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Abstract

This thesis investigates emotions and motivations on the basis of an operational approach. This ap-
proach has both computational and psychobiological roots.Three main directions of research are
followed: (1) investigation on the neural substrates of emotional systems though the exploration of
the literature about comparative functional anatomy and physiology; (2) definition the relationship
between emotion, cognition and behaviour through the exploration of the psychobiological literature
about animal models; (3) building of computational models constrained by the sources of information
1 and 2; (4) testing the behaviour of such models within simulated robots acting in simulated environ-
ments. The main focus will be on the interaction between the emotional and motivational systems and
high level cognitive processes behind adaptive behaviour.The whole study will be informed by the
current psychobiological knowledge about the functioningof the neural systems pivoting on amyg-
dala, given that this is considered to be one of the major nodes of interaction between the processing
of internal values and the processing about the past, current and future world outside the organism in
superior vertebrates.
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Chapter 1

Introduction

This chapter outlines the main approaches to emotions in psychology through a brief historical sur-
vey. Then it presents an excursus over the major fields in psychobiological research on motivation
and emotion. Then it describes the building blocks of our attempt to link the current psychological
mainstream theories on emotions with the psychobiologicaldata through a systemic approach based
on embodied computational models. Finally it presents an outline of the structure of the thesis.

1.1 The Psychobiology of Emotions and Motivations

1.1.1 Psychological theories of emotions

The debate about the nature and the functions of emotions is amajor thread of the study of psychology
as a science since its beginning. Unfortunately, an operational unanimous definition of what emotions
are and what they are for has not be found yet within psychological research. We will proceed through
the main stages of the history of psychology of emotions, trying to find the elements of a possible
operational hypothesis about the adaptive function of emotions themselves and their relation with
physiological reactions and cognitive processes.

One of the first hypotheses on the origin and nature of emotions was developed independently by
two 19th-century scholars, William James (James, 1884) andCarl Lange (Lange, 1912). Their theories
state that the autonomic nervous system elicits physiological events such as muscular tension, a rise in
heart rate, perspiration, and dryness of the mouth, in response to events in the outer world. Emotions
are a result of these physiological changes, rather than being their cause. In this view, the cognitive
experience of emotion follows the physiological expression of emotion.

Although the James-Lange theory became popular in the earlytwentieth century, it soon came
under attack. In 1920, the american physiologist Walter Cannon published a paper containing several
compelling criticisms of the James-Lange theory and went onto propose a new theory (Cannon,
1920). Cannon’s theory was modified by Philip Bard (Bard, 1934), and the Cannon-Bard theory of
emotion, as it came to be known, proposed that emotional experience can occur independently of
emotional expression. Where James argued that emotional behaviour often precedes or defines the
emotion, Cannon and Bard argued that the emotion arises firstand then stimulates typical behaviour.
One of the arguments Cannon used against James-Lange theoryconsisted in observations of animals
with transection of the spinal cord. Those animals, which surgery had deprived of body sensation
below the level of the cut, still exhibited sign of emotionalexperiences. Bard described this in a
anatomophysiological way by claiming that subcortical structures such as hypothalamus and thalamus
process information in order to both regulate the peripheral signs of emotions and to provide the cortex
with the information needed for the cognitive processing ofemotions. This claim was supported by
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the physiological literature on decorticated animals.
In the meanwhile, behaviourist theories were taking place,dominating the scene during the first

half of the twentieth century. Behaviourist theorizationstreated emotions as an intervening motiva-
tional variable, often in the sense of a general drive state.Activation theory, by Duffy (1957), can
be seen as a classical example of this trend, stating that only one major dimension of emotion exists
(activation, arousal).

During the sixties, the criticism made by Magda Arnold and Richard Lazarus to the behaviouris-
tic view of emotions, became the root of a cognitive theory ofemotions based on appraisal. In their
view emotions are the product of unconscious evaluation on asituation while feelings are the con-
scious reflection of the unconscious appraisal (Scherer, Schorr, and Johnstone, 2001). According to
Arnold (1960), the initial appraisals start the emotional sequence and arouse both the appropriate
actions and the emotional experience itself, so that the physiological changes, recognized as impor-
tant, accompany, but do not initiate, the actions and experiences. Lazarus et al. (1970) identified two
essential goals for the research on emotional processes: “first, what is the nature of the cognitions
(or appraisals) which underlie separate emotional reactions (e.g. fear, guilt, grief, joy, etc.). Second,
what are the determining antecedent conditions of these cognitions.” He specified two major types
of appraisal processes which sit at the crux of the appraisalmethod: (1) primary appraisal, directed
at the establishment of the significance or meaning of the event to the organism, and (2) secondary
appraisal, directed at the assessment of the ability of the organism to cope with the consequences of
the event. These two processes go hand in hand as the first establishes the importance of the event
while the second assesses the coping mechanisms. Lazarus divided the latters into two parts: direct
actions and cognitive reappraisal processes.

