateral hypothalamus), MEV (midbrain trigemi-
nal nucleus), PO (preoptic nucleus of hypothalamus), P\@igyentricular nucleus of hypothalamus), Pit (pituitalgngl).

2. Phasic productiofinvolves a high but short activation of the neuromodulateyrons, typically
induced via their glutammaergic direct activation, whiehds to the fast but temporary high
increase of neuromodulator in the intra-synaptic spacesietproduction of neuromodulators
is supposed to have an important effect for learning (seedke of DA, below) or for quick
regulation of brain states when speed is paramount (e.gctod predator).

Even with respect to the brain modulation, the core functibAmg is based on its capacity to
transfer the effects originally associated to stimuli vihiave been genetically established as salient
by evolution (US) to previously neutral stimuli (CS). Sor xample, the increased levels of stress
and alertness innately associated to the perception ofgafme can be transferred to the type of
noises which preceded the attack, or to the sight of the pldese the attack took place.

The Amg exerts brain modulations mainly via CEA (Davis andaléh, 2001) which is connected



2.5. The roles of amygdala in emotional processes 29

*Working *Working
*memory memory
«Attention *Attention *Sleep/wake
*Vigor *Arousal «Arousal *Anger
*Incentive -Salience Reward *Aggression
salience *sleep/wake -sleep/wake *Anxiety
DA NE Ach 5HT

Figure 2.11 Brain states regulation: schematization of how amygdafdritnites to regulate brain states via the diffused
action of neuromodulators. Ancronyms: VTA (ventral tegta¢area), SNpc (substantia nigra pars compacta), LC (locus
coeruleus), PPT (pedunculopontine tegmental nucleus], (@erodorsal tegmental nucleus), Sl (substantia innataj),

DR (dorsal raphe), ACh (acetylcholine), DA (dopamine), Brépinephrine), 5HT (serotonine).

to the main brain nuclei producing the neuromodulators. @mrtant exception is the modulation
by BLA of the burst firing of the dopamine neurons via glutagngic projections to LH (Petrovich,
Holland, and Gallagher 2005; Petrovich, Setlow, Hollamd &allagher 2002; see also section 2.4.2).

Amg modulates the production of DA by influencing the two me@mters of dopaminergic neu-
rons: VTA, which reaches NAcc and PFC (Fudge and Emilian6326udge and Haber, 2000), and
SNpc, which sends projections principally to BG, espegiBILS and DMS (Han, McMahan, Hol-
land, and Gallagher, 1997; Lee, Groshek, Petrovich, Cant&8allagher, and Holland, 2005). Tonic
DA enhances the general level of processing of PFC, so eimftanorking memory and attention
(Phillips, Vacca, and Ahn, 2008), and, via NAcc, the vigopefformance of selected actions (Flo-
resco, 2007; Niv, Daw, Joel, and Dayan, 2006). Phasic DAasigtihe positive/negative salience of
stimuli which is at the basis of some important learning peses within BG (Schultz, 2002; Surmeier,
Ding, Day, Wang, and Shen, 2007) and vmPFC (Otani, DaniesiRa@and Crepel, 2003).

Amg modulates the production of NE through LC, which innéggavirtually the whole cortex, the
BG, Th, Hyp, Hip, Cer, and the spinal cord (Aston Jones ance@pR005; Berridge and Waterhouse,
2003) (note that noradrenergic neurons play an importaittion also within the sympathetic system;
NE is also released as an hormone in the blood by adrenal tapdNE plays an important function
in the regulation of the sleep/wake cycle, and in increaaitention, arousal, and working memory
on the basis of the general saliency of stimuli (that is onldasis of their novelty) (Berridge and
Waterhouse, 2003).

Amg regulates the production of Ach mainly via PPT, LDT (Kekp, Radwanska, Werka, and
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Kaczmarek, 2007; Semba and Fibiger, 1992), and S| (Jolkkdvieettinen, Pikkarainen, and Péken,
2002), which innervate the brainstem, Amg, Hip, and PFChin dentral nervous system, Ach is
known to modulate the sleep/wake cycle, synaptic plagt(titP), general excitability, arousal, and
reward (Chen, Nakamura, Kawamura, Takahashi, and NakaP@®8) (note that in the peripheral
nervous system, Ach is used to activate muscles).

Both directly and via LH and PAG (Bandler, Keay, Floyd, ani®r2000; Peyron, Petit, Rampon,
Jouvet, and Luppi, 1998), Amg regulates the production bfT5by the DR, which innervates BG
(including NAcc), Th, Hyp, Hip, Amg, and virtually the wholeortex (Barnes and Sharp, 1999).
5-HT modulates mood, anger, aggression, stress, sleep,tbogerature, and metabolism (Grahn,
Maswood, McQueen, Watkins, and Maier, 1999; Maier and Watk2005; Nelson and Trainor, 2007;
Sgrensen, Bjorvatn, and Ursin, 2000)(note that 5-HT is algeripheral signal mediator, in particular
within the guts autonomic system).

2.5.3 Triggering of unlearned behaviors

In probably all animals, evolution has led to the emergefieenamber of stereotyped unlearned basic
behaviours that are triggered when specific stimuli aregieed. For example, these behaviours lead
a hungry rat to approach food as soon as this is perceived $eglt), and, once it is close to the
mouth, to ingest it. Similarly, a rat will regularly perforarearing behaviour directed to looking for
predators. In case the rat spots one, it will freeze if thelgt@r is far or startle and then engage in
flight or fight behaviors if the predators is close.

Amg plays an important function in the selection of thesedvérs. First, it allows the anticipa-
tory execution of these behaviours: that is, in correspooeo previously neutral stimuli that predict
the appearence of the stimuli that innately trigger the bielas. For example, the sight of a land-
mark previously associated with food might trigger an apphing behaviour directed to it and this
might allow obtaining the food, or a particular smell asat®il with a predator might trigger a startle
reflex and then a flight behaviour. Second, it allows trigggthe behaviours only in the presence
of suitable internal states. For example, a rat can stoputixeca feeding behaviour if it becomes
satiated, or can decide whether to fight or flight on the bdsis self-perceived internal state.

The Amg exerts a control on unlearned behaviours on the lbsiscomplex network of con-
nections that CeA has with various nuclei (figure 2.12). $o.ekample, CeA can trigger freezing,
flight or fight behaviours via PAG (Bandler, Keay, Floyd, anec®, 2000; Davis and Whalen, 2001),
the startle reflex via NRPC (Davis and Whalen, 2001). Funtioee, Cea might also exploit more
indirect mechanisms based on DA to modulate the triggenmbexecution of feeding, rearing and
approaching behaviours. In particular, CeA might enhareeihg behaviours via the dopaminergic
modulation of NAccS-VP-LH pathway through VTA (Ahn and Ripis, 2002; Smith and Berridge,
2005; Tindell, Smith, Peii, Berridge, and Aldridge, 2006; Wyvell and Berridge, 20@imilarly,
rearing seems to be performed on the basis of a striatazabltiop passing through DLS-PMC-MC
and might be modulated by CeA via a DA influence passing tHi@&Npc (Han, McMahan, Holland,
and Gallagher, 1997). In the same way, the fundamental bmiraof approaching, which plays a
central role in the adaptation of organisms as it allows therget in contact with the needed re-
sources scattered in the environment, is performed via@skstriato-cortical loop involving NAccC
and AC, that can be influenced by CeA through DA produced viarmection to VTA (Cardinal,
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Parkinson, Marbini, Toner, Bussey, Robbins, and Evel@d3 Parkinson, Willoughby, Robbins, and
Everitt, 2000). Note how these mechanisms differ from ditéggering, e.g. performed via PAG, as
they imply an existing tendency to perform the behaviow, & move towards a seen object, and a
modulation of Amg of this tendency, performed on the bastiethe VTA-NAcc or the nigro-striatal
dopaminergic connections. This difference seems to be ergkieature when comparing the neural
substrates of fear-conditioning responses with those pétipre-conditioning responses.

Freezing
Fighting

Rearing Approach Feeding Fleeing Startle

Cortex
PMC/MC o

Striatum

DLS O

Figure 2.12 Triggering of unlearned behaviors: schematization of howgdala contributes to the triggering of unlearned
behaviors via different sub-cortical and cortical braieas. Acronyms: AC (anterior cingulate cortex), CeA (cdranayg-
daloid nucleus), DLS (dorsolateral striatum), LH (latémgbothalamus), MC (motor cortex), NAccC (nucleus accursben
core), NAccS (nucleus accumbens shell), NRPC (nucleusutatis pontis caudalis), PAG (periaqueductal gray), PMC
(premotor cortex), SNpc (substantia nigra, pars compaefed (ventral tegmental area).

2.6 The roles of amygdala in cognitive processes

Thanks to its capacity to trigger basic emotional respounsethe basis of conditioning processes,
amygdala also evolved the capacity to act as a link from ematiprocesses to cognitive ones, thus
allowing the development of important new functionalitigsthis section we discuss three fundamen-
tal new cognitive functions allowed (or improved) by Amgfeative labeling (2.6.1), goal-directed
behavior (2.6.2), and planning and decision making (2.6.3)
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2.6.1 Affective labeling

One of the most important memory functions of the brain isdgacity to quickly store specific events
characterised by unique and arbitrary configurations oéaibjand events in space. This capability
plays a very important role for organisms’ survival as ibalé them to store important information
on the basis of a few experiences or, in extreme cases, eeesimyle experience.

This functionality relies heavily on Hip and its peculiaraammical and physiological properties.
These properties have been specified at a theoretical leddClelland, McNaughton, and O’Reilly
(1995), have been modelled in Alvarez and Squire (1994),camdbe summarised as follows (cf.
Rolls and Kesner, 2006): (a) Hip has important reciprocaheetions with many associative cortical
areas (e.g. PFC, IT, PPC) and sub-cortical nuclei (e.g. NaccAmg); (b) Hip neurons have massive
lateral connectivity; (c) Hip is one of the brain loci whesgprd associative learning leading to Long
Term Potentiation is strongly present; (d) Hip has been shtoweactivate during sleeping (Eschenko,
Ramadan, Mlle, Born, and Sara, 2008; McClelland, McNaughton, andeilliR 1995).

Cortex

Figure 2.13 Affective labeling: schematization of how amygdala ‘taggmories stored in Hip and cortex through emo-
tional evaluations of stimuli and episodes. Plastic cotioes and innate connections are respectively indicateldl gvay
and black arrows. Acronyms: Amg (amygdala), BLA (basomtemygdaloid complex), Hip (hippocpampus), PFC (pre-
frontal cortex), PPC (posterior parietal cortex), Te (temabcortex).

On this basis, McClelland, McNaughton, and O'Reilly (1996ygested that Hip plays an impor-
tant role inepisodic memorgcquisition and consolidation. In particular, Hip can cdpform neural
associations between sub-clusters of its neurons andadelifierent multimodal activation patterns
that take place in different brain areas at the same timesé&mprently, Hip can form representations
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of any arbitrary polimodal pattern existing at a certaingirAccording to the authors, the later spon-
taneous reactivation (e.g. during sleep) of Hip clusterseahe reactivation of the corresponding
patterns located in the various areas of the brain and sestlte formation oflirect connectionbe-
tween the neurons corresponding to them (consolidatiorith ¥énsolidation, probably the patterns
initially stored in Hip fade away (within days/months), ibhey might even continue to be stored, at
least in part, within Hip (Rolls and Kesner, 2006). The sl@ged and intermixed order with which
consolidation of different experiences takes place allthvesormation of semantic long-term memo-
ries having a high degree of generalisation since the aneasvated by Hip can capture themmon
structureexisting behind different experienced episodes.

BLA plays at least two important roles in the formation ofsglic memories within Hip. First
of all, it is important that only the experiences with higlerance for survival and reproduction are
stored. As pivot of emotions, Amg contains the informatieeded to decide which events, either with
a positive or negative valence, might have a high biologielvance, and so deserve to be stored in
Hip. This allows the Amg to drive the Hip to store or not theigas experiences. This first function
is likely played by the Amg on the basis of its influence on newdulators (cf. section 2.5.2), which
play a very important role in Hip learning.

A second, more direct, function played by Amg in episodic aathantic memories is based on
the massive reciprocal connections it forms with Hip. Thesenections allow Amg to furnish Hip
with the current emotional context, which is to be integdatgth the other cognitive components
that form the episodes to be stored. With the consolidatrocgss driven by Hip, the information
stored within Amg gets directly associated with other @aitand sub-cortical areas with which it is
directly or indirectly (especially via PFC) connected. histway, such information comes to play
the role of a sort of emotional tag associated with the stepdodes. This association allows two
fundamental processes to take place. First, it allows @matireactions taking place withing Amg to
contribute to the recall of memories stored within the Hipvithin the areas with which the current
affective context has been associated during consolidétiaBar and Cabeza, 2006; Phelps, 2004).
Second, when Hip, or the areas linked between them duringptidation, recall particular episodes,
their association with Amg allow them to reactivate the aorail valence of such episodes within
Amg itself so as to: (a) trigger the suitable brain and bodylations suitable for such episode (this
might be important if the current situation is similar to tieealled episode), and (b) to get a feedback
from Amg (via reciprocal connections) on the biologicaleaty of the recalled episode (this might
be important when Hip processes excert a direct or indirdltténce on action).

So, for example, if in the past a rat has experienced an dtimtka predator after having perceived
a particular noise in a certain location of the environmarter sight of such place might trigger the
recall of the noise (and hence trigger a useful priming éffeltich would facilitate its detection)
and this might activate the related negative effects of tteck within Amg (thanks to a CS-US
association). In turn, this reactivation might not onlggrér a suitable regulation of body (e.g., making
the body ready for flight or fight) and brain (e.g., enhancivegdeneral arousal of cognitive processes
such as attention), but also contribute to recall furthefulsnemories within Hip (or within the areas
connected during consolidation), for example the patievi@d to reach a safe place after the attack.
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2.6.2 Goal-directed behaviors

As mentioned in section 2.4, instrumental (or ‘operangé)feng represents, aside Pavlovian learning,
one of the two fundamental processes underling individeelriing in complex organisms (Domjan,
2006; Skinner, 1938; Thorndike, 1911). As we have seemumgntal learning allows organisms to
form stable S-R associations between stimuli and respoimsially produced by chance, if the latter
allow obtaining rewards or avoiding punishments. The asitjan of S-R associations is well captured
by reinforcement learning models (Barto, 1995; Sutton aadd@ 1998). Such S-R associations are
acquired only with prolonged training and form efficient bbather rigid ‘habits’ that are performed
independently of the current value of the pursued outconge feod, see below).

Goal-oriented

behaviour A_ O

Cortex
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Figure 2.14: Goal-directed behaviour: schematization of how amygdaidributes to bias the selection of instrumentally-
acquired stimuli. Plastic connections and innate conasstare respectively indicated with thin and thick arrowsclé
edges denote inhibitory connections whilst arrow edgesigeaxcitatory connections. Acronyms: Amg (amygdala), BG
(basal ganglia), BLA (basolateral amygdaloid complex),Sldorsolateral striatum), GPi (globus pallidus, interseg-
ment), MC (motor cortex), NAccC (nucleus accumbens core)pPelimbic cortex), PMC (premotor cortex), VP (ventral
pallidum).

Basal ganglia are considered to be the main locus where mtpewaditioning associations take
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place. In particular, the macro-loop formed by DLS with ear(in particular PMC/MC) via the Th, is
known to play a fundamental role in both the acquisition dredexpression of S-R associations (Yin
and Knowlton, 2006).

Other portions of BG, in particular the two macro striatalimo-cortical loops DMS-PFC/PC
and NAcc/vmPFC, play a rather different role. In particuhe DMS-PFC/PC loop plays an important
role in the initial phases of learning, when the S-R habigwt yet formed (Yin and Knowlton, 2006).
The last NAcc/vmPFC loop, which has a higher interest fag thview due to the strong projections
it gets from the BLA, is very important for the guidance of betour (the ‘action’ — A) on the basis
of the current value of its ultimate goal (the ‘outcome’ — @y, example the current potential value
of the pursued food.

The behaviors modulated on the basis of A-O associations &aypicalgoal-directednature in
that they lead to select actions on the basis of a relatiomiwhoesfrom the outcomes of actions
to the actions themselvesid soinvertsthe temporal and causal relationship existing between them
(actions cause the achievement of outcomes). In this rgsimecgoal-directed modulation of the
selection of instrumental behaviours considered heresgmts a first fundamental departure from the
S-R scheme which reaches its maximum degree of developnigmplanning and complex decision
making processes described in section 2.6.3.

The functionality accomplished by the A-O mechanisms hasmddmental adaptive role. Indeed,
it allows internal body states and needs, via the MEA-BLAhpaty, to bias the selection of differ-
ent habits which might be triggered in a given situation. &mmple, as elegantly captured by the
instrumental devaluation experiments mentioned below, ri&t can perform two or more different
instrumentally acquired actions (i.e. different habitsathieve two or more different outcomes (e.g.
different resources satisfying different needs), theantrconfiguration of its internal states and needs
will allow it to decide on the fly which habit to select, withihhe need of re-learning. These mecha-
nisms add a great flexibility to the rigid habits and are fundatal to allow animals to select between
different courses of actions at each time on the basis ofébdsirelated to the homeostatic regulation
of body states (cf. section 2.5.1).

Balleine and Dickinson (1998) boosted a whole new reseagehda directed to study A-O be-
haviours and to contrast them to S-R behaviours traditipsaidied within the behaviourist approach.
These authors give an operational definition of goal-de@dtehaviours based on two classes of ex-
periments:

1. Goal-directed behaviours are sensitive to the deg@dati the A-O contingencythat is the
strength of the causal relationship existing between thiepaance of an action and the achieve-
ment of the related outcome (the contingency strength isared on the basis of the relation
existing between the probabilities of obtaining the outeomith and without the action). If
this contingency is degraded, for example by deliveringaghiomes non-contingently to the
action, the considered action is performed less intengdlequently in cases of goal-directed
behaviours but not in case of habits (Balleine and Dickind©88).

2. Goal-directed behaviours ammmediately(i.e. without the need of re-training) sensitive to
manipulations of the value that the organism assigns to tit@ome (Balleine and Dickinson,
1998). For example, in a typical instrumental devaluatigpegiment (Balleine et al. (2003))
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one of two foods (‘Food1’ and ‘Food2’) previously used torfotwo instrumental associations,
‘PressLeverl-Foodl’ and ‘PressLever2-Food?2’ , is ‘desdlipy letting the rat to freely access
it (e.g. Foodl). In a successive test, when exposed to boterleand Lever2 the rat has a
strong bias to select Lever2 associated to the currentlydesalued food (Food?2).