The ideas of Arnold and Lazarus failed to have an immediate effect on psychology of emotion,
even though Lazarus’s theorizing strongly influenced stress research from the moment of its pubblica-
tion. Instead, a theory proposed by Stanley Schachter and his student Jerome Singer in the late fifties,
became the representative theory of emotions for more than twenty years. The theory put together
the James-Lange peripheral theory, the behaviouristic idea of a general, unspecific arousal, and the
psychological hypothesis that human experience was largely based on one’s self-observation of a con-
textual behaviour. The so called ’two-factor’ theory of emotion claimed that “cognitions are used to
interpret the meaning of physiological reactions to outside events.” (Schachter and Singer, 1962). In
the experiment by which they tested the theory, Schachter and Singer induced symptoms of sympa-
thetic activation using epinephrine and manipulated emotion inference by confronting their subjects
with the emotional behaviour of a stooge. The explanation ofthe results given by the authors was that
(1) both cognitive and physiological factors contribute toemotion, (2) under certain circumstances
cognition follows psychological arousal, (3) in part ,people assess their emotional state by observing
how physiologically stirred up they are (Schachter and Singer, 1962). Despite consistent negetive
evidence in the attempts to replicate the results, in the eighties this theory proved to be very influential
(Scherer et al., 2001).

Currently, there are three major theoretical positions on the functioning of the emotional sys-
tem. First, the work of Antonio Damasio (Damasio, 1994) within the neuropsychological research,
partly recovering James-Lange tradition, distinguishes the physiological affective activation (emo-
tions) from the cognitive processing biased by this activation (feelings). Damasio hypothesis is that
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cognitive processes are biased by the emotions, described as the physiological affective states elicited
by reinforcers. The amygdala and the orbitofrontal cortex lead the biasing of the cognitive elaboration
occurring in the ventromedial prefrontal cortex. In particular, emotions act as markers to the cognitive
processing of past, present and anticipated states of the world. They act as ‘somatic markers’, as their
elicitation highly depends on the processing about the states of the internal milieu.

Second, the tradition coming from neo-behaviourism of Hulland Tolman defines emotions as
behavioural states elicited by reinforcers. Cardinal, Parkinson, Hall, and Everitt (2002) state that
“it is useful to consider under the umbrella of emotion thoseneural processes by which an animal
judges and represents thevalueof something in the world, and responds accordingly”. According
to Rolls (2000) emotions are states elicited by rewards and punishments, including changes in re-
wards and punishments. Reinforcement association of stimuli, encoded in the orbitofrontal cortex and
amygdala, is sufficient to elicit emotion-based learning and to affect behaviour via, for example, the
orbitofrontal-striatal pathway (Rolls, 1999). Rolls defines several factors accounting for emotions:
(1) the reinforcement contingency; (2) the intensity of reinforcement; (3) multiple associations of
environmental stimuli with rewards or punishments; (4) the elicitation of different emotions by differ-
ent primary reinforcers; (5) the differentiation of emotions elicited by different secondary reinforcing
stimuli sharing a similar primary reinforcer; (6) the differentiation of emotions elicited on the base of
an active or passive behavioural response being possible.

Finally all the current approaches within the framework of the appraisal theories share few major
points (Scherer, Schorr, and Johnstone, 2001):1) emotions are differentiated by appraisals, each
distinct emotion is elicited by a distinctive pattern of appraisal;2) differences in appraisal can account
for individual and temporal differences in emotional response; 3) all situations to witch the same
appraisal pattern is assigned will evoke the same emotion;4) appraisals precede and elicit emotions,
appraisals start the emotion process, initiating the physiological, expressive and behavioural reactions
and other changes that comprise the resultant emotional state; 5) the appraisal system has evolved to
process information that predicts when particular emotional responses are likely to provide effective
coping; 6) conflicting, involuntary, or inappropriate appraisal mayaccount for irrational aspects of
emotions;7) changes in appraisals may account fo developmentally and clinically induced changes in
emotions. A recent implementation of the appraisal theories is the component process model (CPM),
by Sander, Grandjean, and Scherer (2005). The author claimsthis is a systemic approach to the study
of appraisal mechanisms and is characterized by three features; (1) appraisal is a complex function:
different systems stand behind appraisal at different levels. (2) the appraisal mechanisms have a
correspondence in the neural systems that can be studied with psychobiological instruments. (3) The
detailed specification of hypotheses constrained by neurophysiological data allows an analysis of them
through their implementation in computational models.

These three approaches share some important features. In all the three approaches the physiolog-
ical and behavioural responses are viewed as a consequence of a first evaluation (incentive salience,
novelty) made via the interaction of internal states of the organism with external states (e.g. Bechara,
Damasio, Damasio, and Lee, 1999; Rolls, 1999; Sander, Grandjean, and Scherer, 2005). Moreover, in
all approaches the primary evaluations have a role in biasing higher level cognitive processes.

Some major differences can also be found in the three theorical frameworks. First, both Somatic-
marker hypothesis and neo-behaviourism research focus on the interaction between emotions and
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cognitive processes as choice, goal-oriented behaviours and decision making, while appraisal theo-
ries focus on the mechanisms that produce emotions startingfrom different patterns of evaluations.
Second, somatic marker hypothesis is originally based on the claim that the expression of emotions is
by itself the marker, while both neo-behaviourist tradition (see Balleine, 2005) and current appraisal
theories (see Sander, Grandjean, and Scherer, 2005) state that the evaluation process stands behind the
emotional expression. This last differentiation is fadingdown as far as research on both sides focuses
on the underlying neural systems. The importance of the associative processing within amygdala in
both the elicitation of emotions and in biasing decision making processes is leading to a common view
that this associative system is behind, or can bypass, the very expression of emotions.

As current theories are getting more and more close to the psychobiological work of Balleine,
Berridge, Dickinson, Everitt, LeDoux, and current psychobiological research using animal models,
a systemic and unified explanation of all mechanisms behind emotions and motivations is emerging.
One main point of this systemic explanation is that several different neural systems interactively de-
termine the value of a state of the world at different levels of cognitive complexity. Furthermore,
the great amount of interaction between the different neural components must be considered within a
dynamical system framework (see the concept of circular causality in Lewis 2005).

1.1.2 Animal models of Conditioning and Affective Processes

The neo-behaviourist paradigm coming from Hull (1943) and Tolman (1932) granted to cognitive
psychology the use of two fundamental classes of instruments in the experimental research: (1) in-
strumental and pavlovian behavioural paradigms; (2) the controlling of neurophysiological variables
through lesioning, inactivation and microdialysis techniques. Through the use of animal models cog-
nitive psychology is opening to the experimental study of the neural systems involved in low-and-
higher-level cognitive processes. The study of emotions and motivations through animal models ac-
quired a huge amount of new data in the last twenty years. The main fields can be distinguished as
works on appetitive pavlovian conditioning, fear conditioning, instrumental conditioning and goal-
oriented behaviours, incentive salience and hedonic values, and stress. Here we will rapidly go
through these fields of study indicating the different contributions to the exploration of emotions and
motivations.

In this section, and everywhere in the rest of the thesis we will mostly refer to research on rats.
This choice is due to the huge amount of data that neuroanatomy, neurophysiology and psychophys-
iology has acquired about the rat nervous system, and, consequently, to the enormous collection of
experimental works on rats in the last sixty years. Psychobiological studies on appetitive conditioning
(e.g. Blundell, Hall, and Killcross, 2001; Cardinal, Parkinson, Lachenal, Halkerston, Rudarakanchana,
Hall, Morrison, Howes, Robbins, and Everitt, 2002; Cardinal, Parkinson, Marbini, Toner, Bussey,
Robbins, and Everitt, 2003; Gallagher, Graham, and Holland, 1990; Han, McMahan, Holland, and
Gallagher, 1997; Hatfield, Han, Conley, Gallagher, and Holland, 1996; McDannald, Kerfoot, Gal-
lagher, and Holland, 2005; Parkinson, Robbins, and Everitt, 2000; Petrovich and Gallagher, 2007;
Petrovich, Holland, and Gallagher, 2005; Petrovich, Setlow, Holland, and Gallagher, 2002; Pick-
ens, Saddoris, Setlow, Gallagher, Holland, and Schoenbaum, 2003; Setlow, Gallagher, and Holland,
2002) and goal-oriented behaviours (e.g. Balleine and Dickinson, 1998; Cador, Robbins, and Everitt,
1989; Corbit and Balleine, 2003; Corbit, Muir, and Balleine, 2001; Dickinson, 1985; Yin and Knowl-
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ton, 2006) focus of the function of amygdala (AMG), ventromedial prefrontal cortex (vmPFC), or-
bitofrontal cortex (OFC) and nucleus accumbens (NAcc), andtheir interactions in appetitive pavlovian
conditioning and instrumental conditioning processes.

A wide use of lesion techniques is made in which neural components are lesioned (typically inject-
ing a N-methyl D-aspartate preparation into in the neural region) or inactivated (usually through the
injection of a muscimol preparation) before or after one of the stages of the experimental scheduling.

This kind of research allows building a mapping of a neural system in which the absence of each
different component can be associated with a specific alteration of the overall functioning. Possibly
specific sub-functions can be associated with a single component or a sub-group of components. This
area can be easily seen as a starting point for the psychobiology of motivations. Associative learning
mechanisms allow organisms to transfer behaviours from reinforcers to neutral stimuli. Moreover,
these learning mechanisms allow the previously neutral stimuli to bias cognitive processes after having
acquired the value of predictors of reinforcers.