Figure 2.14 presents a diagram which allows illustratirgrttost important mechanisms involved
in goal-directed behaviour, for example the instrumergabtuation experiment illustrated above (the
model has first been published in Mannella et al. (2007, 20&8a.is now being further refined). The
components reported on the left of the figure mimic the reod@ment-learning based acquisition
of S-R behaviours on the basis of prolonged training. THmaa the rat to acquire the two habits
‘PressLeverl-Foodl’ and ‘PressLever2-Food?2’ in the finsige of the experiment when the two levers
are presented separately. When in the last test phase, takies place after one of the two foods has
been devalued (say Foodl), the two levers are presenteithéogihe rat exhibits a strong tendency to
select on of the two levers (Lever2) thanks to the biasingotdfthat Amg exerts on the habits.

This important effect is played by Amg on the basis of threelamental mechanisms:

1. While in the first phase of the experiment the rat instrui@gnacquires the S-R habits, the
creation of the contingency between the observation of &a@r and the following reception
of the corresponding food allows Amg to form the two CS-UStomencies Leverl-Foodl and
Lever2-Food?2.

2. In the devaluation phase, when the rat can freely acdegsile of the two foods, implies that
the rat gets satiated for such food (e.g. Foodl): in the mdueresulting internal state inhibits
the corresponding representation of food (US) within BLA.

3. As a consequence, when in the last phase the rat is expo$eel tiwo levers, only one of the
two representations the levers (CSs) within Amg can aitla¢ corresponding US represen-
tation and so exert an influence on the corresponding S-RadwhiNAccC (Corbit, Muir, and
Balleine, 2001). Importantly, the actual biasing effedt&\img on habits, which instantiate the
A-O associations within the model, is performed both viagti&to-nigro-striatal connections
(‘dopamine spirals’, Haber, 2003) and via PFC (in partic&#ll, Corbit and Balleine, 2003).

These mechanisms capture the essence on how Amg can intmeasa@aptation of animals by
adding an important flexibility to the selection of the instrentally acquired habits thanks to its
capabilities of forming CS-US associations (within BLA)daof modulating their activation on the
basis of internal states (detected by MEA).

2.6.3 Planning and decision making

Planning and decision making involving complex decisioas be he considered the hallmark of
complex cognition in mammals. Planning consists in the aleggneration of trajectories of future
possible behaviours and states that can be achieved with([Dagher, Owen, Boecker, and Brooks,
2001), whereas complex decision making involves the deledf a given alternative versus other
alternatives on the basis of a complex calculation of the@ated consequences, their values and
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us

Figure 2.15 Planning: schematization of how amygdala contributesaamihg by furnishing values to anticipated states.
Left: an hypothetical task involving planning. Right: a pitde model to tackle the task. All connections in the model a
learned in the various phases of the process (see téxt3, C, S states corresponding to being in different chambeérs;
lever; NS: neutral stimulusC'S: conditioned stimulusS: state;A: action leading from one state to another. Acronyms:
Amg (amygdala), BLA (basolateral amygdaloid complex), Rptefrontal cortex), PMC (premotor cortex).

their probability of actually happening (Bechara, Trarighmasio, and Damasio, 1996). The core
functionality underlying planning and complex decisionking is the capacity of producing internal
images of future states decoupled from current perceptmbtead related to percepts which might
be experienced in the future as a consequence of own achbiesr@nd Cohen, 2001).

The development of these skills has reached the maximurhdégephistication in humans due
to the evolution of an exceptionally extended and comple& BBrtex. In this respect, the PFC
represents the brain area governing behaviour at the maxilenel of abstraction and involving the
longest future time scope (Miller and Cohen, 2001).

Amygdala plays a fundamental role in planning and compleisiten making: it furnishes the
values to the imagined possible future stagesas to allow animals to select the suitable course of
action which has the highest probability of achieving impot biological advantages while reducing
physical damages and costs to a minimum (Kringelbach ani$,Rl04). In this respect, imagine a
rat which has previously experienced food in a certain plat¢ke environment but, on the way to it,
it smells the presence of a predator, for example a cat. $nctise the rat has to decide if continuing
to move towards the food place, or, say, to detour and reacfotd by following a much longer way,
on the basis of the chances of encountering the predatay gherstraight fast path (e.g., as signalled
by the intensity of the predator odour), the anticipatedgnspent in the detour, the knowledge of
the path to be followed in the case of the detour, the infoiondtom the body related to the current
level of hunger and the residual amount of energy availate,

A possible experiment capturing this type of situation, athis inspired by the response-pre-
conditioning experiments , is one where a rat is set in a cleai@lbrom which it can access either one
of two chambers A and B by entering their gated entrance (#besgorevent the rat from seeing the
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inside of A and B from S). Now assume that each of the two chasnhend B contains a different

distinguishable lever, respectively LeverA and LeverBd éimat the rat is left free to explore this
environment for a prolonged time. Also assume that the natesaerience a further level, LeverC,
in a chamber C which does not communicate with none of S, A arld® assume that in a second
training phase the same rat experiences a LeverA-food iasiemdn A, a LeverC-food association in

C, and a Lever-no food condition in B. Now, if in a third phake tat is set in S, one might expect
that the rat would exhibit the tendency to enter A more thars Bia it would expect to see LeverA

associated with food.

Figure 2.15 shows a sketch of a model which might be impleeteta reproduce the role of
Amg and PFC (in particular OFC, IL and PL) in the describedegxpent. The figure shows that the
experience of the chambers A and B in the first phase mighwalie rat to form associations between
the representations of such chambers and the represermtbamber S in PFC, linked by suitable
representations of the actions leading from S ta44 (4) and from Sto B 4s_ ), and between the
representations of S, A, B and C and the corresponding reptasons in Amg ('Ss, C'S4,CSp,
and CS¢). When in the third phase the rat is set in S, the PFC reprasemtof S should cause
an anticipatory reactivation of the internal representatiof A and B (but not C). This activation
would cause the corresponding representations within Anigetactivated (CSA and CSB): as only
C'S4 in turn reactivates the representation of food US, this mjgbduce a feedback signal to the
PFC representation A and this would strengthen the aativaif As_ 4 in comparison ofds_p.
This might cause trigger the performanceAd_ 4 with the aid of downstream areas, for example
involving the striato-cortical loops involving in the spigcation of the detailed movements of action
(in particular, DMS and DLS, and PMC and MC) with which PFCiigdtly and indirectly connected.

Amg and PFC, in particular BLA and OFC, play also a key role amplex decision making.
This is for example demonstrated by the experiments of \&iney, Theobald, Cardinal, and Robbins
(2004) (cf. also Mobini, Body, Ho, Bradshaw, Szabadi, Deakind Anderson, 2002) who trained
rats with two levers, one producing a small immediate amofifdtod and the second one producing
a larger but delayed amount of food. Interestingly, ratsciwlieceived a post-training lesion of BLA
exhibited a higher tendency to select the immediate-foeerlen comparison to shams whereas rats
which received a post-training lesion of OFC exhibited ébigtendency to select the delayed-food
lever. Although an agreed explanation of these experinmisnist yet available (cf. Mobini, Body,
Ho, Bradshaw, Szabadi, Deakin, and Anderson, 2002; ScloembSaddoris, and Stalnaker, 2007;
Winstanley, Theobald, Cardinal, and Robbins, 2004), tiheysthat OFC and BLA play a pivoting
role in complex decision making.

It is interesting to relate these data on rats with those ompbex decision making in humans. For
example, humans with a damaged Amg/OFC/vmPFC performyootdsks requiring the integration
of information about imagined gains and costs in the findcimain. Bechara et al. (1994) developed
a task, the lowa Gambling Task (IGT), directed to study tlmsl lof dysfunction. In the test subjects
are allowed to choose an item from two decks of cards, onehwgricduces low monetary gains with
a high probability and one which produces high gains butasp high cost with a low probability so
that the net gain this deck is lower than the net gain of thediesk. Whereas control subjects learn
to choose cards from the first deck and also exhibit an ineceskin conductance before selecting a
card from the second deck, patients with damage to eithehnhg or the vmPFC tend to prefer the



2.7. Conclusion 39

high-risk deck and also fail to show an increased skin cotzhee.

Bechara et al. (1996) have proposed that Amg and vmPFC plapteaat role in guiding choices
in the IGT. The idea is that PFC generates possible futuneteye.g., financial gains or damages) and
these are evaluated by the PFC-Amg re-entrant loops (caftrementioned abstract model) thanks
to the capacity of Amg of activating the body reactions thatia follow from the actual experience
of such events. In this respect, these emotional body mecplays the role of ‘somatic markers’ of
such events that, once propagated back to PFC, supportldatice or rejection of the alternative
available courses of action.

2.7 Conclusion

Amygdala is a brain system which palys a key role in the aiffeategulation of body, brain and
behaviour. This principled review has presented the gépéreciples which might underly the inner
functioning of amygdala, and has illustrated how they abbomygdala to play a key role within various
sub-systems of brain. The review has first shown how Amygdalapable of integrating information
from internal states, innately relevant stimuli and inhateeutral stimuli on the basis of three core
functioning mechanisms: (a) amygdala associates theefiiigg of important basic behaviours (e.g.
approaching and salivation), innately triggered by biatally relevant stimuli (e.g. food), to neutral
stimuli (e.g., the sight of a landmark signaling the presasfdood in the environment); (b) amygdala
associates representations of neutral stimuli (e.g.,@fe¢hdmark) to representations of biologically
relevant stimuli (e.g., the food) so transferring all thegmrties of the latter ones (e.g., the capacity
of triggering basic behaviours) to the former ones; (c) atl®yg modulates such associations on the
basis of internal states (e.g., satiation can stop thedrigg of salivation caused by the sight of a
landmark predicting food, or it can inhibit the re-actiatiof the internal representation of the food
itself).

These mechanisms allow amygdala to play an important rdieeimegulation of three emotional
processes fundamental for adaptation: (a) the regulafidiody states; (b) the regulation of brain
states via the principal neuromodulators; (c) the trigggnf a number of basic behaviours relevant
for organism’s survival and reproduction. Moreover, thégva amygdala to contribute to exert an
important emotional influence of three important high-l@agnitive processes: (a) ‘labeling’ memo-
ries with emotional valence of stimuli and episodes; (b¥inig the selection of instrumentally-learned
habits on the basis of the current valence of their ultimai@sy (c) furnishing the current value of
stimuli and events to the processes of planning and comg@eisidn making.

Both the overall picture and the specific claims proposedis $tudy have been developed by
trying to fulfil two main constraints: on one hand, they haeeib rooted in the currently available
empirical knowledge, and on the other hand, they have beeelafed on the basis of the func-
tional/adaptivistic stance, and the goal of isolating gehprinciples, typical of artificial-life and
adaptive-behavior research. As a result, some of the idesepted can be considered as acquired
knowledge in the field of affective neuroscience, otherstitrie original hypotheses, well supported
by available empirical knowledge, and finally some otheopéiully a minority) represent less sup-
ported hypotheses that may turn out to be just wrong from giréral point of view.

In this respect, the authors are aware of the tentative eatusome of the ideas illustrated, but
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nevertheless they decided to present them as the goal atitle /as to contribute to build a coherent
and biologically-constrained picture of the functionirfgseveral brain sub-systems where amygdala
plays a central role for the organization of adaptive bebravi

Hopefully, in this way, on one hand this review contributegdster more theoretically oriented
research within affective neuroscience, and on the otheat hi@ontributes to produce more structured
and informed research based on the simulation of the mmthvatand emotional aspects of adaptive
behavior.
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Chapter 3

Navigation via Pavlovian Conditioning: A Robotic
Bio-Constrained Model of Autoshaping in Rats

Abstract

Within the autonomous robotics literature, bio-inspireddels of navigation in organisms (e.qg.
rats) usually rely on instrumental conditioning procesbased on the learning of associations
between places in the environment and navigation acticendiig to rewarded goal places. This
paper presents a neural-network model capable of solvinggadion tasks on the basis of Pav-
lovian conditioning processes which allow transferringdte approaching behaviours from bi-
ologically salient stimuli (e.g., food) to neutral stim(4.g., a landmark seen from far away and
close to the food) (‘autoshaping’). The overall architeetand functioning of the model is bio-
logically constrained on the basis of relevant neurosgéferdnatomical and physiological knowl-
edge on amygdala, nucleus accumbens, and ventral tegnaetal The model is tested with a
simulated robotic rat engaged in autoshaping and devatuegixperiments. The results show that,
although the model allows solving only simple navigatiosk& it produces fast learning and a
flexible sensitivity of behaviour to internal states typiofPavlovian processes. The model is
also important for the investigation of adaptive behaviougeneral as it clarifies the nature of
some core mechanisms which play a key role in several formesawofing.

3.1 Introduction

Navigation is a fundamental adaptive behaviour which al@rganisms to displace in space so to
get in contact with resources scattered in the environmahtige them to increase their survival and
reproduction chances. For this reason, the brain machemsgrged during evolution to subserve
navigation behaviours is rather sophisticated and baseduitiple systems. Most models of animal
navigation proposed within autonomous robotic literatare based on instrumental processes (for
some reviews, see Filliat and Meyer, 2003a,b; Trullier et2997). Instrumental processes allow
organisms to form associations between stimuli and acborthe basis of the resulting reinforcing
outcomes (Domjan, 2006). Some of the most influential modsés reinforcement-learning algo-
rithms (e.g., based on the Temporal Difference rule, SwtahBarto, 1998) to form, viaprologued
training, associations between places and the actionstéit¢o achieve rewarded places. Those of
these models which are more strongly biologically consrdiassume that places are represented in
‘place cells’ of hippocampus (HIP) (O’Keefe et al., 1998 dnat actions are selected and triggered in
a reactive fashion by nucleus accumbens core (NAccC) (AatebGerstner, 2000), or, alternatively,
that actions are triggered in a proactive fashion via preficortex (PFC) (Martinet et al., 2009).

The important processes involving complex spatial elaimma performed by HIP, NAccC and
PFC has led to overlook some processes underlying nhaviglagibaviours which are simpler but also
faster and more flexible than instrumental ones. In thisaes main tenet of the paper is that an im-
portant class of these simpler processes are based on Ravtmnditioning mechanisms. Pavlovian
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conditioning (Lieberman, 1993) is an experimental panawlig which a stereotyped ‘unconditioned
response’ (UR), innately associated with, and triggerea pjologically salient ‘unconditioned stim-
ulus’ (US), might become associated with, and so triggeyg@®becoming a ‘conditioned response’,
CR), an innately neutral ‘conditioned stimulus’ (CS), iete&S regularly precedes the US. For exam-
ple, the UR of salivation, innately triggered by the US of taste or smell of food, might become
associated and triggered by a CS consisting in the sightauf fiothe CS is repeatedly followed by
the US.

Approaching food or conditioned stimuli (e.g., a light) itypical UR/CR studied in Pavlovian ex-
periments (in this case called ‘autoshaping’). Autoshgpirechanisms allow organisms to approach
(CR) a neutral stimulus (CS) if this has been regularly mhivéh an appetitive stimulus (US).

Pavlovian mechanisms related to approaching have a grelatiewary advantage. The approach-
ing behaviour is formed by a set of motor routines which isre@ complex rhythmic pattern of muscle
activations which reduce the spatial distance with theetartn this respect, the advantage rendered
by autoshaping mechanisms is that the formation fafstlearnable and simple associatibetween
an US (e.qg., food) and a CS (e.qg., a big landmark close in g¢pabe food and visible from far away)
can allow organisms t@pidly transfer the whole complex target-approachingdeébur (UR) to the
Cs.

Pavlovian navigation has also a second important advataiigxibility: the sensitivity to body
states. In fact, internal representations of USs (via thigation of which approaching responses are
triggered) can be directly modulated by internal states.ekample, the satiation for a particular food
(US) can prevent its internal representation from beiniyaietd by the activation of a CS associated
to it, so stopping costly inuseful URs associated to it (esglivation and approaching).

The main contribution of the paper is the proposal of a modackvis a first important step
towards a full detailed understanding of Pavlovian-basedgation processes in organisms. This not
only has great relevance for neuroscience and psychologgl$o is very important for autonomous
robotics interested in learning processes for two reas@apgit suggests specific mechanisms for
implementing quickly-learnable and flexible navigatiorh&éours; (b) the Pavlovian mechanisms
investigated here play a key role in many learning processethey have an importance which spans
well beyond navigation behaviours (see Mannella et al.98p0

The rest of the paper is organised as follows. Section 3i&tithtes the biological constraints of
the model, Section 3.3 the setup of the simulated expersnand Section 3.4 the model in detail.
Section 3.5 presents the results of the autoshaping andudéea tests, whereas Section 3.6 draws
the conclusions.

3.2 Biological Evidence on Pavlovian Navigation Mechanism

This section presents biological evidence which on onesiggorts the claim that organisms acquire
some kinds of navigation skills based on Pavlovian mechasisand on the other side furnishes the
anatomical and physiological constraints used to desigatthitecture and functioning of the model.

A first piece of evidence is that lesions of HIP does not pretles acquisition and expression
of autoshaping behaviours (Parkinson et al., 2000). Thisridamental as rules out that the spatial
computations performed by HIP underlie such behaviours.
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Another important piece of evidence is related to the bas@hcomplex of AMG (BLA). BLA
is the main locus where CS-US Pavlovian association presesdke place (Cardinal et al., 2002;
Knapska et al., 2007; McDonald, 1998; Ritlen et al., 2000). Surprisingly, BLA is not necessary for
learning and expression of autoshaping (Parkinson etGOQ)2

BLA, however, is necessary for the flexible modulation ofIBaan mechanisms based on internal
states. An example of this, relevant to this work, is thad ine@cessary to allow satiation for one food
to inhibit not only approaching to such food but also apphirag to a CSs associated with it (Blundell
et al., 2003). This without the need of relearning.

BLA is also necessary for the functioning eécond order conditioninghat is conditioning of a
neutral stimulus on the basis of the presentation of anathgtral stimulus previously associated with
it (this can be done ‘in extinction’, i.e. without presemfithe US after the first CS; Cardinal et al.,
2002). This might be relevant to extend the model in the futund let it learn to approach a landmark
(CS2) if this is followed by another landmark (CS1) previgusssociated with reward (US).

BLA is also capable of triggering phasic dopamine burststgiaonnections with lateral hypotha-
lamus (LH; Pitkanen et al., 2000). These types of dopamine signals aremggyriant for learning.

Another important fact to consider is that the central caxrplf AMG (CEA) is needed for learn-
ing conditioned approach behaviours but not for expregsiegn (Cardinal et al., 2002). This property
seems related to the capacity of CEA of causing a populatifwsdd activation of the ventral tegmen-
tal area (VTA) and a consequent productiontarfic dopaminethis acts as a necessary precondition
for phasic dopamine to trigger learning. Tonic dopamindde at the basis ofigor of actions, that is
of the mechanisms for which the intensity and frequency etakon of actions can increase due to
expectation of appetitive stimuli (cf. Niv et al., 2006).