The object of the studies on fear conditioning (Armony, Servan-Schreiber, Romanski, Cohen, and
LeDoux, 1997; Blair, Schafe, Bauer, Rodrigues, and LeDoux,2001; Blair, Sotres-Bayon, Moita, and
LeDoux, 2005; Calandreau, Desmedt, Decorte, and Jaffard, 2005; Davis, 1992a,b; LaLumiere, Buen,
and McGaugh, 2003; Lanuza, Nader, and LeDoux, 2004; LeDoux,1996, 2003; Nader, Majidishad,
Amorapanth, and LeDoux, 2001; Paré, Quirk, and LeDoux, 2004) is the role of the amygdala in fear
behaviour. Fear related behaviours are historically the first class of behaviours to be linked to the
functioning of the amygdala in superior vertebrates. In vivo single-cell activity recording is used in
parallel with lesion techniques in order to inspect changesin plasticity. Through the studies some
important features of associative learning within the amygdala could be established. Being one of the
first fields in which a psychobiological animal model of an emotional state was built, this research
field assumed a pivotal role for the whole psychobiology of emotions. Moreover the hypotheses made
at the level of the neural microstructure enlighten how plasticity processes lead to associative learning.

Studies on hedonic value versus incentive salience defined with animal models a behavioural
differentiation between the neural systems through which incentive salience of a stimulus produces
’wanting’ behaviours and those through which the hedonic value given to a stimulus elicit ’liking’ be-
haviours (e.g. Berridge and Robinson, 1998, 2003; Kelley and Berridge, 2002; Peciña, Smith, and Ber-
ridge, 2006; Reynolds and Berridge, 2001, 2002; Smith and Berridge, 2005; Tindell, Smith, Peciña,
Berridge, and Aldridge, 2006; Wyvell and Berridge, 2000). Methodologies in this research field are
based on lesions or inactivations of neural regions too. Some important additional instruments are of-
ten used as the depletion of neurotransmitters in specific regions, pharmacological manipulation and
even more sophisticated techniques as the combination of drug microinjections and C-Fos immunore-
activity mapping. This set of methodologies contributes toenlighten the functional neurophysiology
at the level of specific regions and to associate the activityof different sub-populations of neurons in a
region to different behavioural patterns (e.g. hedonic reactions versus eating behaviours in association
to different neural populations within the ventral pallidum). From these works the vision emerges that
emotional neural processes do not share a monolithic structure within neural modules. Instead, differ-
ent functions as goal-oriented action and expression of theemotional state are processed by different
not completely overlapping neural systems.

Finally, the research on stress (e.g. Amat, Baratta, Paul, Bland, Watkins, and Maier, 2005; Amat,
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Paul, Watkins, and Maier, 2008; Amat, Paul, Zarza, Watkins,and Maier, 2006; Bland, Hargrave,
Pepin, Amat, Watkins, and Maier, 2003; Cabib and Puglisi-Allegra, 1994, 1996; Maier, 1984; Maier
and Watkins, 2005; Pascucci, Ventura, Latagliata, Cabib, and Puglisi-Allegra, 2007) look at the in-
teraction of the catecholamines and other neurochemicals within animal models in controllable and
uncontrollable contexts. The use of depletion and microdialysis is the main instrument used in these
studies. The result is that the interaction of the activity of different neurochemicals distributed in
different regions of the brain can be analysed. The psychobiology of stress has so acquired the notion
that controllable and uncontrollable situations elicit different neural systems leading to completely
different behaviours. Cortical processing is necessary tothe evaluation that a situation is uncontrol-
lable and to start a neural process that leads to passive coping mechanisms and to the acquisition of
learned helplessness behaviours.

In summary, modern research has endowed the psychology of motivations and emotions of a
wide range of instruments that permit to deeply explore the organization of the neural systems and
their relation to behaviour and to acquire quantitative data on neurobiological constraints. In the next
session we propose a theoretical framework to unify in an operational framework the evidence from
the neuroscience of emotions and motivations.

1.2 Computational Embodied Neuroscience

This thesis presents a proposal to address the issues targeted by the modern psychology of motiva-
tions and emotions, with a specific attention to the progressmade within psychobiology. The research
approach followed might be termed ‘CEN – Computational Embodied Neuroscience’ (cf. Prescott,
Gonzalez, Humphries, and Gurney, 2003, which propose a research method which shares some prin-
ciples with the approach proposed here) . This method aims atproviding general criteria for selecting
models so as to producetheoretical cumulativityin the study of brain and behaviour. Indeed, the great
amount of empirical data provided by neuroscience, psychology and the other related disciplines are
seldom integrated by strong and general theoretical explanations, thus failing to produce a coherent
picture of the phenomena under investigation. CEN aims to overcome these limits by relying upon
the following principles.

Computational models. The investigation of brain and behaviour conducted on the basis of empir-
ical experiments and observations (such as those of neuroscience, psychology and ethology) should
be accompanied by the instantiation of theories into formalcomputational models, that is computer
programs that simulate the mechanisms underlying brain processes and produce behaviour as an emer-
gent outcome of their functioning. The rationale behind this principle is that brain and behaviour are
complex systems, and theories should be expressed in a strict operational manner so to give truly gen-
erative accounts of these phenomena. Computational modelsboth carry in themselves an operational
implementation of a neural hypothesis and are able to furnish predictions about behaviour which make
it possible to confirm or reject hypotheses with experimental research.

Constraints from behaviour. The computational models used to instantiate the theories have to be
capable of reproducing the investigated behaviour, in linewith what is proposed by ‘artificial ethology’
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(Holland and McFarland, 2001). Furthermore, the comparison between the model and the target
behaviour should be done on a detailed basis (i.e., with reference to the outcomes of specific target
experiments) and possibly in quantitative terms (i.e., notjust with vague, qualitative comparisons).

Constraints from brain. Challenging models with the request to account for specific behavioural
data is not enough as, given a behaviour, many alternative models capable of reproducing it can always
be built. For this reason, a second fundamental source of constraints for models are the data on the
anatomy and physiology of brain. These data should be used intwo ways. First, for choosing the
assumptions that drive the design of the architecture, functioning, and learning mechanisms of the
models. Second, for testing the low-level predictions produced by the models (i.e. the predictions
produced at the neural level). This principle comes from computational neuroscience (Sejnowski,
Koch, and Churchland, 1988) urging computational models toaccount for data on brain.

Embodiment. In line with the ideas proposed by the ‘animats’ approach (Meyer and Wilson, 1991)
and ‘artificial life’ (Langton, 1987), models should be capable of reproducing the addressed be-
haviours within ‘whole’ autonomous systems acting on the basis of circular interactions with the
environment mediated by the body (in particular the sensors, the actuators and internal body sys-
tems). Indeed, the brain generates behaviour by forming a large dynamical complex system together
with the body and the environment (Nolfi, 2006), so a full understanding of brain and behaviour needs
to rely on models that take into consideration this fundamental fact. The principle has two implica-
tions. First, the computational models should involve the simulation of both organisms’ brains and
their body and environment, thus letting behaviours emergefrom the interactions between those sys-
tems. Second, models should aim at beingscalable to realistic setups, that is capable of functioning
with realistic sensors (e.g. retinas), realistic actuators (e.g. bodies should be governed by realistic
Newtonian dynamics), realistic scenarios (e.g. objects with complex textures, shapes, and dynamics),
and noise (affecting both sensors and actuators).

Generality. Computational models should aim to reproduce and account for an increasing amount
of data taken from an increasing number of different experiments. This principle is important as it is
a strong drive towards the production of comprehensive accounts and general theories of brain and
behaviour, against the tendency to generate many unrelatedand mutually incompatible theories each
accounting for only a limited set of empirical data. This principle is in line with the ‘spirit’ of both
‘systems’ computational neuroscience, that aims at explaining the functioning of whole brain systems
rather than specific areas or physiological/chemical mechanisms, and the animat approach, that aims
at identifying general principles and explanations of behaviour.

1.2.1 The features of the built models

Four are the main computational features of the models presented in this thesis: (1) Computational
models are realized at the level of neural systems, with units that abstract the activity features of entire
populations of neurons within each neuroanatomic component. This was eased by the absumption
that investigation on the systemic interaction between functional neural subsystems can be reason-
ably isolated from the study of the detailed dynamic physiological processes at the level of the neural
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microstructure. (2) The computational systems are tested as part of the controlsystem of robots simu-
lating the organisms of the target experiments within simulated environments. Thus activity within the
models can be tested in an open loop with the environment reactions to the robot’s actions. (3) Simu-
lated environments reproduce the settings of real experimental environments. (4) The simulated robots
are tested with the same schedulings as that of well known experimental paradigms. Thus simulations
can be directly compared with data from psychobiology.

1.3 The structure of the thesis

The remaining chapters of the thesis are organized as follows. Chapter 2 presents a review of all
psychobiological evidence on the role of amygdala in the several neural systems involved in emotional
and motivational processing.

Chapter 3 to 5 describe three computational models implementing some of the systems described
in chapter 2. In particular, Chapter 3 gives a computationalhypothesis about how the associative
learning processes within amygdala influence the activation of approaching behaviours torward bi-
ologically salient stimuli both via direct elicitation of ventral striatum subregions by the basolateral
complex of amygdala and by a general sensitization to activation of the ventral striatum through
the amplification of the dopaminergic efflux to it via the excitation of the mesolimbic dopaminergic
pathway by the central nucleus of amygdala. Chapter 4 shows amodel of how the internal associa-
tive learning mechanisms of the basolateral complex of amygdala and those of the central nucleus
of amygdala have different roles in first-order and second-order conditioning of orienting appetitive
responses. Chapter 5 a model presents of the interaction between associative amygdaloid mecha-
nism and the striastocortical substrates of outcome-action association, in generating goal-directed
behaviours.