A further important piece of evidence is that the ventrat pathe striato-cortical system (Kandel
et al., 2000) is needed to learn and express conditionedagipbehaviours. In particular, lesions of
the basal-ganglia and cortical components of such loopsehyarespectively the nucleus accumbens
core (NAccC; Cardinal et al., 2002) and anterior anteringalate cortex (ACC; Cardinal et al., 2002,
2003) prevent both learning and expression of conditiopgdaach.

3.3 The Simulated Rat, the Maze, and the Tasks

The robot used to test the model is a robotic rat (‘'ICEAsingyeloped within the EU funded project
ICEA on the basis of the physics 3D simulator WeBMtsThe model was written in Matldl (We-
bots has an interface for Matlab code). The numerical iatiémn of the equations of the model is
performed with the Euler method and an integration time sfep05 (also used for the 3D simula-
tor). The robotic setup used to test the model is shown inrEi§ul and it is now briefly described.

The training and test environment is composed by a greyedallmaze (only the two upper arms
of it were used: the lower arm will be used in future work). Eampper arm contains a landmark,
respectively red and blue for the two arms, which the rat earfiom far away, and a rectangular food
dispenser, which the rat can see only from the middle of the@ward. The two food dispensers
contain food A and food B respectively. When the rat touchie®d dispenser it receives a rewarding
signal corresponding to the ingestion of the food.

The simulated rat is a two-wheel robot equipped with variseissors. Among these, the tests
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Figure 3.1 Top: The simulated Y maze and robot. Bottom: The left andtrigtina images perceived by the rat while
positioned as indicated in the top graph.

reported here use two cameras (furnishing a panoramic 3@eke view) and the whisker sensors.
The rat uses the cameras to detect the red and blue landmatkbeatwo green and yellow food
dispensers. Suitably tuned pre-processing colour filléoe ghe system to perceive stimuli as binary
signals. Landmarks are seen from far away, for example flamrctossing of the Y maze, but only
when positioned in the frontal zone of the two retinas (apimnately within 9¢). Also the food
dispensers are visible only if within the frontal zone, thit visibility is limited to positions within

a half-arm distance. The rat is also endowed with two binansers which detect the ingestion of
respectively food A or B, and with two binamgternal sensors respectively encoding satiety for either
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food A or B.

The rat also uses the whiskers, activated with one if benbieya certain threshold and zero
otherwise, to detect contacts with obstacles. The whiskersised to control a low-level hardwired
‘obstacle avoidance routine’ which ‘overwrites’ all otteations and leads the rat away from obstacles.

The actuators of the rat are two motors which can indepehdeantrol the speed of the two
wheels. The system controls such speed by selecting onee#f ltfardwired routines: ‘turn left’ and
‘turn right’, which lead the robot to respectively turn aickwise or clockwise on the spot, and ‘go
ahead’ which leads the robot to move forward. If none of thessines is selected and active, the
speed of wheels is set to zero. A further ‘consummatory neitmimicking eating, is triggered when
the rat is on a dispenser and perceives the related US.

The rat undergoes three training/testing phases:

1. Pre-training phaseln this phase, the rat is first trained for 2 mins, divided ial$; in the food-B
maze arm without the landmark and blocked with a wall at thewoend; then it is trained in a similar
condition in the food-A arm. Trials terminate either aftérszcs or when the rat ingests the food. In
this phase the rat learns to associate the seen foods (Q8ghwingested foods (USSs).

2. Training phaseThis phase lasts 2 mins, divided in trials as in the first phaise involves the two
upper arms. In this phase the rat learns to associate then&kd (CSs) with the seen foods (CSs)
and the ingested foods (USs).

3. Devaluation phaseThis phase is composed of three sub-phases of 4 mins eaclwitimboth
fully-valued foods, one with the devalued food A, and onénwiite devalued food B. Each sub-phase
is divided in trials as in the other two phases. In this phasddarning coefficients were set to zero
to collect more controlled data. This phase allows testinigd rat has a tendency to explore more
extensively the maze arm where the non-devalued food isddca

3.4 The model

This section uses the following conventions: bold capitters X) represent matrices, bold small
letters ) represent vectors and small letter3 tepresent scalars. The notatipfi™ means that the
positive part ofz is considered, while the notatig] ~ means that the negative partois considered.
The functiong (z, 0) returnsl if =z > 6, 0 otherwise. Note that each unit activation is here assumed
to represent the firing rate of a population of neurons reéblyea similar input pattern.

Figure 3.2 shows the architecture of the model based on the@® components: (a) the AMG:
this is responsible for implementing the stimuli assooiagi of Pavlovian conditioning; (b) the stri-
atocortical system formed by the ventral basal ganglia (VB@se are a set of nuclei formed by
the NAccC, the subtalamic nucleus, STN, and the susbstaigtia pars reticulata, SNpr) the dorso-
medial thalamus (DM) and the ACC: this is responsible foesthg the actions to execute; (c) the
dopaminergic system formed by LH and VTA: this modulateshitbe learning processes and the
speed of selection and duration of execution of actions (ththe model correspondent of vigor of
actions, see Section 3.2).

With the exception the units of AMG (see Section 3.4.1) el of the model are leaky integrators
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Figure 3.2 The architecture of the model.
as described in Amari (1977):
TU; :—Ui—l—I{uI—l—Z’wij - U5
J
v; = [tanh[u;]]" (3.1)
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whereu; andv; are respectively the potential and the activation of unitis the input signal from
either the external environment or the body,is a multiplying coefficient, anav;; is the weight of
an afferent connection from another unit j.

3.4.1 The Amygdala, an CS-CR and CS-US Associator

This section first describes the general functioning andhleg of AMG units and then describes the
specific functions of BLA and CEA.

BLA and CEA are each formed by six input units which receive-ta-one input signals from the
six external input units of the model: two encoding visuaiditioned stimuli, two encoding the two
seen foods, and two encoding the taste of ingested food. @dii@nal internal input units of the
model, respectively encoding the satiation for the two &y@&nd strong one-to-one inhibitory signals
to the two units of BLA and CEA encoding the two food tastesoter group of units (intercalated
nuclei, ITC) serve as a disinhibitory interface between Bl CEA (see Péret al., 2004)

The units of BLA and CEA (denoted withla and cea) are different from the other units, in
particular each one activates in correspondence to stiomsket and then fades away (many single
neurons in brain have this property). For each AMG unit, timset-detection function is achieved on
the basis of two leaky integrators,, andoy,::

T10in = — Oin + 1

TQOout = — Oout + [I - Oin]+ (32)

This kind of activation is needed to allow the internal castimns of BLA and CEA to be updated
on the basis of a ‘differential Hebb rule’ (Mannella et al00Z; Porr and Wrgotter, 2003). This
rule captures the temporal correlation (or ‘apparent day3axisting in incoming input patterns. In
particular, if one has two units with two reciprocal conneas, the rule tends to increase the weight
of the connection which goes from the first unit to the secomit, @and at the same time tends to
decrease the weight that goes from the second unit to thefiitsif the first unit tends to be activated
within a certain time window before the second unit. In detaie learning rule works as follows.
First the leaky traces of the derivatives of the activatibthe onset units are computed:

Ttrt.T‘ =—tir+ Rp * éout (33)

wherexy, is a multiplying factor.
Then a difference in the sign of the traces of the presynajpiicpostsynaptic unit determines the
amount of the increment of the weights:
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Aw;; =
n-¢(da,by,) - (da —044) -
([ri] ™[] " = i) * - [63] ) -
(‘L)wz’j — wij) (3.4)

whered,,,; is a threshold near which the weights saturdteis the dopaminergic level arty,, is the
threshold of dopamine level above which learning take place

BLA.When connections between the AMG visual stimuli units aratiftaste units are strengthened
via the differential Hebb rule illustrated above (stimukisnulus associations), the former ones ac-
quire the ability to activated the output unit in the same waylone by USs.

One of the output responses of BLA consists in triggering,lH, the activation of VTA output
units: this leads to a phasic dopaminergic signal undegligarning (see Section 3.4.3).

A second output reaches NAccC: this has the function of niaie selection of actions taking
place within VBG.

A last output reaches CEA, and allows BLA processes to exogtrol on the output of CEA.

As mentioned above, BLA US units are also reached by intesigalals about satiety. Through
these connections the activity of these units can be mastlilay the rat internal states, for example
here they can be suppressed by satiation. In this way, theab 8ymamically change its motivational
value. This property is also transferred to CSs if they haenkassociated to USs within AMG.
CEA. CEA has six input units and one output unit controlling VTApdminergic processes. All
internal connections are trained with the differential bBleble mentioned above, with the exception
of those carrying the information about the USs which aredfi¢anate’). This learning process
allows the formation of CS-CR associations (stimulus-oesg associations).

CEA component triggers the dopaminergic system throughsialdbition of the internal pop-
ulation of VTA. Thus this mechanism is able to maintain todapaminergic efflux upon baseline
through time. This dopamine is not sufficient to trigger teag within NAccC but at the same time it
is necessary to allow the BLA signal to VTA (via LH) to causepdmine-based learning (see 3.4.3).
Moreover, tonic dopamine acts as a multiplier of signalsnflLA to NAccC, so implementing a
‘vigor’ function (see Section 3.2 and 3.4.2).

The internal signals related to satiety modulate the UStinpiis of CEA similarly to what hap-
pens in the BLA, and so allow the modulation of its output.

The CEA receives input not only from external stimuli, buigaafrom the BLA. This allows BLA
to have access to the output of CEA (dopamine in this case).

3.4.2 The Striatocortical System

The VBG component is a simplified implementation of the bgsaiglia ‘GPR’ model proposed by
Gurney et al. (2001a,b). We implemented a three channabveo§the model consisting of the basal
ganglia ‘direct pathway’ (from NAccC to SNpr) and ‘indiregathway’ (STN to SNpr; cf. Kandel
et al., 2000). The three channels activate respectivelyttine-left’, ‘go ahead’, and ‘turn right’
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routines (see Section 3.3). As in the GPR model, the inpu&od€ is amplified by dopamine:

TnacccNACCC; = —nacce; +

Z [wblaiiﬂnaccci : blaj]'
J
(blnaccc + Wda—nacee da) (35)

wherebla; is the " output unit of BLA andyia; —nacee; 1S 1ts connection weight taaccc, blpacee
andwg, nacee are respectively a baseline and a multiplication coefficddéthe amplification effects
of dopamine on input. The amplification effects of dopamireeveery important as they are the means
through which CEA can cause approaching in the absence of BLA

Another important aspect of VBG is that the input signal itaiges from BLA is affected by
noise. This noise is generated in the form of a random numbgformly drawn in [0, 1] with a
probability of 0.05 at each step of the simulation, addecaitheVBG input signal received by BLA.
The connections from BLA to NAccC are trained on the basisheffollowing Hebb rule modulated
by dopamine:

Awblai —naccc; —

Tbla—nacce *

(Qb [da> gda] ’ (da - eda)) ’

(¢ [naccc;, Onaeee) - nacee;) - bla;-

(Hblaﬂnaccc - wblaianaccc]-) (36)

whereny, nacee 1S @ learning rated,, ... is a learning threshold for the activation of NAccC units,
andby,—nacce 1S a threshold for saturating the weights. Note that in thésming rule the information
related tonaccc; should be brought to the NAccC units by ACC-NAccC backwardreztions not
explicitly simulated in the model.

3.4.3 The Dopamine System

The dopaminergic activity in the model depends on the LH-\¢y8tem. VTA is formed by one input
and one output unit. The input unit is activated by CEA andhité the output unit. The output unit
receives also an excitatory input from LH and produces gsubtihe dopaminergic signals. Figure 3.3
shows an example of the overall functioning of VTA. The firsgh of the figure shows the negative
input received by the input unit from CEA. The second grapiwshthe excitatory input received by
the output unit from LH. The last two rows show respectivély activation of the input and output
units. It can be seen that the inhibition of the input uniuged by CEA) can augment dopaminergic
activity but never lead it over a certain threshold, e.g.essary to trigger learning of the dopamine
target areas. Similarly, an excitatory signal (from LH) ke toutput unit is not sufficient to lead
dopamine activity over the threshold when presented al®hes implies that both disinhibition and
excitation are needed for the dopamine signal to triggenieg.
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Figure 3.3. An ‘in-vitro’ test on the VTA responses.

3.5 Results

This section reports the outcome of the tests of the rat inthtfe® learning/training phases described
in Section 3.3.

During the pre-training phase, the rat initially randomipleres the maze arm where it is by
triggering sporadic actions under the effect of noise &figctNAccC. Motion is rather slow due to
the low levels of dopamine. Eventually this behaviour letidsrat to step on the food dispenser and
eat the food (US). The resulting dopaminergic signal leada @ form associations between the CS
seen-food unit and the with the output unit triggering th@icalopamine in VTA, and BLA to form
associations between the seen-food unit and the tasteufutsd Learning of BLA and CEA lead the
system to increase the frequency of selection of actiongfemduration of their execution: overall
the vigor of the rat seems increased when the rat sees the food

Figure 3.4 shows the activation of BLA caused by these legrprocesses. Notice how the
activation of the CS units cause an activation of the cooedmg US units.

During the training phase, the rat initially explores thgimnment and speeds up its action when
the food becomes in sight. This leads it to rapidly approaehfbod dispenser while the coloured
landmark of the arm is visible. Within CEA, this causes thafation of the associations between the
units encoding the seen landmarks and the output unit. kalpaBLA forms associations between
units encoding the seen landmarks and units encoding theasigl the taste of foods.

Figure 3.5 shows the connection weights formed during teeti@ining and training phases. No-
tice how the system has formed positive connection weigbts ICS units to US units and negative
weighs in the opposite direction thanks to the differerttiabb leaning rule.
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Figure 3.4: Example of activation of BLA during the pre-training phabatice the activation of the units in correspondence
to CSs and USs onsets.
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Figure 3.5. Learned connection weights of the system after the preitrgiand training phase. (a) BLA lateral-connection
weights. (b) CEA internal connection weights. (c) BLA-NAatonnection weights.

During the devaluation test the rat exhibits a tendency teewdth a higher frequency and vigor
towards the non-devalued food and the corresponding laridfRayure 3.6).

Figure 3.7 shows the activations of the striatocorticatesysduring the devaluation tests. The
figure shows how the sight of the landmarks of the non-dedafoed causes a higher chance of
selection of the go-ahead action, and hence a higher chdiappaching and eating such food.

Interestingly, the intercalated neurons revealed impoitathis phase as they prevented the CEA
from performing its non-selective effects on vigor (the @8ge access to the CEA output unit without
being affected by satiety). Indeed, setting low values efitthibition exerted by these neurons on
CEA produced much less pronounced devaluation effecta (dat reported).

3.6 Conclusions

This paper presented a bio-constrained model with the gogiving a coherent overall picture of
Pavlovian mechanisms underlying navigation behaviourse model architecture and functioning
was designed with a number of biological constrains in mingharticular in relation to the specific
brain areas which putatively correspond to its constitypamts: (a) one corresponding to amygdala
which learns Pavlovian associations between innateigrszdnd neutral stimuli; (b) another one cor-
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Figure 3.6. Number of contacts with the (empty) dispenser during thellewtion test in three conditions: with no devalu-
ation, with devaluation of food A, and with devaluation obtbB.

Figure 3.7. Example of activation in time of the components of the sbdattical system. Note how activations are always
biased toward the “go straight” action within NaccC and Saixers as far as no food is satiated. When food B is satiated
only the vision of landmark B produces the biasing.

(b)

Figure 3.8. A graphic representation of the movements of the agent gihia test phases. (a) movements when food A is
devalued. (b) movements when food B is devalued

responding to nucleus accumbens which selects navigattama; (c) and a last one corresponding to
lateral hypothalamus and ventral tegmental area resgderfsitgenerating dopamine learning signals
and vigor of action.

Preliminary results of the test of the model with autoshg@nd devaluation experiments, run
with a simulated rat, show that the behaviour exhibited lydfstem is qualitatively similar to the
behaviour exhibited by real rats in corresponding expemisie Together with the biological con-
straints imposed to the architecture and functioning oftieelel, these results furnish a first proof of
soundness of the hypotheses incorporated by the model.
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The importance of the model for autonomous robotics rediésat the investigated Pavlovian
mechanisms, although allow tackling only simple forms ofigation, might be relevant it for at least
two reasons. The first is that they allow very fast learnimgdsl of Pavlovian processes. The reason
of this is that they rely upon the formation of simple asstiaigs between biologically salient stimuli
and any relevant neutral stimuli associated with them. &lassociations allow transferring a complex
but readily-available behaviour (basically: ‘approachatwou are looking’) from the former ones to
the latter ones.

The second reason is that they add flexibility to behavioling reason is that Pavlovian mecha-
nisms allow internal body states to modulate the interralasentations of the stimuli through which
the navigation behaviours are triggered. For example, susthanisms allow a rat to navigate to-
wards the region where it expects to find a particular reso(say shelter), but not towards another
region where it expects to find a second resource (say arc&ital of food), depending on the current
needs for the two resources.

We are aware that much further work needs to be carried owgfteerthe model so that it can
account for all the biological constraints and behavioavadence reported in Section 3.2, especially
in a more quantitative and detailed way with respect to whaloine here. However, we believe that
the model proposed here is a fundamental starting step dievifais purpose.
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Chapter 4

The Role of the Amygdala in Second Order Conditioning: a
Computational Model

Abstract

The mechanisms underlying learning in classical conditigrexperiments play a key role in
many learning processes of real organisms. This paper ptese novel computational model
that incorporates a biologically plausible hypothesis be functions that the main nuclei of the
amygdala might play in first and second order classical cbading tasks. The model proposes
that in these experiments the first and second order comgiticstimuli (CS) are associated both
(a) with the unconditioned stimuli (US) within the basotateamygdala (BLA), and (b) directly
with the unconditioned responses (UR) through the conmestinking the lateral amygdala (LA)
to the central nucleus of amygdala (CeA). The model, emtddi@ simulated robotic rat, is
validated by reproducing the results of first and second oabsditioning experiments of both
sham-lesioned and BLA-lesioned real rats.

4.1 Introduction

Individual learning plays a fundamental role in adaptivldagor of organisms, especially in most
sophisticated ones like mammals. Some of the most impomachanisms underlying learning are
those studied in classical (Pavlovian) conditioning ekpents. In these experiments an animal ex-
periences a systematic association between a neutrallssipiar example a light (the “conditioned
stimulus” or “CS”), and a biologically salient stimulus,rfexample food (the “unconditioned stim-
ulus” or “US”), to which it tends to react with an innate setre§ponses appropriate for the US, for
example orienting and approaching (the “unconditionedaases” or “UR”). After repeated exposure
to couples of CS-US the animal produces the UR even if CS asepted alone.

Since Pavlov’'s pioneering works Pavlov (1927), a lot of aesk has addressed classical condi-
tioning phenomena producing a huge amount of behaviorahandal data Lieberman (1993). How-
ever, we still lack a comprehensive theory able to explaa fthl range of these empirical data.
Trying to build detailediologically plausiblecomputational models is a necessary step to overcome
this knowledge gap. The current most influential models assital conditioning, those based on
“temporal-difference reward prediction error” Schultzaét(1997); Sutton and Barto (1998) , suffer
of several limitations. The main reason is that they have loeseloped within the machine learning
framework with the aim of building artificial machines cafgabf autonomously learning to perform
actions useful for the user. For this reason they are seitabinvestigatenstrumental conditioning
phenomena — a type of associative learning based on stiraatiens associations — but less adequate
to explain Pavlovian phenomena mainly based on stimulasdkis associations Dayan and Balleine
(2002); O'Reilly et al. (2007).

A crucial question on classical conditioning regards thergeof the acquired association between
the CS and the UR: is this association direct (CS-UR), asdvavimself seemed to claim Pavlov
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(1927), or does it pass through the unconditioned stim@H{IS-UR), as Hull Hull (1943) suggested?
The long-lasting debate on this topic Lieberman (1993) sasww settled in favor of both hypotheses:
in fact, there is now strong empirical evidence supporthg ¢o-existence of both CS-UR and CS-
US associations Cardinal et al. (2002); Dayan and Ball&208Z%). However, a clear understanding
of the neural substrates which might be responsible foretites kinds of associations has yet to
be gained. In particular, none of the computational modéldassical conditioning based on the
temporal-difference mechanisms, nor the models which baem proposed as alternatives to them
Balkenius and Mden (1999, 2000); Dayan and Balleine (2002); O'Reilly et aD(7), make any
significant claim on this point.

Within the empirical literature, Cardinal et al. Cardinalad (2002) formulated an interesting
hypothesis on the neural basis of stimulus-stimulus andustis-response Pavlovian associations.
According to this hypothesis, the basolateral amygdalad)Bitores the CS-US associations, whereas
the central nucleus of amygdala (CeA) receives or storeS$1JR associations (CS-UR associations
encoded in the cerebellum Thompson et al. (2000) are notdznesl here).

This paper presents an original computational model implging that general hypothesis. In
particular, it represents the first working model specifyihe different functions played by the main
sub-nuclei of amygdala in classical conditioning. The nipe@bodied in a simulated robotic rat, is
validated by reproducing the results obtained with somé dinsl second order conditioning experi-
ments conducted with sham and BLA-lesioned real rats Hdtéieal. (1996).

Sect. 4.2 presents the target experiment and the simulapedimental setup. Sect. 4.3 describes
the model’s general functioning and the biological constsataken into account. The mathematical
details of the model are presented in the Appendix. Secthbws the results of the tests of the model
and compares them with those obtained with real rats. Firtadict. 4.5 concludes the paper.

4.2 The target experiment and the simulated environment

The model is validated by reproducing second-order candiig experiments on real rats (reported as
experiment 1ain Hatfield et al. (1996)). The real experinneg conducted with9 BLA-lesioned rats
and27 sham-lesioned rats, measuring the behaviours of walkingnting and “food-cup” (insertion
of head in the food dispenser). Namely, in the first phase bothps were trained fa§ sessions
lasting 64 min each to acquire a first order conditioned behaviour. Eacki@esvas formed by a
sequence of trials. In each triall@ sec light stimulus was presented, followed by the delivery of
Noyes pellets (food) in the food dispenser. Recordings sldawat both sham and lesioned rats were
able to acquire first order conditioned behaviours. In thmose phase the same rats were trained
for 3 sessions ofi4 min each to acquire a second order conditioned behaviour. A stinailus
was presented fal0 sec followed by the light stimulus; every trials a “reminder” of the light-food
association was presented. The key result was that only sltamacquired the second order CS-UR
association. In accordance with other empirical eviderises Cardinal et al. (2002) for a review),
these experiments suggest that BLA plays a fundamentalimalflee formation of the association
between the CS and the incentive value of the US, and thatafisigciation plays a key role in the
acquisition of the CS-UR association in second order caditg.

The real experiment was simulated through a robotic ratEA€m”) developed within the EU
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Figure 4.1 (a) A snapshot of the simulator, showing the simulated r&ietentre of the experimental chamber, the food
dispenser (at the rat’s right hand side), the light panehifibthe rat) and the tone panel (in front of the rat). (b) The
architecture of the model: bold and plain arrows indicatete and trained connections, respectively.

project ICEA on the basis of the physics 3D simulator WebtThe model was written in Matldh
and was interfaced with ICEAsim through a TCP/IP connectidihe robotic setup is shown in
Fig. 4.1. The environment is formed by a gray-walled chambed the stimuli are expressed by
3 panels (vision is used, as no sound is supported by Webais}t delivering in the dispenser oc-
curs when the green panel turns on, light when the yellow sranj and tone when the red one is
on. When one of those stimuli elicits an orienting respongkimthe controller (see Sect. 4.3), the
rat turns toward the panel and then approaches it (theseibehare hardwired). This behavioural
sequence terminates when the rat touches the food-dispémestsis assumed to correspond to a food-
cup behaviour). Although the “degree of embodiment andas#tiness” of the setup is rather limited,
nevertheless a robotic test was used because in the futysaweo scale the model to more realistic
scenarios (for example, the random-lasting time intergldpsing between rats’ orienting and food
deliver already started to challenge the robustness ofgb@céative learning algorithms used).

4.3 The model

This section presents a general description of the funictipaf the model and the biological con-
straints that it satisfies, while a detailed mathematicatdption of it (included all the equations) is
reported in the Appendix. A key feature of the model (Fig.)4slthe explicit representation of the
three major anatomical components of the amygdal&Rék et al. (2000): the lateral amygdala (LA),
the basolateral amygdala (BLA), and the central nucleuswigglala (CeA). The model assumes that
these components form two functional sub-systems: (1) kA sub-system, which forms S-R
associations, and (2) the BLA sub-system, which forms SsBaations. Note that in the following
“neurons” have to be intended as units whose functioningadtis the collective functioning of whole
assemblies of real neurons.
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4.3.1 The Stimulus-Response Associator (LA-CeA).

The LA is the main input of the amygdala system. It receivdsraft connections from various
sensory and associative areas of cortex, from thalamusfranddeeper regions within the brain-
stem, and it sends efferent connections both to BLA and to.C&& model has an input layer (INP)
of four leaky neuronsifip) activated by four binary sensokg (vhich encode the presence/absence of
four stimuli: light (s;;), tone §;,), food sight ¢ ¢,) and food tastes(;) (Eq. (4.1)). LA (a) is formed

by four leaky neurons receiving one-to-one afferent cotioss from INP (Eqg. (4.2)).

The CeA is one of the main output gates of amygdala. Its efferennections innervate regions
of the brainstem controlling mainly: (1) body and behavioeactions through the hypothalamus and
periaqueductal gray Phelps and LeDoux (2005); (2) the sel@d basic neuromodulators through
the ventral tegmental area (dopamine), the locus coer(tarepinephrine), and the raphe nuclei
(serotonin) Fudge and Emiliano (2003); Ritlen et al. (2000); Rosen (2004). These neuromodulators
play a fundamental role in learning processes but for suitplthis model considers only dopamine
LaLumiere et al. (2005) (in particular it ignores the rolatthorepinephrine plays in AMG learning
Berridge and Waterhouse (2003)). In the model Cedaj is formed by two leaky neurons, one
(ceaor) encoding the rat’s orienting behavior, and oaexf,) connected to the ventral tegmental area
(VTA) to produce the dopamine signald) (Egs. (4.4) and (4.5)).

In the model, all LA neurons are connected to the orientingrore of CeA ¢ea,,), Whereas
only the food taste neurorid;) is connected to the neuromodulator neuron of Ce#uf,). These
connectivity allows stimuli representations of LA to be adated with the orienting behaviour in
CeA but not with the dopamine neuromodulation. This is a kesuenption to explain why LA-CeA
associations can learn first order CS-US associations ligemond order ones: conditioned stimuli
cannot access the incentive value of rewarding stimuli.

The connections from LA to CeA are trained on the basis of abHeite. In particular, the
strengthening of connections takes place in the presenttead conditions (Eq. (4.6)): (1) a high
value of the trace of the LA activation onsé&i (tr): the use of th@nsetmakes learning happen only
when LA neurons’ activation precedes CeA neurons’ actvatiwhile the use of thérace allows
overcoming the time gap between CS and UR; (2) a high aativati CeA neuronsdea,,, andda);

(3) a dopamine leveldg) over its thresholdi. ).

4.3.2 The Stimulus-Stimulus Associator (BL).

The BLA has afferent connections from LA and efferent cotioes to CeA Rolls (2000); Saddoris
et al. (2005). BLA is also interconnected with the orbitoftal cortex and hippocampus, and sends
efferent connections to the nucleus accumbens: all thessections are ignored here (see Mannella
et al. (2007) for a model where BLA-nucleus accumbens cdiorecplay a key role).

In the model, BLA pla) is formed by four leaky units which receive one-to-one cariions from
LA (1a) and have all-to-all lateral connections (Eq. (4.7)). Qhly neuron encoding food tastéd;)
is connected to CeA neurons. This implies that all neuronBLoAA representing stimuli different
from the US §lay) can exert effects on the CeA output neurons only via lafadulus-stimulus
connections with the BLA'S US neuron.

Learning of BLA lateral connections is based on a time-ddpah Hebb algorithm. The key
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Figure 4.2, (a) Percentage of orienting behaviours of sham (S) andrledi@L) rats in response to the tone after second
order conditioning: data from real (first two bars) and siated rats (last two bars). (b) Stimuli, activations of keunoas,
and dopamine release in 3 conditions: first-order and seoahet conditioning phases of a sham rat (first and secorakblo
respectively), and second-order conditioning phase ofA-Bisioned rat. Trials are separated by short verticakdbthes;
thresholds (for orienting behavior and dopamine learnang)represented as gray horizontal dotted lines.
aspect of the algorithm is that it allows both the onset ardatifset of BLA neurons preceding the
onset of other BLA neurons to increase the connection fraenféhmer to the latter, provided that
dopamine overcomes its threshold (Egs. (4.8), (4.9), J4.Ilhe sensitivity to the offset of stimuli
was necessary due to the long duration of the CS stimuli, set &2 (cf. Mannella et al. (2007) for
a simpler version of the algorithm using only the onset oEpnaptic neurons).

4.4 Results

Figure 4.2a compares the percentage of times the tonesdiciorienting behaviour in real Hatfield

et al. (1996) and simulated rats after the second order tonitig phase. The main result of the

experiment has been qualitatively reproduced by the mdddboth real and simulated rats a BLA

lesion prevents second order conditioning to take place.afalysis of the detailed functioning of the
model provides an explanation for this result. Figure 4[2bns the activations of some key neurons
of: (1) a simulated sham rat during the first order conditignphase with the light-food contingency;

(2) the same sham rat during the second order conditioniagetvith the noise-light contingency;

(3) a simulated BLA-lesioned rat during the second ordeda@ning phase.

Figure 4.2b, first block, shows the mechanisms underlyirsg érder conditioning in a sham
simulated rat. At the beginning of the first trial, the apa@ae of light activates the light-related BLA
neuron pla;;). After a while, the appearance of food activates the fagtit$8LA neuron 6las,). The
blays pre-activates the BLA food-taste neurdidy;) before the rat actually reaches the food thanks
to ablass-bla ¢, excitatory connection which is assumed to be learned béfiereonditioning training
(see the Appendix). In turn, thiday, triggers both the orienting behavior via the orienting CeA
neuron ¢ea,,) and the release of dopaminéuj by the VTA via the CeA neuromodulation neuron.
The release of above-threshold dopamine triggers theifepof both the connection between the
light neuron in LA and the orienting neuron in CeA (impleniegtthe CS-UR association) and the
connections linking the light neuron with the food sight &oald taste neurons in BLA (implementing
the CS-US association). The result is that after a very fealstthebla ;, andbla s, neurons start to be
pre-activated as soon as the light is perceived. This eBufin early activation of both CeA neurons
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and, consequently, in an early dopamine release and anagaahting response to the light.

As in the target experiment, during the second order camiig phase the rats are exposed to
sequences of four trials composed by three tone-light ptaiens and one light-food “reminder”.
Thanks to the CS-US BLA association acquired during theginsise, in sham rats (Fig. 4.2b, second
block) the presentation of light immediately triggers botienting behavior and dopamine release.
This ability of light to trigger dopamine release permite ticquisition of the second-order associa-
tion between the tone and the URs (orienting response arahaap release) in a manner which is
completely analogous to what happens in the first-orderitonthg with respect to light.

On the other hand, second order conditioning cannot talee plaBLA-lesioned rats (Fig. 4.2b,
third block). The reason is that in this case light can trigmay the orienting response via the con-
nection linking the light representation in LA with the améeng neuron in CeA (the direct CS-UR
association), but not the dopamine release, which regthieeactivation of the food-taste representa-
tion in either BLA (which is lesioned) or LA (which is actived only when food is effectively eaten).
As a result, since synaptic modification depends on dopgmindearning can takes place during
second-order conditioning.

45 Conclusions

This paper presented an original computational model obéséc brain mechanisms underlying clas-
sical conditioning phenomena. The architecture and fanitp of the model was constrained on the
basis of neural empirical data on the amygdala. The funde@hassumption underlying the model
is that the association between conditioned stimuli (CS$l) amconditioned responses (UR) formed
in classical conditioning experiments is due to two related distinct mechanisms: (1) stimulus-
stimulus associations (CS-US-UR) involving unconditidsémuli (US) stored in the BLA; (2) direct
stimulus-response associations (CS-UR) stored in the EA-@eural pathway.

The model was embedded in a simulated robotic rat and wadatetl by reproducing the be-
haviours exhibited by both sham and BLA-lesioned rats irt &irsl second order conditioning ex-
perments. In particular, as in real rats, while after tragnihe simulated sham rats react with UR
(orienting) to both first and second order CS, BLA-lesioniedusated rats associate UR only to first
order CS, but not to second order CS. The model is able todapeoand explain these results thanks
to the fundamental aforementioned assumption. During dirdéer conditioning sham rats acquire
both the direct CS-UR and the indirect CS-US-UR associatibis the first order CS-US associa-
tion within BLA which permits the acquisition of the secondier association as it allows the CS
to reactivate the appetitive value of the US even when thedibsent. In contrast, BLA-lesioned
rats can acquire direct first order CS-UR associationsdtoréhe LA-CeA neural pathway but they
cannot acquire the second order association because therfles CS has not access to the appet-
itive value of the US. To the best of the authors knowledgss, ihthe first model to propose such
a specific computational hypothesis regarding the douldeciation CS-US and CS-UR in classical
conditioning.

Notwithstanding its strengths, the model suffers at least $ignificant limitations. First, the
whole behavioral sequence triggered by the activation®@btiienting neuron in CeA (orienting, ap-
proaching, and food-cup) is fully hard-wired. For this i@asthe model cannot reproduce the results
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on CeA-lesioned rats which are reported in the same artfdieecexperiment targeted here Hatfield
et al. (1996). Second, in contrast to most existing modelslaxsical conditioning Balkenius and

Morén (1999); Dayan and Balleine (2002); O'Reilly et al. (2QaGfg current model does not imple-

ment any mechanism for reproducing the exact timing of dipamelease observed in real animals.
For this reason the model cannot reproduce another fundahaspect of classical conditioning, that
is extinction (the ability to re-learn not to respond to the i€it stops to be followed by the US). We

are currently working on improved versions of the presendehor tackling both these limits.

Appendix: Mathematical details of the model

Throughout the Appendix;, denotes the decay rate of a leaky quantifyhe sub-index, denotes
the activation potential of the corresponding neuron, syIsX, x, andz are used respectively to
denote matrices, vectors and scalars, the functismdefined asp[x] = max|0, 2] and the function
x asx[z] =1if x > 0else x = 0. The values of parameters are listed at the end of the Appendi

LA-CeA: Functioning and Learning. INP (inp) processes the input signal from sensers-
(1, Sto, Stss Sf¢)" With a leak function:

Tinp - irip = —inp +s. 4.1
LA is formed by four leaky neurondd) activated as follows:
Tla * l;':lp = —la, + Winp la - inp, la = p[tanh[la,)] (4.2)

wherewinp 1a IS the fixed weight of the connections from IMP to LA. The “ddéeibeak” processing
of signals implemented by IMP and LA is used to smooth thevdévie of LA (see Eq. (4.3)).

The trace of LA neurond4_tr) is a leak function of the positive value of the derivativettodir
activation {a):

Tlatr * la;trp = —la_tr, + bjatr - 4,0[1;1] , la_tr = p[tanh[la_tr)]] (4.3)

whereby, ¢ is an amplification coefficient.
CeA is formed by two leaky neuroneda) activated as follows:

Teea - C€a, = —ceay + Wia cea - 18 + Wha cea - bla (4.4)

cea = p[tanh|cea,]|
VTA is formed by a dopamine leaky neuratu) which activates as follows:
Tda * dap = —dap + blgg + Weea da - CEA , da = p[tanh[da,] (4.5)

wherebl,, is the dopamine baseline.
The weights of the LA-CeA connection¥Vj, cea) are updated with a three-element Hebb rule



4.5. Conclusions 61

involving CeA, LA's trace and dopamine:
AVvla,cea = Ma,cea - (X[da - thda] : da) -cea- la—tr/ . (1 - ‘Wla,cea’) (46)

wheren, cea IS @ learning rate, the terifx|da — thy,] - da) implies that learning takes place only
whenda > thy,, and the ternjl — [Wy,,|) keeps the weights in the rangel, 1].

BLA: Functioning and Learning. BLA is formed by four leaky neuron®{a) activated as follows:

Thla - bla, = —bla, + Wy, - bla + (wia pla - 12 + cpla - 1a_tr) (4.7)
bla = p[tanh[bla,|]

wherecy, ¢, is an amplification coefficient. According to this equatiafith a transient constant input
signal the activation of a BLA neuron presents a high injiedk (due tda_tr) followed by a lower
constant value (due t@a) and then by a smooth descenbt{due to the leak after the signal end): this
activation has a derivative suitable for BLA learning (seéfw).