The two appendices at the end of the thesis offer an outline ofthe computational mathematical
instruments and methodology adopted throughout the thesis(Appendix A) and a table of acronyms
used when referring to different neural components (Appendix B).



Submitted to Connection Science

Chapter 2

The Roles of Amygdala in the Affective Regulation of Body,
Brain and Behaviour

Abstract

Despite the great amount of data and theories produced by theneuroscientific literature on brain
and behaviour on affective phenomena, current models tackling non-cognitive aspects of behav-
ior are often bio-inspired but rarely bio-constrained. This paper presents a theoretical account of
affective systems pivoting on amygdala, which aims to furnish a general framework and some spe-
cific pathways to implement models which are more closely related to biological evidence. Amyg-
dala, which receives input from brain areas encoding internal states, innately relevant stimuli,
and innately neutral stimuli, plays a fundamental role in emotions and motivations of organisms
as it can implement two associative processes at the core of Pavlovian learning, plus it has the
capacity of modulating them on the basis of internal states.These functionalities allow amygdala
to have an important role in the regulation of three fundamental components of emotions (namely
the regulation of body states, the regulation of brain states via neuromodulators, and the trigger-
ing of a number of basic behaviours fundamental for adaptation) and in the regulation of three
high-level cognitive processes (namely the affective labeling of memories, the production of goal-
directed behaviours, and the performance of planning/complex decision making). This analysis
is conducted within a methodological approach which stresses the importance of understanding
brain within an evolutionary/adaptive framework (i.e., stressing how systems involving amygdala
increase survival and reproduction of organisms) and with the aim of isolating general principles
capable to potentially account for the wider possible empirical evidence in a coherent fashion.

2.1 Introduction

Since the birth of the Cognitive Sciences in the 1950s, the study of cognitivefunctions (e.g. per-
ception, attention, memory, planning, decision making...) has dominated the sciences of behavior,
relegating research on thenon-cognitiveaspects of behavior (e.g. motivations, moods, emotions) toa
marginal role. This is true in general for all the disciplines dedicated to the study of behavior: for the
empirical sciences, from neuroscience to psychology, and for the ‘sciences of the artificial’ (Simon,
1996), from classical artificial intelligence to the new fields of connectionism, autonomous robotics,
artificial life, and the simulation of adaptive behavior.

From the point of view of the sciences of the artificial, whileclassical artificial intelligence re-
search was exclusively dedicated to the study of cognitive capacities, from their very beginning re-
searchers in artificial life and new robotics presented pioneering works on the affective aspects of
behavior (e.g., see Balkenius, 1993; Cecconi and Parisi, 1993; Pfeifer, 1993). The reason for this
is related to the significant shift of attention, in the emerging embodied cognition framework, from
high level cognitive processes to low level ones, and to the importance attributed to the link between
behavior and its biological bases (body, brain, environment). One of the driving ideas of Embodied
Cognition research is that of considering behavior and cognition from an adaptivist point of view, that



2.1. Introduction 10

is on the basis of the advantages that they can give in terms oforganisms’ capacity to survive and
reproduce. From this perspective, the motivational and emotional aspects of behavior are at least as
important (but one could argue even more) than the cognitiveones.

The capacity of survival and reproduction of organisms depends on several different abilities, for
example the ability to find food and water, the ability to prevent that one’s own body gets damaged,
and to recover when this happens, the ability to find a sexual partner willing to copulate and reproduce,
the ability to escape from predators, the ability to find a suitable place for resting and sleeping, and
so on. If an agent has to satisfy all these needs, a crucial ‘meta-ability’ raises, namely the ability to
manage the interactions between all these activities. If insome moments an organism has to solve
the problem of satisfying a certain need whereas in other moments it has to solve the problem of
satisfying another need, ineachmoment it must solve the problem of establishing which need should
be attended. Affective systems allow organisms to solve precisely such a problem, that is to choose
which is the activity that has to be accomplished in each moment.

In sharp contrast with what happens in real organisms, artificial systems tend to be designed to
accomplish only one or a very few well designed tasks, for example finding the food,or navigating
in a complex environment,or categorising a certain object,or grasping and manipulating objects,or
coordinating with other agents, and so on. In such kinds of agents the problem of selecting which
activity to pursue in each moment does not raise because there is only one activity that they can and
must pursue in every moment. This is the reason why even in thefield of the simulation of adaptive
behavior the study of motivations and emotions has always received little attention. In the last years,
the realization of the extreme importance that the non-cognitive factors of behavior play in organisms’
behavior (Arbib and Fellous, 2004; Cañamero, 2005; Parisi, 2004) has significantly boosted the num-
ber of researches dedicated to these aspects in the fields of artificial life and autonomous robotics (e.g.
Avila-Garcia and Cãnamero, 2004; Balkenius and Morén, 1999; Cãnamero, 1997; Mirolli and Parisi,
2003; Montebelli et al., 2007; Murphy, 2002; Venditti et al., 2009).