In order to train lateral connections of BLA, a trace of theidhive of the activation of BLA
neuronsbla_tr is computed as follows:

Thlatr - bla_tr, = —bla tr, + -bla. (4.8)

Small values of this trace are ignored in the learning atboriby considering the “cut trac&la_tr_cut
defined asbla_tr_cut = bla_trif |bla_tr| < thpatr else bla_tr_cut = 0. Given the activation
dynamics of BLA (Eq. (4.7)), the corresponding derivatigad, with some delay, its trace) presents:
(1) an initial peak at signal onset; (2) a negative peak aktitk of the signal onset; (3) a negative
peak at the signal offset. The key point of the learning atgor of BLA is that a connection between
two neurons is potentiated in coincidence of a negative pédke presynaptic neuron and a posi-
tive peak of the postsynaptic neuron. These two events maré-aynaptic-onset/post-synaptic-onset
sequence (or a pre-synaptic-offset/post-synaptic-arsgt The matrixS, reported below, captures
these conditions for all couples of neurons:

S = x[bla_tr_cut] - y[—bla_tr_cut]’ — y[—bla_tr_cut] - y[bla_tr_cut] . (4.9)

Denoting withpre andpost the presynaptic and postsynaptic neur@bas an entry equal tbwhen
bla_tr_copre < 0 andbla_tr_coposr > 0, equal to—1 whenbla_tr_cop,. < 0 andbla_tr_copest > 0,
and equal t@ otherwise. The learning rule of lateral connections is then

AWbla = Tlbla * X[da — thda]da . (ltpbla . (,O[S] + ltdbla . (,0[—5])(1 — ‘WblaD (410)

wheren,a is a learning ratéipy, is a long time potentiation coefficient, abhdl,, is a short term
depression coefficient.

Model's Parameters. The model's parameters were set as followg, = 7Tia = Tpbla = 500 ms,
Tlatr = Tblatr = 0000 ms, Teea = 100 ms, 74, = 50 ms, Winp,la = 10, bya_tr = 1000, Wia,bla =
0.5, cpla = 60, blge, = 0.3, thg, = 0.6, thiatr = 0.00001, Npla = 0.0005, Miacea = 0.15,
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ltppla = 1.0, ltdy1a = 0.3. Some connections, assumed to be innate or pre-learnedyuarped to 1

| 1171
= Wpla =1, cea,da — 17 ) a,cea — ) a,cea — .
(l earned) Wpt fs,ft W, .d ( 0) W] , 1111 Wbl , (l 11 1)

The model’s equations were integrated with the Euler methitiua 50 ms step.
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Chapter 5

Brain Mechanisms
underlying Learning of Habits and Goal-Driven Behaviour:
A Computational Model of Instrumental Devaluation

Abstract

This paper presents an embodied biologically-plausibled@ehonvestigating the relationships
existing between classical and instrumental conditionifigne architecture and functioning of
the model are constrained by anatomical and physiologicsuanptions drawn from the rel-
evant neuroscientific literature. The model is validatedsligcessfully reproducing the pri-
mary outcomes of instrumental-conditioning devaluatigmeziments conducted with normal and
amygdala-lesioned rats (amygdala is a nucleus of the bsdinibic system playing a key func-
tion in classical conditioning). These experiments aretipatarly important as they show how
the sensitivity to internal states (such as satiety) exéibby classical conditioning mechanisms
can transfer to behaviors acquired on the basis of instrumleconditioning mechanisms. The
work presented here is relevant for the behavioral and bisgiences as it based on a model,
constrained and validated at both the neural and behaviteaél, that indicates how internal
states might modulate learning and performance of rigiditsadn to produce the flexibility which
is typical of goal-directed behaviour. Moreover, the presgork is also relevant for autonomous
robotics as it starts to investigate how the use of soplattid motivational systems might allow
building robots that are capable of exhibiting some of theiffiéity of real organisms.

5.1 Introduction

The flexibility and capacity of adaptation of organisms t¢jsedepends on their learning capabilities.
For this reason, animal psychology has devoted great efforthe study of learning processes. In
particular, in the last century a huge body of empirical detee been collected around the two main
experimental paradigms of ‘classical conditioning’ (Léeiman, 1993; Pavlov, 1927) and ‘instrumen-
tal conditioning’ (Domjan, 2006; Skinner, 1938; Thorndik®11).

‘Classical conditioning’ refers to an experimental pagadiin which a certain basic behaviour
such as salivation or approaching (the ‘unconditionedarse’ — UR), which is linked to a biologi-
cally salient stimulus such as food ingestion (the ‘unctiaded stimulus’ — US), gets associated to a
neutral stimulus like the sound of a bell (the ‘conditionéichsllus’ — CS), after the neutral stimulus
is repeatedly presented before the appearance of thetsstlienlus. Such acquired associations are
briefly referred to as ‘CS-US’ or ‘CS-UR’ associations (Léelman, 1993; Pavlov, 1927).

‘Instrumental conditioning’ refers to an experimentalgadigm in which an animal, given a certain
stimulus/ contexts such as a lever in a cage (the ‘stimull&),4earns to produce a particular action
such as pressing the lever (the ‘response’ — R), which peslacertain outcome such as the opening
of the cage (the ‘action outcome’ — O), if this outcome is é¢stesitly accompanied by a reward such
as the access to food. In this case, the acquired assosiaterbriefly referred to as either ‘S-R’
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associations, when the reactive nature of the acquiredvimhras stressed, or ‘A-O’ associations,
when the goal-directed nature of behaviour is stressed [@@n2006; Skinner, 1938; Thorndike,
1911, see below).

This empirical work has been paralleled by the developmeithin the machine learning lit-
erature, of ‘reinforcement learning algorithms’ (SuttamdaBarto, 1998, 1981), that is algorithms
directed to provide machines with the capacity of learniag tehaviors on the basis of rewarding
stimuli (i.e. signals from the external environment thdbrm the machine about the achievement
of desired goals). Interestingly, reinforcement learnahgprithms have gained increasing interest
within the empirical literature on animal learning as thegnesent theoretical models that can poten-
tially furnish coherent explanations of organisms’ leagprocesses. Indeed, one of such models, the
so-called temporal-difference (TD) learning algorithecurrently considered as the best theoretical
account of several key empirical findings (Dayan and Badlg?©02; Schultz, 2002).

Notwithstanding their success, standard reinforcememhieg models suffer of several limita-
tions from a biological point of view. In particular, threétbe main drawbacks are as follows. First,
such models ignore the role of internal states (e.g. huegsilvs. satiety related to a certain type of
food) in modulating the effects of ‘external’ rewards (etlge receival of such a food). Such kind of
effects are demonstrated by organisms, for example, inaldation’ experiments in which animals
tend to change their reinforced behaviors in case the vdlaerewarding stimulus, such as a food,
is suddenly decreased through satiation or its associafitbnpoison. By ignoring the role of inter-
nal states in learning and behavior, current reinforcerfearning models can not account for such
effects.

Second, standard models tend to conflate the notions oficdhssnditioning (also called ‘Pav-
lovian conditioning’) and instrumental conditioning (@lsalled ‘operant conditioning’). On the con-
trary, accumulating empirical evidence indicates thagsilzal and instrumental conditioning are based
on different processes that rely on distinct neural systefmgthermore, such processes interplay
in complex ways (Dayan and Balleine, 2002), as demonstrdtedexample, by phenomena like
‘Pavlovian-Instrumental Transfer’ (where a conditionéchslus that is predictive of reward can en-
ergize the execution of instrumentally acquired behawpuand ‘incentive learning’ (where, under
certain conditions, the valence of an action’s outcome redak re learned to exert its effects on
behaviour).

Different brain mechanisms underlying operant and classial conditioning There is nowadays

a wide evidence that the amygdala (Amg - an almond shape @fawgclei within the temporal lobe,

part of the brain limbic system) is a main actor in classipaM{ovian) conditioning processes linking
CSs to both appetitive and negative USs (Baxter and Mur@822Cardinal et al., 2003). In particu-

lar, the basolateral complex of amygdala (BLA) is neces&arg CS to acquire the same rewarding
and motivational value of the US. When BLA is lesioned asstians between CSs and URs can still
be made, but the behavioural responses cannot be furtmsfdreed from a CS to another neutral
stimulus, second order associations between USs and O8sthes impeded (Hatfield et al., 1996).
Furthermore lesions of BLA disrupt an animal’s ability taekea CS linked to the current motivational
value of an US. When arat is presented with a stimulus, leysadight, associated with a food which
it was previously satiated or nauseated of, in normal camditthe animal diminishes its appetitive
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responses to the light as in the case it is presented withavedwkd food (conditioned devaluation).
Lesions to BLA disconnect the current value of the food U&fitbat of the light CS, leading to appet-
itive behaviours when the animal is presented with the C& &86-US conditioning and subsequent
US devaluation (Hatfield et al., 1996). In permitting secondier conditioning and conditioned de-
valuation behaviours, BLA processing is part of a complesoagtive system including orbitofrontal
cortex (OFC). In fact OFC has been showed to be highly intedravith BLA, being necessary for
second order associations in BLA to be correctly built (Saidet al., 2005; Schoenbaum et al.,
2003), and for long term mantainance of those associatiickd€ns et al., 2003).

When an association between a reinforcement or a punishamehéctions made to produce it
has to be learned, the role of the corticostriatal loops Imesoevident (Yin and Knowlton, 2006).
The striatum is the input portion of the basal ganglia, a §&rebrain subcortical nuclei playing an
important function in voluntary movement; in rats, theatuim can be divided in (Yin and Knowl-
ton, 2006): (1) dorsolateral striatum, mainly underlyingtor- execution functions (Romanelli et al.,
2005), (2) dorsomedial striatum, playing a role in motoegaration, attention and cognitive func-
tions (Lawrence et al., 2000), and (3) ventral striatum stdered an important interface (Mogenson
et al., 1980) between the motivational processes takimgeptathe limbic system and the motor pro-
cesses taking place within the rest of the basal gangliaartebc Each part of the striatum is reached
by a different set of cortical afferents, from motor and pogéon cortices (dorsolateral part) to asso-
ciative cortices (dorsomedial part) and prefrontal caitdistricts (ventral part). These cortical areas
receive themselves inputs from the correspective straa&ls, through afferents from the basal gan-
glia outout nuclei to the thalamus (Haber, 2003; Haber e28D0; McFarland and Haber, 2002). A
large set of data confirms that the dorsolateral striatunmtioad loops are necessary to form the S-R
associations underlying instrumental behaviours at thel lef motor reactions to stimuli (Yin and
Knowlton, 2006; Yin et al., 2004). These associations arméal through long sessions of trials and
errors, and, once learned, tend to be automatically retalfespecific stimuli in a fixed way, being
insensitive to expectations about future. The behavioomsrging through this kind of learning are
what we call ‘habits’. Ventral striatum, instead, seemsdbas an interface between the processing
of contingencies between actions and possible outcome3)(Aithin the ventromedial prefrontal
cortex, and the elaboration of the current motivationaligadf outcomes within the limbic system,
mainly Amg. This interaction between the A-O associativstasyn and the CS-US associative sys-
tem should be at the base of the devaluation behaviours,iftiegro the animal to switch between
outcomes to persecute, according with the current modimativalue of each outcome. Within this
theoretical framework, the A-O system is thought to guidenéng of the S-R mechanisms during the
initial phases of an instrumental training, then, oncerledr S-R associations could directly trigger
behaviours.

The role of ventral striatum as al limbic-motor interfacelirdes a set of functional properties. In
particular accumbal activation influences both generalaiectivation and goal selection in presence
of a stimulus carrying a motivational value. The internalisture of ventral striatum can be divided
in two areas: nucleus accumbens shell (NAccS) and nucleusrdiens core (NAccC) (Brauer et al.,
2000).

A direct contribution of the ventral striatum over instrumed behaviours goes through NAccC.
In fact, while lesions to NAccS doesn’t have any effect ovevaduation tasks, NAccC disruption
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abolishes devaluation behaviours in instrumental taskiagi to the task targeted in this paper (Corbit
et al., 2001) (see section 5.2). Moreover, animals with NAtesions are also impaired in second
order reinforcement tasks, where a CS (acquired instruatigrar through pavlovian conditioning)
is able to lead a subsequent instrumental learning (Ito.e2@04). Both instrumental devaluation
and second order reinforcement share the necessity for dhigational value to be transferred, in a
pavlovian way, from the US to a CS (being it the manipulanduthé devaluation task or the CS used
as a reinforcer in second order reinforcement). While tieevidence that BLA processing is also
necessary for instrumental devaluation to take place éBelet al., 2003), there is also evidence that
direct interactions between BLA and NAccC underlie theighib resolve second order reinforcement
tasks (Di Ciano and Everitt, 2004). Activation by BLA influsas the processing of the striato-cortical
loop including NAccC and prelimbic cortex (PL) (Gorelovadaviang, 1997; Zahm, 2000). While
doing so, it also lead to modulation of the activation of tleesdmedial striatal-cortical loop and
finally of the dorsolateral striatal-cortical loop, botta\gtriatonigrostriatal spiral projections (Haber
et al., 2000), cortico-thalamo-cortical projections (Mdand and Haber, 2002) and cortico-cortical
reentrant connections , (Haber, 2003), thus linking théaation of goal selection to the action
selection mechanisms.

NAccS, instead, seems to be responsible of phenomena suphwavian - to - instrumental
transfert’, in which a CS, previously associated with an &f$)ances activation when presented dur-
ing an instrumental task where the reinforcer is differegotf that of the conditioning procedure
(US") (Corbit et al., 2001). This property should emergenira particular efferent pathway of this
area, that includes a strong output to ventral tegmenta @r&A), both directly and through the
ventral pallidum, the pedunculopontine tegmental nuc{&&T) and the lateral hypothalamus (LH)
(Usuda et al., 1998; Zahm, 2000). Together with a strongexiteprojetion from VTA itself (Voorn
et al., 1986), this pathway should exert a major influenceheroterall modulation of dopaminergic
activation and, through this, on dopamine-dependent seoi®uy activation. Following this over-
all schema, BLA - NAccC pathway should be a direct channeugh which pavlovian associative
mechanisms exert their influence over reinforcement legrmermitting devaluation behaviours in
instrumental tasks.

Therefore devaluation instrumental paradigms reveal thdéest framework to start overcoming
the three limits of standard reinforcement learning alfpons discussed in the previous section, for
through them 1) the necessity for an elaboration of the ratitimal value throught the internal states
of the organism is revealed, 2) the interaction betweengpéath and instrumental learning processes
can be analyzed and 3) an hypothesis can be drawn aboutatiemdletween habits and goal-directed
behaviours.

This paper presents a novel computational model which @gty rooted in the anatomy and
physiology of the mammal brain and starts to address thelseks of current reinforcement learn-
ing models within the biological framework illustrated aeo(a preliminary version of the model
was presented in Mannella et al., 2007). In particular, tloelehreproduces the results of an em-
pirical experiment (Balleine et al., 2003) which demonsisahe phenomenon devaluationin an
instrumental conditioning task and proposes a coheretiingi@bout the discussed possible neural
mechanisms underlying it. The model is based on the follgviimdamental hypotheses discussed
previously:
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1. theamygdalaconstitutes the CS-US associator at the core of Pavloviadittoning phenom-
ena;

2. thecortex-dorsolateral striaturpathway, forming S-R associations, constitutes the matior ac
involved in instrumental conditioning;

3. thecortex-ventral striatunpathway, forming A-O associations, constitutes the matorao-
volved in goal selection processes and planning;

4. theamygdala-ventral striaturpathway ‘bridges’ classical conditioning processes hajpygein
the amygdala and instrumental processes taking place ivetbed ganglia.

By reproducing the basic results of both normal and lesiogatxithe model provides significant
evidence for these three fundamental hypotheses and, mpatantly, it contributes to clarify the
relationships existing between the neural structures amcegses underlying them.

5.2 The target experiment and the simulated environment

The model presented here was tested within an embodiedsysteause, as mentioned in the intro-
duction, one of the long-term goal of this research is tocboibdels that are based on sound anatom-
ical and physiological neuroscientific evidence and thahatsame time are capable salingto
function in realistic robotic setups. Although we are awthad the role of the ‘degree of embodiment
and situatedness’ of the model and simulations presented$eather limited (e.g. the sensors and
actuators used are rather simplified, low-level behavioeshardwired, etc.), nevertheless the use of
a robotic test forced us to design a model potentially capaibkope with the difficulties posed by
more realistic setups. For example, the randomly variabtattbn of the trials, actions’ execution,
and rewarding effects posed interesting challenges tooiastness of the learning algorithms of the
model.

The model was tested with a simulated robotic rat (‘ICEA3id€veloped within the EU project
ICEA on the basis of the physics 3D simulator Welb¥tsThe model was written in Matldlf and
was interfaced with ICEAsim through a TCP/IP connectione Tobotic setup used to test the model
is shown in Figure 5.1 and it is now briefly described skippimglevant details. The training and
test environment is composed by a grey-walled chamber icomdga yellow lever, a red chain, and a
food-dispenser that turns green or blue when respectioelgt A or food B is delivered in it. When
‘pressed’ or ‘pulled’, the lever and chain make respecyiiebd A or B (the rewarding stimuli)
available at the dispenser.

The simulated rat is a two-wheel robot equipped with varieeigsors. Among these, the exper-
iments reported here use two cameras (furnishing a panorad@ degrees view) and the whisker
sensors. The rat uses the cameras to detect the lever, tineacttbthe food dispenser, in particular
their presence/absence (via their color) and their (egdcgmlirection. The rat uses the whiskers,
activated with one if bent beyond a certain threshold and a#rerwise, to detect contacts with ob-
stacles. The rat is also endowed wiithernal sensors related to satiety for either food A or B (these
sensors assume the value of one when the rat is satiatedeemndtherwise). The rat’s actuators are
two motors that can independently control the speed of tlenrteels.
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Figure 5.1 Left: A snapshot of the simulator, showing the simulatedatathe center of the experimental chamber, the
food dispenser (behind the rat), the lever (at the rat'sheftd side) and the chain (at the rat’s right hand side). Ribte
architecture of the model.

The information fed to the model is only related to the preséabsence of the lever and chain in
the test chamber and food A and food B in mouth, whereas ttex atformation is used to control
a number low-level hardwired behavioral routines. Thesgimes, triggered either by the model or
directly by stimuli, are as follows: (1) ‘obstacle avoidenmutine’: this routine, triggered by the
whiskers, ‘overwrites’ all other actions to avoid obstaclE2 and 3) ‘lever press routine’ and ‘chain
pull routine’; these routines, activated by the model, eatle rat to approach the lever/chain on
the basis of their visually detected direction; when thetéhain are touched they activate the food
delivery in the dispenser; (4) ‘consummatory routine’: whbe dispenser turns green or blue (this
signals the presence of food in it), the rat approaches amh&s it (‘consummation’ of the food) so
causing the perception of either food A or food B in mouth; tiwgtine ends after the rat touches the
dispenser ten times.

The devaluation experiment is divided in a training phaskteo test phases. The training phase
lasts 16 mins and the two test phases 4 mins each. Each pligeésl in trials that end either when
the rat executes the correct action and consumes the fodftieoraal5 s timeout. In each trial the
rat is set in the middle of the chamber with an orientatiordcemly set between the lever and the
chain direction. In the trials of the training-phase eittier lever and food A or the chain and food
B are used in an alternate fashion and the rat is always ‘lyufttpe two satiation sensors are set to
0). In the two test phases, the rat is respectively satiatbdrevith food A (the satiation sensors for
food A and B are respectively set to one and zero) or with foothRll trials of the two test phases
both manipulanda are present and the rat is evaluated in extin@tie. without delivery of food).
The experiment (the three phases) was run 20 times withsioried’ artificial rats and 20 times with
‘lesioned’ rats.

5.3 The Model

The model’s input component is formed by three vectors ofsuactivated by the sensors illustrated
in Section 5.2. First, a vectorl = (v1jeper, V1enain)’ Of two units, corresponding to the primary
visual cortex (V1), encodes the presence/absence of tke d&d the chain in a 0/1 binary fashion.
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Second, a vectotl = (t1tp044,t1t00an) Of two units, corresponding to the primary taste cortex
within the insular cortex (T1 Verhagen et al., 2004), ensotte presence/absence of food A and
food B in the rat’'s mouth in a 0/1 binary fashion. Finally, &t ic = (icfeoda, iCfoodn)’ Of tWO
units, corresponding to both the processing by insulaegdiC; Yeterian and Pandya, 1995) and the
elaboration made by hypothalamus (Hyp; King, 2006), ensdlde non-satiation/satiation for food A
and food B again in a 0/1 binary fashion. Inputs freth are further processed within a vecforof
two leaky units, corresponding to the inferotemporal cof¥eterian and Pandya, 1995):

Tyt - it, = —it, + v1 (5.1)

it = p[tanhlity)]

whereit, encodes the activation potential of IT units, asld] is part of IT units transfer function (if
z < 0theny|z] = 0, elseyp[z] = x).

The model (Figure 5.1) is formed by three major sub-systéa)saa S-S associator, corresponding
to BLA; (b) a static S-R action selector, corresponding to the cortico-doteddd striatal pathway
passing through IT, DLS, entopeduncular nucleus of basallga(EP), and premotor cortex (PMC);
(c) adynamicS-S-R associator, corresponding to the cortico-ventrigtat pathway passing through
Amg, ventral striatum (VS), in particular to the nucleusw@aobens core (NAccC), ventral pallidum
(VP), and prelimbic cortex (PL). Note that ‘static’ and ‘dymic’ terms are used here to refer re-
spectively to associators which do not or which do implenaassciations which can be modulated
on-the-fly by internal states. Now the three sub-systemprasented in detail.

5.3.1 The Amygdala, an S-S Associator, and the Dopamine Leang Signal

The S-S associator implements Pavlovian conditioninguiiindhe association between CSs and USs
(‘stimulus substitution’). In real brains this role seembé played by BLA (Baxter and Murray, 2002;
Cardinal et al., 2003). There are massive reciprocal cdiomexbetween BLA and several brain areas,
including inferotemporal cortex (IT), prefrontal corteRKC), and hippocampus (Hip) (McDonald,
1998; Pitkanen et al., 2000; Price, 2003; Rolls, 2005). Furthermok#, Eceives inputs from insular
cortex (IC), Hypothalamus (Hyp) and posterior intralaminaclei of thalamus (PIL) (McDonald,
1998; Pitkanen et al., 2000; Shi and Davis, 1999). These connecticterlim an interplay between
processes related to perceived or represented exterrtaktand stimuli (IT, PFC, Hip) and processes
related to internal states (IC, Hyp, PIL). In general, BLAndae seen as playing the function of
assigning a “subjective valence” (i.e. a mark of biologiegdevance) to external previously-neutral
events on the basis of the animal’s internal states (needsvations, etc.), and to use this to both
regulate learning processes and directly influence behavio

The S-S model's associator, considered to abstract theepses taking place in the BLA, per-
forms ‘asynchronous learning/synchronous functionirggagiations. First, the associator associates
between them asynchronous stimuli perceived at differergs (namely, it associates CSs with USs):
this associative learning takes place only if USs cause amdope (DA) release (see below). Then,
once the association is established, CSs are able to symisly re-activate the USs’ representations
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in BLA.
Mathematically, the associator is composed by a veblar = (blajeyer, blachain, bla fooda,-
bla.oqp)’ Of four laterally-connected leaky units that process tipeiirsignals as follows:

Thla - bla, = —bla,+ (5.2)
Wit _pia - it + Wi _pq - t1+
Wic—tia - ic + Wy, - bla

bla = ¢[tanh[bla,]]

wherebla, are the activation potentials of BLA unit8V;;_;, is the matrix of connection weights
between IT and BLAW,,_y, is the matrix of connection weights between T1 and BMX;._ ., IS
the matrix of connection weights between IC and BLA, aNg,, is the matrix of all-to-all lateral con-
nection weights within BLA. Note that while external stimplay the function of input signals to the
model, internal stimulmodulatethe internal representations of external stimuli. In gautr,ic rooqp
andicy,,qp assume a value of either zero or one when the correspondiaj@ais respectively low
or high, and this activation inhibits the hedonic interregdnresentation of such foods within BLA via
inhibitory connections (see Section 5.3.3). This assungt supported by evidence indicating that
a similar computation is performed in the secondary tagtasaof the prefrontal/insular cortex which
are connected to BLA (Rolls, 2005). This part of the modelagtipularly important because, as we
shall see, it mediates the influence of the shifts of primaoyivations on both learning and behaviour.

The associator’s learning is based on ¢msetof input signals, detected as follows. First, ‘leaky
traces'tr of the derivative obla, bla, trunked to positive values, are computed:

Ter - tr = —tr + Cpra - ap[bia] (5.3)

whereCp.4 is a coefficient used to amplify the small signdla. Second, the derivatives of the
elements oftr are computed. Notice that when positive these derivatieteatl the onset of the
original signals, whereas when negative they detect thetiat some time elapsed since such onset
took place.

The weights between BLAs units are updated on the basiseosigns oftr and the DA signal
(see below). In particular, when (and only when) the deixieabf the presynaptic unit’s trace is
negative and the derivative of the postsynaptic unit'saragositive (i.e. when the presynaptic unit
fires beforethe postsynaptic unit) the related connection is stremgtie Instead, when (and only
when) the derivative of the presynaptic unit’s trace is fiesiand the derivative of the postsynaptic
unit's trace is negative (i.e. when the presynaptic unitsfatter the postsynaptic unit) the related
connection is weakened. This condition is encoded, foralptes of units, in the Boolean matrx
each element of this matrix is equal to + 1 for synapses torbagthened and equal to -1 for synapses
to be weakened. Formally, the rule used to update weight$ AkBateral connections is as follows:
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AWy, = Nyia - plda — thg,) - L (5.4)
(1= |Wyql)

whereny,, is a learning rate coefficienin is the dopamine signal, arid,, is a threshold over which
dopamine elicits learning.

DA release (corresponding to activation of the ventral tegtal area, VTA, and in the substantia
nigra pars compacta, SNpc) is triggered by BLA through it#suiia r,,q4 andblas..qp Which is-
sue signals to the dopamine unit of VTA/SNpc through corinastwhich are an abstraction of the
connections going from BLA to Hyp and hence to the VTA (Peithwet al., 2002,?). Notice that,
thanks to these unlearned connections, BLA uiliig,.;4 andbla y,,qp come to represent the ‘hedo-
nic impact of food’, that is internal representations ofdatrectly causing the DA signals underlying
learning (as simulated here) and motivation (not represkimére). DA release is also triggered by the
‘primary reward signals’ (which is signals associated msti which cause DA learning signals via
unlearned connections) received from the pedunculopetgigmental nucleus (PPT) denotedhas
(ppt = t1f00a4 + tl1o0an) (Kobayashi and Okada, 2007; Pan and Hyland, 2005). Spaityfithe
DA signal is computed as follows:

Tdayp * dap = _dap + dapgselinet (55)
Whla—da * (blafA + blafB)—i-

Wppt—da * ppt

da = pltanh|day)|

DA not only drives learning taking place within the BLA (Ediom 5.4) but it also drives learning
involving the two action selectors pivoting respectivetytbhe DLS (see Section 5.3.2, Equation 5.9)
and NAccC (see Section 5.3.3,Equation 5.13).However, thattealthough here the choice of DA as
a unique signal underlying learning in all the three brastesns was done for simplicity and because
it was not in contrast with neuroscientific evidence, nanephrine (NE) might alternatively or com-
plementarily drive associative learning in BLA, as suggddiy some empirical evidence (Mcintyre
et al., 2002). Indeed, at least in some cases DA might not thedsto drive learning in BLA. In
fact, BLA is known to implement associations between néstiauli and both positive andegative
stimuli whilst DA seems to be mainly involved in signallingnsuli with positive valence (citeShultz,
getting formal) whereas stimuli with negative valence tendause its depression (citepaper on pinch;
depression might be useful for active avoidance learning).

Note that in the experiments reported in Section 5.4 thetessof rats’ BLA were simulated by
clumping the BLA units at a zero activation.

5.3.2 The Dorsolateral Corticostriatocortical Pathway: AStatic S-R Action Selector

The static action selector learns ‘habits’, that is rigiR @ssociations, through reinforcement learning
processes. In real brains, this function might be implemiy the corticostriatal loops involving
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in particular the DLS and premotor cortex (PMC) or motor errfMC) (Yin and Knowlton, 2006;
here for simplicity only PMC will be considered). At the indavel, this sub-system receives signals
from IT, feedback input signals from PMC, and modulation Dgnals from VS (see Section 5.3.3).
At the output level, represented by the PMC, the sub-sysietts the actions to be executed (e.g.,
lever-press or chain-pull).

In the model this component is formed by four layers of unitsceled in four vectors: (a) a leaky-
unit layerit corresponding to IT;(b) a non-leaky unit laydls = (diseper, dlSchain) cOrresponding
to DLS and encoding the total signals in favour of the execubf the two actions (‘votes’);(c) a
leaky-unit layerep = (epiever; €Pchain)’ COrresponding to the EP, formed by reciprocally inhibiting
units which implement a competition in order to select onéheftwo actions (this is an abstraction
of the selective function which in real brains might be inmpénted by the re-entrant thalamo-cortical
connections, Dayan and Balleine, 2002);(d) a layaic = (pmciever, PMcenain)’ cOrresponding to
PMC, representing the selected action with a 0/1 binary &tmte that some of these notations are
mainly aimed at understanding the model architecture. itiquaar, the implementation of dorsolat-
eral basal ganglia presented here is focused on the ovenallibnality of selection via competition
more than on the its detailed micro-architecture (for a nameurate computational model of basal
ganglia, see Gurney et al., 2001a, Gurney et al., 2001b, antpHries et al., 2006).

IT is connected through all-to-all connections to DLS. DIo®ri-leaky) units receive the signals
from IT, together with the feedbacks from PMC, which can bautih of as ‘votes’ in favour of the
selection of either one of the two actions. Importantlysthgotes are modulated by NAccC activa-
tion naccc (see Equation 5.10) which should be considered an abstnagtithe striatonigrostriatal
connections (seeSection 5.3.3 and 5.1; the way of repiiagghe modulatory effect of DA used here
is as in Humphries et al. (2006)):

dls, = (W;;_qs) - it + pmc + naccc)- (5.6)

(1 + Chacee - nacce)

dls = p[tanh[dls, + dlspaseiine]]

The selection of actions is performed on the basis of theseswhrough a competition taking
place between the leaky units of EP:

Tep - €P, = —€p,, + C¢p - dls+ (5.7)
€Ppaseline T Nep + Wep - €p

ep = g[tanh[ep,)|]

whereCy, is a coefficient scaling the DLS votesp,,,..;.. IS @ baseline activatiom,,, is a noise
vector with components uniformly drawn [r-n.,, +n¢,], and W, are the EP lateral connection
weights.

When one of the EP units overcomes an activation threstiglg., the corresponding unit of
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PMC is set to one (otherwise PMC units are kept at zero) anddlresponding action is executed.
PMC ’s activation is also influenced by the activation of Plitsipl (see Equation 5.12):

pmc = ¢[(ep + pl) — thme] (5.8)

wherey[z] is the step function (i < 0 theny[z] = 0, elsey[z] = 1). Once the execution of the
routine corresponding to the selected action termindtessannection weights between IT and DLS,
W _a1s, are modified according to the DA signal (this is null in thee#he wrong action is selected):

AWt ais = Nit—dis - lda — thyg] - dls - it/ (5.9)

wheren;; 4, 1S a learning coefficient. Note that here PMC's feedback t& M essential to allow the
Hebbian produddlls - it’ to strengthen the connection weights between correlatimyik and actions
in the presence of DA.

5.3.3 The ventral Corticostriatocortical Pathway: A Dynamic S-R Action Selector

The dynamic action selector learns (S-)S-R associatiomaidfin a reinforcement learning process
that exploits the information encoded in the BLA's S-S assians (e.g., the ‘lever-hedonic value
of food A" association). In real brains this function migh# bnplemented by the neural pathway
connecting the BLA nuclei of BLA to the ventral striatum, iarficular to the portion of it called
nucleus accumbens core (NAccC; see Corbit et al., 2001 axigBand Murray, 2002). This pathway
sends signals (‘votes’) to VP which then seled¢sired statesia the prelimbic cortex (PL). These
‘desired states’ are the potential outcomes of actiongiémntodel ‘food A with hunger-for-food-A
expected after execution of a lever-press action’ and ‘Boalith hunger-for-food-B expected after
execution of a chain-pull action’. As we shall see below,f&sé outcomes can participate to trigger
the execution of specific actions in the DLS (habit) pathwag, BLA- NAccC-DLS can be said to
implement inverted O-A relations which allow desired omes (i.e. USs) elicited by CSs in BLA,
to contribute to select actions at the level of the habit watheither biasing the DLS competition
via the BLA-NAccC-DLS pathway or by ‘overwriting’ the actioselection in PMC via the BLA-
NAccC-VP-PL-PMC pathway.

In the model, the BLA-NAccC neural pathway is implementedabyall-to-all connection matrix
Wiia—nacee liNking the BLA's hedonic representations of food (hereated asla,; = (bl fooda, blafooan)’),
to the NAccC (non-leaky) units. Similarly to DLS and PMC, N also receives re-entrant input
signals from PL (these signals play an important role inéarihing, see below):

naccc, = Wyq_nacee - blays + pl (5.10)

naccc = p[tanh[naccc, + nacccpgseiinel]

NAccC units play a function similar to DLS units for EP in thhey represent ‘votes’ that bias
the competition taking place between the VP leaky-unit¢suand directed to select one ‘desired



5.4. Results 74

outcome’:

Top - VP, = —VP, + Cyp - nacce+ (5.11)
VPpaseline T Dvp + W’UP "Vp

vp = p[tanh[vp,]]

whereC,,, is a coefficient scaling the votesp,,..;;,.. iS @ baseline activation of VR,,, is a noise
vector with components uniformly drawn [an.,,, +n.,] W, are the EP lateral connection weights.

When one of the VP units reaches the activation threstigjdthe corresponding desired outcome
is activated in PL (as PMC, PL has binary activations):

pl = ¢[(vp + pmc) — thy] (5.12)

Note that PL activation is also influenced by PMC activatgmnc: this signal has a very im-
portant function for updating BLA-NAccC connection weiglats it can carry the information related
to the executed action, represented in PMC, to the expectiedroes, represented in PL, and then
backward to the NAccC which can then form suitable assamiativith the representations of BLA. In
particular, similarly to IT-DLS connections, BLA-NAccC nnectionsW ;, _ n.ccc @re modified after
action execution on the basis of the DA-dependent Hebbiarimuolving the activations of BLA and
NAccC (on its turn influenced by the re-entrant signals frdoy P

Avala—naccc = Mbla—naccc * Sﬁ[da - thda]’ (513)

(bla,s - naccc)

Wheren yi,—nacec) IS @ l€arning rate coefficient.

The importance of the BLA-NAccC dynamic action selectoides in the fact that its ‘votes’ for
the various actions can be modulatuthe-flyby the organism’s motivational states, in particular
by satiety for either one of the two foods. In general, thishamisms opens’ up the possibility for
the motivational-sensitive Pavlovian system (mainly tHeABn the model) to exert a direct effect
on actions without the need to pass through re-learninggsses, as it will be exemplified by the
devaluation experiments illustrated in the next section.

5.4 Results

This section describes the basic functioning of the modeherbasis of Figures 5.2 and 5.4. The
figures show the activations of various units related to ¢verl (data related to the chain are omitted
as qualitatively similar) during both the training ( 5.2)datlesting phases ( 5.4) of an experiment run
with a non-lesioned simulated rat. ( 5.4) also shows the/atibins of the same units in the two test
phases for rats with three kind of lesions.

At the beginning of the training phase, the baseline adtimatof DLS and NAccC dlsjcyer
nacccley), together with noise, are sufficient to occasionally teigtipe execution of an action{ce,)
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by the competition taking place in PM@r.c;.e). When the behavioral routine corresponding to the
selected action is appropriate for the environment cordigpm (‘lever press’ in the presence of lever),
the dispenser becomes yellow, the rat approaches it andiw@ssthe corresponding foosl{,q4).
The food consumption activates the internal hedonic remtesion of food in BLA la y,q4) and
hence the units in VTA/SNpc with the consequent release offDBLS. This drives the learning of
the dorsal corticostriatal instrumental pathway.

lever N N R RN R e N R N N N R R RN R N g e )]
chain NN N e R R N e N N R R RN R R RN RN RNy
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Figure 5.2 Activations of some key units of a non- lesioned rat during titaining phase; Trials are separated by short
vertical lines.

The effect of these events is that after a few learning ttledsmodel learns to reliably and fast
perform the action which is appropriate to the current cxnfehe progress of learning can be seenin
terms of: (a) the increase of DLS’s votes for the press leggo@ (dls;..¢,-) in the trials in which the
lever is present; (b) the increase of the regularity of trekpef the food A amygdala unitl( rooq4);

(c) the DA release in VTA-SNpa{a — S Npc).