The relationship between this kind of research and the empirical sciences is quite weak, when not
completely absent. Generally speaking, the artificial systems developed in these fields are, at most,
biologically inspired (bio-inspired) but not really biologically constrained (bio-constrained). In other
words, the empirical knowledge on the behavior of natural organisms is at most occasionally used
as a source of interesting ideas, but is not systematically used for constraining the design of artificial
systems, nor for testing their empirical predictions. Sucha state of affairs has both its motivations and
its potential advantages. For example, a certain division of labour between empirical and artificial
scientists is necessary. Furthermore, the freedom of not being constrained by available data and
knowledge can lead to the development of new ways of framing old problems and of investigating
them (i.e. to new ‘research paradigms’), and to the discovery of new interesting specific problems and
principles. Finally, it must also be considered that a significant proportion of artificial life research has
technological rather than scientific aims, and, from a technological point of view, taking into account
how natural organisms work is not a need but, at most, an opportunity.

On the other hand, at least from the scientific point of view, the current state of affairs has also
important limits. The biological sciences, and the neural sciences in particular, have been producing a
huge amount of knowledge on all the aspects that are relevantfor understanding organisms’ behavior.
Furthermore, this empirical knowledge seems to be doomed toincrease at an even higher pace in the
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near future. For this reason, trying to incorporate this knowledge more systematically in the design
of artificial systems is likely to produce a fundamental positive impact in our ability to build artificial
systems with behavioral capacities more similar to those ofnatural organisms. This, in its turn, would
no doubt considerably increase the impact that research on artificial system has on the behavioral and
brain sciences. In fact, if it is undeniable that the latter disciplines are producing a great amount of
relevantdata, it is also true that integrativetheoriesthat are able to explain these data and predict
new ones are quite scarce. Bio-constrained computational models represent very promising tools for
developing such kind of theories.

With respect to the latter point, it is important to stress that the method followed here is centered on
the principles ofComputational Embodied Neuroscience(or ‘CEN’, cf. Mannella, Mirolli, and Bal-
dassarre, 2009a). According to this approach, behaviour and brain are seen as means through which
organisms adapt to the environment in order to increase their survival and reproduction chances, so a
true understanding of brain passes through the comprehension of how it is structured, functions and
learns in order to produce adaptive behaviour. Moreover, CEN stresses the importance of producing
general modelsdirected to capture fundamental principles underlying several different behaviours and
brain phenomena instead of ad-hoc models which address onlythe outcome of specific behavioural
or neuroscientific experiments. These two principles also guided the compilation of this review which
is indeed supposed to furnish a general framework, but also some specific roadways, to design and
implement models having a unifying theoretical scope.

In this paper we contribute to the study of non-cognitive aspects of behavior in artificial system
by providing a theoretical framework on behavior that is based on the available empirical knowledge
regarding one of the parts of the brain that is at the center ofthe motivational-emotional systems
of higher organisms, namely the amygdala. In particular, wewill propose a general brain architec-
ture centered on the amygdala, and a number of specific hypotheses on the various functional roles
that amygdala plays in the regulation of both affective and cognitive processes. The neuroscientific
and behavioral data taken into consideration mainly refer to literature on rats, however the principles
proposed and reviewed in the article can usually be extendedto more complex mammals (in particu-
lar, non-human primates and humans) as they are very generaland generated by parts of the central
nervous system of rats which have homologies in all such animal species. Our general framework
is intended to boost the design and implementation of biologically-constrained computational mod-
els, as the ones presented in previous works (Mannella, Mirolli, and Baldassarre, 2007; Mannella,
Zappacosta, and Baldassarre, 2008).

The rest of the paper is structured as follows. Section 2.2 provides a general overview of the
amygdala and of the various roles that it plays in the functional organization of adaptive behavior.
Section 2.4 illustrates the three main functioning principles that characterize amygdala as the main
locus of classical-conditioning associations. Section 2.5 presents the three basic functions that amyg-
dala plays in the regulation of emotional responses. Section 2.6 shows the three higher-level functions
that amygala plays by interacting with cognitive processes. Finally, section 2.7 concludes the paper.
Note that the acronyms used throughout the paper are listed in the Appendix (table B.1).
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2.2 Amygdala’s roles in adaptive behavior: overview

Amygdala (Amg) is an almond-shaped group of nuclei located within each medial temporal lobe of
the brain (figure 2.2). Amg is an important component of several brain subsystems involving the
hypothalamus, insular cortex, brain stem, basal forebrain, hippocampus, basal ganglia, and prefrontal
cortex, and it has been associated with a wide range of functions including emotional regulation,
learning, action selection, memory, attention, and perception.