When instrumental S-R associations begin form due to ingnial learning, the vision of the
neutral stimuli of the levers(.,.,, bla;.,) starts to be reliably followed, within a relatively small
time interval, by the food perception (,,44) and the consequent DA releask). This contingency
and the DA signal allow the Pavlovian learning taking pladthiw BLA to ‘take off’ and form S-

S associations between the lever and BLAs food A repretienta This is evident from the fact
that after a few successful trials th&:;,,q4 Unit's activation not only show a peak when the food
A is delivered but are also pre- activated by the presencheofaver: this reveals that a Pavlovian
association is being acquired between the conditionedisisr{lever) and the unconditioned stimulus
(food). The pre-activation of th&as,.q4 unit due to the perception of the conditioned stimulus is
responsible for the early DA releade which anticipates the future delivery of reward: this mimic
an important well-known phenomenon observed in real asif@thultz, 2002).

The last important learning process takes place in the Bl&&dC pathway. The rat’s consump-
tion of food A activates both the BLA's hedonic represemtabf it (bla r,,q44) and, via the VTA/SNpc,
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which results in a strong DA signal. This creates a strong@ason between the hedonic represen-
tation of food and the last executed action. The key poing ieethat once the S-S associations are
formed in the BLA, conditioned stimuli such as the lever a@gger the activation of the BLA's hedo-
nic representation of the related food and, via these, infle®UT's action selection via NAccC. This
is shown by the fact that, after some training, NAccC startse activated and to vote for the correct
actions fuacceeer). The importance of the formation of this Stimuli-BLA-NAGEM pathway resides
in the fact that it constitutes the fundamental bridge betwthe the Pavlovian processes happening in
the amygdala and the instrumental processes happening maal ganglia pathway (cortex—dorsal
striatum— putamen-thalamus—frontal cortex). We arguetttis pathway plays a central role in the
flexibility demonstrated by real organisms. In particuiles through this pathway that instant motiva-
tional manipulations that characterize Pavlovian cooditig are able to affect instrumentally learned
behaviors, as in the devaluation experiments now illustrat

During the two test phases, the satiety of respectively #bat B are kept at one, i.e. at their
maximum level (the other satiety level is kept at zero). Tdteety for a food causes a strong inhibition
to the BLA's hedonic representation of such food. As a consage both the direct consumption of
that food and the perception of the conditioned stimulusiptesly associated with it cannot elicit the
related BLA's hedonic reaction. This is shown by the lacklaf;,,q4’s activation during the second
test phase when the rat is satiated with food A. The perceotidoth the lever and the chain leads
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Figure 5.3 Activations of some key units in four test phases. Each b&mkws a test phase where satiation for food B

was induced. The first block shows activations in a rat withasions (SHAM). The second block shows activations in a

rat where a lesion to the BLA component was produced befaeréining session. The third block shows activations in

a rat where connections between NAccC and DLS (SPIRALS) westroyed before trainning. The fourth block shows

activations in a rat where connections from PL to PMC (PL-BMeEre lesioned before training. Trials are separated by
short vertical lines.

PUT to ‘vote’ for both the lever press and chain pull actiohsha same time. This rules out the
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influences of the S-R instrumental pathway on action selectilote that this experimental condition
was precisely designed by Balleine et al. (2003) to stop ffezts of habits that would otherwise
‘mask’ the motivation-sensitive Pavlovian influence oni@ttelection. On the other hand, satiation
stops only one of the two influences of the BLA-NAccC pathwayaotion selection in that it inhibits
only the amygdala representation of the conditioned stisiwlhich has been satiated (compare the
naccceer activation in the two test phases). The fact that the BLA-BlBgathway ‘votes’ only
for the action associated with the non-satiated food brdaksymmetry and makes the related action
reliably win the competition in PM (compare theicie.e andm,,,, activations in the two test phases).
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Figure 5.4. Means of responses to lever during tests where rats weréuéelar not for food B (left bars), compared with
means of responses of BLA- lesioned rats in the same tegtd @ars). Rats with BLA lesions (BLA), lesions of NAccC
(NAccC), lesions of PL (PL), or no lesions (SHAM) are compar8tandard errors and total responses are also shown

The comparison between the lesioned and non-lesionedtamml{see Figure 5.4) reproduces the
basic finding of the target experiment of Balleine et al. 20nhd confirms the aforementioned inter-
pretation of the devaluation tests: as it happens in reg) aliesion to the BLA pathway linking the
amygdala to the NAccC prevents the devaluation of food framirig any effect on the action selection
process. More in particular, during the four minutes of tesi-lesioned (SHAM) rats perform the ac-
tion associated to the non-devalued (ND) food 21.3 times/erege whereas they perform the action
associated to the devalued (D) food 8.8 times on average{10.2203, df = 39, p—value < 0.001).

On the contrary, BLA-lesioned (BLA) rats select actionsd@amly: the averages of performed ac-

tions associated with the non-devalued and the devaluatsface respectively 15.325 and 14.375
(t =—-0.772,df = 39,p—wvalue > 0.05). Furthermore the findings of Corbit et al. (2001) and Corbit
and Balleine (2003) about lesions of NAccC an PL on instrudestevaluation are also confirmed

(see Fig. 5.4).

Lesions to NAccC or PL prevents in simulated as in real raggguts the devaluation of food from
having any effect on the action selection process.Durirgftlur minutes of test, NAccC-lesioned
(NAccC) rats select actions randomly: the averages of pmd actions associated with the non-
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devalued and the devalued foods are respectively 15.45 40 ¥ = —1.3746,df = 39,p —
value > 0.05). Also PL-lesioned (PL) rats select actions randomly: therages of performed
actions associated with the non-devalued and the devabastsfare respectively 12.65 and 12.55
(t = —0.1701,df = 39, p — value > 0.05).

These results show the plausibility of the hypothesis foictvithe BLA-NAccC pathway bridges
the Pavlovian processes happening in the amygdala withngteumental processes happening in
the cortex-basal ganglia pathway, so allowing the curratesf animals’ motivational systems to
modulateon the flytheir action selection mechanisms.

Input

Light Tone Food A Food B

Light Tnput Input

Light Tone Food A Food B Light Tone

Light Chain

Output
Output
Output

Food A Tone

Food B

(a) (b) (c)
Figure 5.5 In (a), (b) and (c) the maps of weights of learned connectiwittsin the model are showed. White and black
squares respectively correspond to positive and nega8ights. The areas of squares are proportional to the absallites
of the corresponding weights. (a) shows weights conneetlihgnits within BLA. (b) shows weights of the connection
between BLA and NAccC. (c) shows weights of the connectiawéen IT and DLS.

5.5 Conclusions and Future Work

This paper presented an embodied model of some importaattare$ existing between Pavlovian
and instrumental conditioning. The model’s architecturd unctioning was constrained with rele-
vant neuroscientific knowledge on the brain anatomy andiplogy. The model was validated by
successfully reproducing the primary outcomes of someungntal conditioning devaluation tests
conducted with normal and amygdala-lesioned rats. Thesedee particularly important for studying
the Pavlovian- instrumental interplay as they show how émsgivity to motivational states exhibited
by the Pavlovian system can transfer to instrumentally meduehaviors.

To the best of the authors’ knowledge, the model represaat§irst attempt to propose a com-
prehensive interpretation of the aforementioned phenarrtested in an embodied model. The works
most closely related to this one are those of Armony et aPT).9ayan and Balleine (2002), Men
and Balkenius (2000), and O’Reilly et al. (2007). The modebkgnted here differs from these works
in that it proposes an embodied model (absent in all mendioesearches), presents a fully developed
model (Dayan and Balleine, 2002, presented only a ‘sketanedel), and tackles the issue of the
relations existing between Pavlovian and instrumentatitmming (Armony et al., 1997, M@n and
Balkenius, 2000, and O'Reilly et al., 2007, focussed onlyramlovian conditioning).
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Notwithstanding the proposed model has these severabsti®rit will be improved along many
directions in future work.The first limit of the work is thdi¢ model was tested with an embodied
system where input signals were heavily pre-processeddbfing fed into the model in the form of
‘localistic representations’ (one neuron-one objecty] amere actions could be specified at a rather
abstract level by relying on hardwired low-level behavigraitines. In the future the whole model,
or some of its parts (e. g. the amygdala component), will betewith more challenging embodied
systems where the model will be fed with realistic distrédzliinput patterns (e.g., the activations of
retina’s pixels) and will be required to issue low-level motommands (e.g., the desired displace-
ment and turning speed).Second, the model has severaltioms with respect to available biological
evidence. For example, it does not learn to inhibit the ddparsignal at the onset of the USs if
these are preceded by CSs, as it happens in real organismgtgS€002). This prevents the model
from performing ‘extinction’ (i.e., to un-learn a clasdicanditioning association or an instrumen-
tal response if these are not followed anymore by a reward)ftamm stopping the weights’ update.
In future work, the model will be added this capability by wiag ideas from other works, for ex-
ample O’Reilly et al. (2007). Moreover, the model cannotroejice classical- conditioning based
modulation of thevigor with which instrumental actions are performed (Niv et a0®&), nor it is
capable of triggering innate actions on the basis of classionditioning (e.g. approaching an US,
or approaching a CS after this has been associated to an Wankad Balleine, 2002). Finally,
the model assumes that the selection ofactions takes pldue wremotor cortex. However, there is
strong evidence (Redgrave et al., 1999) that in real braitisraselection takes place at the level of
the DLS itself, and so PM activations might only reflect suelestion without causing it (cf. Cisek,
2007). This possibility, however, opens up the problem @f e NAccC might influence such action
selection, as requested for the Pavlovian processes toaxarfluence on instrumental processes. In
this respect, an interesting neural pathway through witichinfluence might be implemented are the
striato-nigro- striatal connections (or ‘dopaminergicais’; Haber et al., 2000). These topics will be
addressed in future work.

Notwithstanding these limitations, the proposed modetasgnts an important step in the con-
struction of an integrated picture on how animals’ motiwaél systems can both drive instrumental
learning and directly regulate behavior. Constructinghsapicture is of paramount importance from
the scientific point of view as psychology and neuroscierasemow amassed a large body of evi-
dence and knowledge on the phenomena investigated herb whidd greatly benefit of theoretical
systematization. As mentioned in Sect. 5.1, although theps has mainly a scientific relevance,
the research agenda of the work presented here has alsoéigdoreerest for overcoming the limited
autonomy of current robots. In fact, a way to tackle thesésiia to attempt to understand the mecha-
nisms underlying organisms’ behavioural flexibility so asise them in designing robot’s controllers.
In this respect, notwithstanding the motivational and eomatl regulation of behavior is very impor-
tant for behavioural flexibility, it has been almost comelgiverlooked by autonomous robotics. For
this reason Parisi (2004) has advocated the need of annlitBobotics’ research agenda dedicated
to the study of these processes.In line with this, recentighine learning and robotics communi-
ties have been devoting increasing efforts to the study wfremmous learning by trying to improve
the standard reinforcement learning algorithms mentianegect. 5.1 on the basis of ideas coming
from the study of real organisms (Weng et al., 2001; ZlataVBalkenius, 2001). In this respect, the
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investigations on emotional regulation of learning andawébur in animals, such as those reported
here, are expected to produce important insights on pesséw principles and techniques to be used
to design more powerful learning algorithms exhibiting grée of autonomy similar to that of real
organisms (see Barto et al., 2004, and Schembri et al., 200&yo examples of this).



Chapter 6

Conclusions

The approach of all work described in this thesis consistegimploying tools from computational
neuroscience in order to explain data acquired by psychadizal research on emotions and motiva-
tions and to furnish a strong operational theoretical fraor& to interpret them.

The achievements of the research presented in the thesisecgrouped into two areas. First,
an operational hypothesis was given on the functional pseE®taking place within amygdala and
their interactions with the other functional brain systdmscollecting the neuroscientific data and
analyzing it through “computational” lens (see chaptetS8cond, this theoretic framework was used
to build computational models of some of the systems cetditeneamygdala processing. The use of
computational models allowed furnishing specific compatet! hypotheses aboutl)how different
associative learning mechanisms are implemented witkiatmygdaloid system2) how such mech-
anisms elicit the activation of unlearned responses tortliea@ment, 8) how such mechanisms bias
cognitive processes of choice and decision making . Speuifidels were developed in chapters 3),
4), and 5 to investigate all these processes.

Specifically, the model presented in chapter 3 explains hawloRian mechanism add flexibility
to unlearned behaviours, allowing internal body states taolutate the internal representations of
the stimuli through which the cue-guided navigation bebar{one of the most important unlearned
behaviours) is triggered. Such mechanisms allow a rat tmatvtowards a region of space where it
expects to find a particular resource, but not towards anogiggon where it expects to find a second
resource, depending on the current needs for the two resUfarthermore, the model shows the role
these Pavlovian mechanisms in focusing attention. Biasiaghavigation behaviours, the Pavlovian
mechanisms within amygdala contribute to bring under tloeigamf attention specific portions of the
world depending on internal needs. The importance of th&riborte of this chapter resides in that the
specific mechanisms underlying unlearned navigation hehesare not yet fully understood.

The model presented in chapter 4 about internal associBéveovian mechanisms implements
the hypothesis that the association between conditiorigalist(CS) and unconditioned responses
(UR) formed in classical conditioning experiments is dugvto related but distinct mechanisms:
(1) stimulus-stimulus associations (CS-US-UR) involvimgconditioned stimuli (US) stored in the
BLA,; (2) direct stimulus-response associations (CS-URBjest in the LA-CeA neural pathway. The
importance of this investigation resides in the fact that blations between these two associative
processes and their location within amygdala is not yey futiderstood.

The model described in chapter 5 about the interaction ltviRaviovian mechanisms imple-
mented within the amygdala and cognitive processes impieedewithin striatocortical loops fur-
nishes a computational hypothesis on how Pavlovian meshmncan bias instrumental actions in
order to produce goal-directed behaviour. The novelty ©f ithvestigation resides in the fact that,
although much data has been furnished on goal-directed/tmeing, habit behaviours, and Pavlovian
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processes, an overall picture of their relations is emgrginly now and computational models can
greatly help this synthesis effort.

Future work related to this research will include an ingsgiion in three directions. First, an
exploration on the very nature of the reward signal: is itej@ally determined? Is it built, at least
in part, during the first stages of life? Second an analysth@imechanisms that, starting from the
processing of incentive salience, produce both plastidityeural populations leading to learning and
amplification of the general activity of the agent. Thirdptmeural subsystems should be investigated
at a lower computational level: on one side, the system diefuthe basolateral complex of amygdala,
the orbitofrontal cortex, their strict interconnectiomgldhe relationship with the associative learning
features of amygdala; on the other side, the mechanism ddiynéhe heavily reentrant connections
existing between the medial complex of amygdala and thereemdial hypothalamus, that could
underly the very mechanisms of modulation of the incentae®.

The embodiment of simulations should also be improved s alieve a more realistic re-
production of the environment, the body of the subjects efttiget experiments and the interactions
between them. Furthermore, the sensory processing ofrthéated organisms should be improved in
order to face situations in which learning occurs in the @nese of stimuli with partially overlapping
features.



Appendix A

Neural networks

A.1 Natural and artificial neural networks

Artificial neural networks can be considered as simplyfiediet® which capture the essence of the
functioning of the brain, and, more generally, of the nessgystem. The basic, fundamental units
of the nervous system aneurons special types of cells capable of trasmitting elettrioghals. The
number of neurons in the human brain is ablt-10'2, and each neuron is connected to abiddt
10* other neurons. There are a number of different kinds of merout there is a general structure
that underly all of them (except for a few rare subtypes ofraeusuch as analog neurons in the
mammalian retina). This structure can be divided in foutgaramely the dendrites, the soma, the
and the axon. The electrical signal emmitted by neurons atedcaction potentials or spikes and
are constituted by rapid, binary, electical impulses pgapgmostly through axons. When the action
potential reaches the end of the axon, it triggers the earissi some chemicals, called neurotrans-
mitters, which are released in the space between the axothardiendrite of another neuron, the
synaptic cleft (the synapses are regions where neuronarected). The neurotrasmitters bind to
the receptors of the post-synaptic neuron and cause, thr@gbain of events, either the depolariza-
tion or the hyperpolarization of the membrane of the recgjvieuron. A depolarization corresponds
to an excitation in that it favors the emission of a spike im plost-synaptic neuron, while a hyperpo-
larization corresponds to an inhibition in that it opposi&ksgmission. Changes in the polarization
of the neurons propagate passively from the dendrites todhdoody, where their effects are inte-
grated. If at the origin of the axon the depolarization resch certain threshold, an action potential
is generated. After the spike, there is a brief refractomyookin which the neuron is slightly hyper-
polarized and cannot generate another action potentiaa(fietailed account, see Kandel, Schwartz,
and Jessel, 2000). Generally speaking, an artificial newtalork is a collection of artificial neurons,
units or nodes, linked to each other by connection weighterd are several classes of neural models,
that simulate neurons and neural networks at any scale ahdany level of sophistication: from the
detailed models of single neurons that simulate the effeicparticular chemicals on ionic channels
(which are the mechanisms through which the membran patertanges), to neural networks con-
sisting of several thousand of abstract, idealized neyffonan overview, see Floreano and Mattiussi,
1996).

Classical connectionist neural models (McClelland and &bart, 1986) represent the state of
a neuronat any given moment by its activation, which cowadgo the average firing rate of a real
neuron. Connection weights are represented by real nuntha&r£orresponds to the number and
strength of synapses between two neurons. Weights carhee pdsitive, corresponding to excitatory
synapses, or negative, corresponding to inhibitory syempé neuron’s activity is a function of the
sum of the excitatory and inhibitory inputs that comes frdhother neurons connected to it. The
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Figure A.1. Some examples of neurons’ activation functions. Lingat: x. Step: Sigmoid (or logistic)y = #
Hyperbolic tangenty = tanh(z).

value of each excitation or inhibition arriving to a (pogtiaptic) neuron through a connection is in
turn calculated by multiplying the activity of the pre-syia neuron by the weight of the connection
that link the two neurons. The sum of these contributionsliked activation potential. Formally, at
any given moment, the activatias of a given neuron is given by the following formula:

a; = (O wijay)
wherew;; is the connection weight that connect tjg neuron, with activation;, to neuron,
and f(z) is the so called activation function, which determines hioe/rieuron reacts to stimulation.
There are a number of possible activation functions, somehath are depicted in figure A.1.
A class of more realistic models take into account the natlgeay of the potential leading to the
activation of neurons during time. Eagtth unit is defined by a potentialgiven by a linear ordinary
differential equation called leaky integrator (Amari, I98ee):

i =-pi+ 1+ wif (p))
J
wherer is the decaying rate of the unit,is the external inputy;; is the value of the connection
weight from thej-th unit to thei-th unit andf (w;;p;) is a function of the sum of the inputs from
other units, the activation of each utfi{p;) being defined, for example, as:

0 if p<0
a; = .
‘ tanh p; if p; >0

The units of these models (commonly known as dynamic “firiaig” or “population rate” models
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Figure A.2: an example of the activation of a firing-rate unit (black Jireresponse to an input (green line).

(Amari, 1977; Gerstner and Kistler, 2002b)) are intende@present the mean activity of populations
(or fields) of real neurons (see Fig. A.2).

Models of the activity of neurons can be even more sophistiallowing the reproduction of
the spiking activation of single neurons. One way of doirig the “integrate-and-fire” neuron model
(Gerstner and Kistler, 2002b), built adding a threshalgto the amplitude of a leaky-integrator func-
tion. When the potentigl gets over the threshold the activation of the neuron is sé$ tmaximum
and the potentigh is reset to a valuexin, under its baseline (see Fig. A.3):

0 if p; <0
a; = § tanhp; if p; > 0andp; < th,
thy if p; >=th,
) b p < thy
bi= miny if p; >=thy,

Other more complex neuron models can reproduce the compleaviors of different types of
neurons through compact dynamic systems (e.g. Izhikegi@®¢) or taking into account the interac-
tions between the internal ionic currents (the Hodgkin-ldwxmodel and its derivated, see Gerstner
and Kistler (2002b)).

All simulations within this thesis are based on populatioindi-rate models. This level of abstrac-
tion has been chosen because the research presented hegd timexploration of neural substrates
of behaviour at a system level. This perspective impliesdlasses of constraintsi)(first, the tech-
nical difficulties to be faced in order to model each of theg@rcomponents of the studied systems,
would go beyond the scope of our study. For example, by faligva more detailed approach the
onset activation of units within the models of amygdala enésd here (see sections 4.3, 3.4 and 5.3)
should be reduced to the real interactions between singl®ns that produce that behaviol?) Sec-
ond, the computational power needed to implement the mgaetented here at the level of spiking
neurons should not allow us to analyze the properties ofritieesystem within a reasonable research
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I

Figure A.3: An example of the activation of a integrate-and-fire unia@line) in response to an input (green line). The
red line indicates a leaky-integrator function of the inpabdelling the summation of all synaptic currents.

time .Furthermore, some of the issues to be faced at theesirggiron level of modeling could reveal

to be independent, that’s our hope, from their abstractiohealevel of populations. Again, the onset
activation of the units within amygdala can be a good exaraglihe solution that can be found by re-
producing it with spiking neurons does not seem to depenti®syinchronization between the spikes
of different populations, but on the changes in the meargfirates of neurons (data not shown).

A.2 Learning algorithms

The way a neural network responds to inputs depends on (@jcitstecture and (b), the connection
weights. If some of the weights of a given neural network &@nged, then its behavior will change.
A fundamental feature of neural networks is their capaatjetrn, that is, their capacity to adjust
connection weights in such a way that the overall behavits lgetter (according to some criterién)
A number of learning algorithms have been developed in teedliure. Here we will focus on one
family of them, the hebbian learning models.

In his most-famous bookhe Organization of BehavipDonald Hebb proposed a possible rule for
synaptic modification according to whichWhen an axon of cell A is near enough to excite cell B and
repeatedly or persistently takes part in firing it, some dgioprocess or metabolic change takes place
in one or both cells such that A’s efficiency, as one of thesdiglhg B, is increaset(Hebb, 1949).

In the connectionist research is termed the Hebb(ian) ndedtas often paraphrased as “Neurons that
fire together wire together”, In mathematical terms:

iji = )\xiyj y (Al)

The change in connection weights of a neural network coomdpto the increase or decrease of the number of synap-
tic connection (and their efficacy) that happens betweendwmected neurons of the real brain due to brain activity.
These changes are the mechanisms that underlie brainfcitlashat is, the capacity of brain to continually adaptiew
circumstances.
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whereAw;; represents the change of the weight that connects ngunatih neuroni, z; andy;
are the activations of neuromsand j, respectively, and is the learning rate, typically a number in
the rang€g01] which determines the rate of change of the connection. Itisreelation learning rule:
concurrent activation of neurons strengthen the connedtedween them. It has been proven (see
Linsker, 1988) that this rule is a maximizer of the outputasace, and plays an important role as an
abstract input-output mapping in information- theory.

Such a setup has been largely used in the early formulatibnewral networks to deal with
problems where no desired target is a- priori known (unsuged learning). Self- organization of
activations of neurons have been studied mainly with a fazushe capacity of such networks to
perform pattern associations. Indeed, using the basic idelarning rule (A.1) it is sufficient that
the set of inputs are mutually orthogonal to let a standandlsilayered architecture with a linear
activation function (perceptron) a good associator. Byhg mutual orthogonality of input patterns
may be biologically implausible, as well as mathematicalfyprovable. Extreme interference (and
subsequent growth blow-up) may occur whenever noisy, agpihg or incomplete stimuli are pre-
sented since changes are accumulated all over the traihemep Therefore, the network may not be
able to learn associations. This limitation of Hebbian &y can be overcome by modifying both
the learning rule and the architecture of the network itself

The learning rule (A.1) can be modified in different ways. Mathatically speaking, the learning
rule (A.1) may be seen as a simplified form of a general law

Awj; = F(wj;, x4, y5) (A.2)

whereF is a suitable function (see Gerstner and Kistler, 2002&straightforward way to control
the dangerous effects of unbounded growth is to plug in tiradita a “forgetting” or “memory decay”
term:

iji = )\a:iyj — Nwyj; (A3)

wheren is the decay factor. On the other hand (A.3) forces every ection to collapse to a null
baseline when the input is absent.

Another way of control divergence is to assume a normabmatiThat may be physiologically
motivated by the boundedness of some factors involved isythaptic competition (such as the num-
ber of receptor molecules, the surface area of the postigmapmbrane or the energy resources). In
this case we have the following discrete formulation

wj; + ATy
\/ > (wjk + Azky;)*

in such a way that the Euclidean norm of the weights is sétdo each time step.
Another Hebbian rule named after Oja (see Oja, 1982) is diyen

iji = — Wy4 (A4)

iji = )\yj (l‘l — ijji) (A5)

In this case, if the input sequence is regarded as a stoclpastiess, then the output is able to extract



A.2. Learning algorithms 88

the statistically most significant factor. That is, it canre&ated with a statistical technique called
principal component analysis (PCA) or “Karhunenélve feature extraction”.

The sign postulated by the initial conjecture may be switctee— as well. That is the case of
anti-Hebbian rule:

AU)]‘Z' = —)\.Tiyj (A6)

introduced (see #ldiak, 1990; Lisman, 1989) to describe the dynamics of exaifadad inhibitory
(EXIN) networks. Indeed, adding lateral inhibitions makies inhibitory component of the network
beeing capable of minimizing cross-correlations and detating associated output activations. That

capacity improves the competition between nodes(see Mirg®95; Spratling and Johnson, 2002)
2

A.2.1 Differential Hebbian Learning
Spike Timing Dependent Plasticity

Spike timing of neurons plays an important role in the syggasticity, as recent studies and tech-
nologies have proven (see Abbott and Nelson, 2000; Capanal®an, 2008). Firstly, the sequential
order of spikes plays an important role: presynaptic spiteseding postsynaptic spikes or postsy-
naptic spikes preceding presynaptic spikes (knowgvas pre or pre-post spiking, respectively) may
trigger quite different effects.

Pioneer studies on the hippocampus shown ghatpost spiking causes long-term potentiation
(LTP) of the synapse (see Bliss and Gardner-Medwin, 1978sBind Legmo, 1973; McNaughton,
2003). Similar results have been found in neocortical a(eas Artola and Singer, 1987), in the
amygdala (see Chapman, Kairiss, Keenan, and Brown, 198@n€t and LeDoux, 1990), and in the
midbrain reward circuit (see Liu, Pu, and Poo, 2005). In thie of experiments LTP was obtained
by either the lonely high- frequency stimulation (HFS) a# firesynaptic neuron or by low-frequency
stimulation (LFS) with large (overshoot) postsynapticaapzation.

In the inverse situation, in which inputs signals followdgetr spiking, a long-term depression
(LTD) has been observed. Such a behavior was observed indappus (see Debanneal@wiler,
and Thompson, 1994; Dudek and Bear, 1992), in neuromus(sdarDan and Poo, 1992). In this
type of experiments LPD was obtained by either the lonely-fi@guency stimulation (LFS) of the
presynaptic neuron or by pairing it with small (undersh@m3tsynaptic depolarization.

Currently many of the cellular mechanisms that are involwdd P have been unveiled. The main
responsible components are shown to be the postsynaptietNyhD-aspartate (NMDA) receptors,
which are are highly sensitive to the membrane potentiaé ©@uheir high permeability for calcium,

2If a Taylor expansion of the general Hebbian rule (A.2) issidared (with respect to the learning rataroundo) we
have the following relation

Awj; = co(wyi)+
A (wji)y; + & (wyi)wit
A (wyi)y;” + B (wio)a® + 57 (wya)way; (A7)
which contains all the modifications presented above, iftinetionscy, (w;;) are set in a suitable way (= 0, ..., 2 is the
degree of the ternyre stands fopresynaptic, post stands fopostsynaptic, andcorr stands for theorrelation).
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they generate a local chemical signal that is largest whebalek-propagating action potential (BAP)
in the dendrite arrives shortly after the synapse was agtive-post spiking). Large postsynaptic
calcium transients are known to trigger LTP. The mechanimnbTD is less well understood, but is
thought to involve inactivation of ion channels.

The temporal difference between the offset of the presynajgnal and the onset of the postsy-
naptic one, that is the length of interstimulus interval)|8as been recently shown to be crucial for
associative plasticity (see Levy and Steward, 1983). Mareohe timing sensitivities are on the order
of milliseconds, that is only a fixed temporal window lets apgtic plasticity to occur. The studies of
spike timing dependent plasticity (STDP) have initiallgfised on the changes in synaptic potentials
and activations of neurons, rather than analyzing the r@leltemical mechanisms underlying those
behaviours. STDP was firstly detected in neurons in the mémc@arkram, lilbke, Frotscher, and
Sakmann, 1997). Dual patch clamping techniques were usegétitively activate pre-synaptic neu-
rons10 milliseconds before the postsynaptic target neurons, lamdttength of the synapse turned out
to increase. When the activation order was reversed soltbgiresynaptic neuron was activated
milliseconds after its postsynaptic target neuron, thengfth of thepre-to-post synaptic connection
decreased. The phenomenon was observed later in the demelfBEell, Han, Sugawara, and Grant,
1997) and in various other preparations, with a lot of vaiet in the time-window and the shape of
the curve of plasticity with respect to the spiking timing.

STDP may be seen a differential Hebbian learning becauspl#isticity processes underlying
registrations in all these studies depend on temporalrdifiee between changes of the presynaptic
signal and changes of the postsynaptic one.

Models of differential hebbian learning

The Hebbian rule (A.1) and its modifications model the effycaicsynaptic transmission (known as
synaptic plasticity) in such a way that if the presynaptitvation persistently concur to cause the
postsynaptic target neuron to increase its activatiorr thaiaptic efficiency is modified (increased
in the plain rule) in the long run. Following the very sameaaéle proposed by Hebb'’s conjecture,
rather than concurrent levels of activations, concurréainges of activations underlie the learning
mechanism (see Klopf, 1986; Kosko, 1986). Modelling Hebbé&arning in terms of variations fits
more realistically with the contingency features requetftelearning to take place in animals. Thatis
straightforward in classical conditioning, where the féag of asynchronous signals (the conditioned
and the unconditioned one) has to be achieved (see SuttdBaatw] 1981, 1990; Sutton, Barto, and
Watkins, 1989).

Mathematically speaking, the differential Hebbian ruleresponding to the standard Hebbian
rule (A.1) is given by:

Awj; = ozjy; (A.8)

where the derivatives replaces the activations. It turrigtmat differential Hebbian rule is a covari-
ancé learning rather than a correlation learning (Choi, 2003&)0and it is related to the problem

3Sejnowski and Tesauro (1989) have suggested a learningnasteed “covariance” rule, of the formw,; =

n (zi —Ti) (y; — Y;), With its pre-synaptic versionAw;; = nx; (y; —¥;), and its post-synaptic versiomw;; =
n (z; — T;) y; wherez; andy, represent the mean activations of the umitsandy;, respectively. The use of those rules
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of independent component analysis (ICA).
Another interesting approach is the isotropic sequencerdi®&O) learning, whose differential
learning rule follows:

Awj; = nry; (A.9)

whereyg is the derivative of the output signal (whose activatiorction is linear), anct; is the traced
input, that is decaying trace of the input signal (see Podr\Afrgotter, 2003; Vibrgotter and Porr,
2005). The trace is important in order to define a time windoewhich an output signal is eligible
for learning.

A general differential Hebbian learning rule can be consde

Awpost pre = Oa [upre/] * [upos,] * +0p [upre,] " [upos/] 4+
oy [upre']” fupost’] " + 05 [upre’] ™ [wpost']” + (A.10)
TlaUpre [upOS/] * + T3 Upre [Upos/] o+

Ty [upre/] - Upost T 15 [Upre/] B Upost

where the coefficients’s refer to the products between derivatives (the subingldeaotes the signs
of the parts considered) and the coefficiemtsrefer to the mixed products between a signal and a
derivative. Since for any functiofithe basic relatiorf = [f]™—[f]~ holds, (A.10) is a generalization
of the previous ones, sincedf, = —o3 = —0, = 05 = 0, A = 0 andn’s are also null the Kosko
learning rule is obtained, while if the's are null,A = 0, n, = s = 0 andn, = —ng’s the ISO
learning rule is obtained:;

This general rule can be parametrized to obtain differehbieurs. In figure A.2.1 three ex-
amples are shown. On the left, column A shows a comparisomeeet registrations of changes in
the amplitude of EPSPs at several time differences betwiggials, made on a slice culture from
rat visual cortex (top figure) (Froemke and Dan, 2002) andctiteesponding curve of variation of
weights in the model suitably parametrized. Column B, atcietre, shows another study done on
slice cultures taken from rat hippocampus (Nishiyama, Hd#tigoshiba, Poo, and Kato, 2000) and
the correspondent curve from the model. Finally, column@ws registrations from different cells in
the rat hippocampus (Woodin, Ganguly, and Poo, 2003) anddirespondent data from the model.

This family of learning rules can be used within spiking r@umodels given that,,., andu,s
values correspond to the currents at the level of the prggiyneleft (u,,.,) and at the level of the
postsynaptic dendrite. Furthermore it can be used withpufation firing-rate models, given that
units have an onset-dependent activation with habituafidrs kind of activation can be achieved by
computing the unit activation with the following system eéky integrators (see fig. A.2.1):

guarantees that the weights do not increase indefinitebedimey will decrease every time the activation of the semdin
receiving neurons is lower than usual (pre- and post- synages, respectively), or the differences between themaeal
the present activations of the two neurons are of differigmt €o-variation rule). Though not as powerful as otherlesy

rules, all those variations of the Hebb rule are interegtimcause they can be viewed in the framework of differentabh
being within the framework of the Taylor expansion (A.7).
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Figure A.4: examples of modelling STDP data with the use of the learnirig A.10, choosing suitable values of the
coefficients. On the top, data from three studies on diffecelis from different cerebral regions are shown. On thédoot
the corresponding data taken from simulations (see texteferences)

Figure A.5. The onset-dependent activation described by A.11 is showifack. The green line defines the input signal.

—Pint +1
—Dout + [_pint + I]+

TPint =

Tp out

(A.11)

This is the way in which differential Hebbian learning is netetl within the amygdala component
in all models described in the thesis.



Appendix B

Acronyms

Table B.1 presents all the acronyms used in the paper.

Amg Amygdala
BLA Basolateral amygdaloid complex
LA Lateral amygdaloid nucleus
Ld Lateral dorsal amygdaloid nucleus
Lda Lateral dorsal amygdaloid nucleus, anterior
part
Ldp Lateral dorsal amygdaloid nucleus, posterior
part
Lvm Lateral ventromedial amygdaloid nucleus
Lvl Lateral ventrolateral amygdaloid nucleus
BL Basolateral amygdaloid nucleus
B Basal amygdaloid nucleus
AB Accessory basal amygdaloid nucleus
CEA Central extended amygdala
CeA Central amygdaloid nucleus
CLC Central amygdaloid nucleus, laterl capsular
suddivision
CL Central lateral amygdaloid nucleus
CM Central medial amygdaloid nucleus
BNST Bed Nucleus of the stria terminalis
MEA Medial extended amygdala
MeA Medial amygdaloid nucleus
Mv Medial amygdaloid nucleus, ventral part
Md Medial amygdaloid nucleus, dorsal part
ITC Intercalated nuclei
BG Basal ganglia
STR Striatum
DLS Dorsolateral striatum
DMS Dorsomedial striatum
NAcc Nucleus accumbens
NAccC Nucleus accumbens core
NAccS Nucleus accumbens shell
PAL Pallidum
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DP Dorsal pallidum
GPi Globus pallidus, internal segment
VP Ventral pallidum
CB Cerebellum
DI Disgranular insular cortex
Dilv Disgranular insular cortex, visceral part
Dig Disgranular insular cortex, gustatory part
En Endopiriform nucleus
Hyp Hypothalamus
LH Lateral hypothalamus
PO Preoptic nucleus of hypothalamus
VMH Ventromedial hypothalamus
PVN Paraventricular nucleus of hypothalamus
Hip Hippocpampus
S Subiculum
MB Midbrain
VTA Ventral tegmental area
PAG Periaqueductal gray
SNpc Substantia nigra, pars compacta
MEV Midbrain trigeminal nucleus
PPT Pedunculopontine tegmental nucleus
DR Dorsal raphe
My Medulla
NST Nucleus of the solitary tract
AMB Nucleus ambiguus
DMX Dorsal motor nucleus of the vagus nerve
MC Motor cortex
OB Olfactory bulb
P Pons
PB Parabrachial nucleus
LDT Laterodorsal tegmental nucleus
LC Locus coeruleus
NRPC Nucleus reticularis pontis caudalis
PaRh Parietal rhinal cortex
PC Piriform cortex
PFC Prefrontal cortex
AC Anterior cingulate cortex
vmPFC Ventromedial prefrontal cortex
PL Prelimbic cortex
IL Infralimbic cortex
OFC Orbitofrontal cortex

PMC

Premotor cortex
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PRC Perirhinal cortex

Sl Substantia innominata

Te Temporal cortex
Te2 Temporal cortex, Area 2
Te3 Temporal cortex, Area 3

Th Thalamus
LG Lateral geniculate nucleus
MG Medial geniculate nucleus
ILN Infralaminar nucleus
VPMpc Ventral posteromedial nucleus, parvicellular

part

Table B.1. Acronyms used throughout the paper to refer to the
anatomical brain areas of interest.
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