The fundamental hypothesis that underlies the framework proposed in this paper, and schema-
tised in figure 2.1, is that amygdala is the place where most classical conditioning associations1

are acquired on the basis ofthree basic mechanisms, which roughly correspond to thethree major
sub-componentsin which Amg can be divided, that is CEA, BLA, and MEA:

1. CEAassociates neutral stimuli (conditioned stimuli, ‘CS’) directly to basic responses (uncondi-
tioned responses, ‘UR’) that are strictly related to organisms’ survival and reproduction on the
basis of the experienced co-occurrence of these neutral stimuli and the stimuli that are innately2

linked to such basic responses by evolution (unconditionedstimuli, ‘US’). The result of this
process is the formation of CS-UR associations.

2. BLA associates neutral stimuli (CS) not directly to the basic responses (UR) but rather to the
unconditioned stimuli (US) that are innately associated tothose responses on the basis of the
CS-US co-occurrences experienced during lifetime. The result of this process is the formation
of CS-US associations.

3. MEA modulates CEA’s and BLA’s representations of stimuli and/or responses (in particular,
URs and USs) on the basis of internal body states (i.e. on the basis of the current needs of the
organism).

Amg performs these functions on the basis ofthree main classes of inputs:

1. Body states information, coming from visceral systems, that either constitute unconditioned
stimuli or modulate the representations of unconditioned stimuli and responses.

2. Innately relevant information, coming from somatosensory, gustatory, and olfactory systems,
that represent unconditioned stimuli.

3. Innately neutral information, coming from visual, auditory, polimodal, and associativeareas,
that represent stimuli that can be conditioned (i.e. associated to unconditioned stimuli and/or
responses).

The basic unconditioned responses (UR) strictly related tosurvival and reproduction that amyg-
dala is able to associate to innately neutral stimuli are of three different types, that, in our view,
constitute the fundamental aspects underlyingaffectivebehavior:

1Other classical conditioning associations involving for example basic reflexes like eye blinking are known to be stored
in the Cer (Thompson, Swain, Clark, and Shinkman, 2000). Of course, all classical conditioning processes involve also
other parts of the brain beyond Amg and Cer, such as the brain stem nuclei and PFC.

2Note that, in the whole paper, we will use the expressions ‘unlearned’, ‘unconditioned’ or ‘innate’ to refer to responses
that might be either innate or developed during the very firstphases of life under strong genetic guidance and general
environmental constraints (cf. Arias and Chotro, 2007).
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1. Regulation of body states, accomplished through the links to the sympathetic, parasympathetic
and hormonal systems.

2. Diffuse brain modulation, accomplished through the links to the four main neuromodulatory
systems.

3. Triggering of unlearned behaviors, accomplished through the links to the various centers that
control such basic behaviors.

Finally, amygdala has at least other three main outputs, through which it can make cognitive
processes modulated by emotional states, thus allowing theemerge of new cognitive functionalities:

1. Affective labeling, accomplished through the reciprocal connections with theHip, which is
responsible for the encoding and consolidation of episodicmemories: these connections allow
Amg to include motivational and emotional elements in such memories and to enhance their
encoding and recall.

2. Goal-directed behavior, accomplished through the connections targeting the NAccC-PL loop,
which is responsible for the higher-level stages of action-selection: these connections allow the
affective state of an organism to influence the selection of behaviors acquired through operant
conditioning.

3. Planning and decision-making, accomplished through the reciprocal connections with PFC,
which hosts many important cognitive processes such as working memory, attention, and pre-
diction: these connections allow affective states to influence the processes taking place in PFC,
thus guiding top-down attention, monitoring of action execution, complex decision making, and
planning.

2.3 Anatomy of Amygdala

Three major groups of amygdaloid nuclei can be distinguished as the main loci where the various pro-
cesses implemented by amygdala take place (Fig. 2.2): the basolateral amygdaloid complex (BLA),
the central extended amygdala (CEA), and the medial extended (MEA)

2.3.1 BLA: afferent projections and internal connectivity.

LA is the principal input gateway of Amg (see figure 2.3). LA receives afferent connections directly
from the thalamus, from various sensory and associative cortex areas, and from the brain-stem (Maren,
2005; McDonald, 1998; Paré, Quirk, and LeDoux, 2004; Pitkänen, Jolkkonen, and Kemppainen, 2000;
Sah, Faber, Armentia, and Power, 2003). These connections allow LA to gather information about
the distal world (e.g. through visual and auditory sensors), and information about the proximal world
(e.g. through visceral, somatosensory, and gustatory sensors). A wide amount of data show that Ld
is the place where USs (visceral, gustatory, somatosensory) and CSs (visual, uditive) information first
converges within Amg (Maren, 2005; Pitkänen, Stefanacci, Farb, Go, LeDoux, and Amaral, 1995;
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Figure 2.1: Overview of the Amg: a scheme indicating the main functions played by Amg and the main brain anatomical

areas through which it implements such functions. The graphindicates the three main classes of input received by Amg, the

three basic mechanisms it implements, the three types of output through which it regulates the emotional systems, and the

three main influences it exerts on higher cognitive processes.

Romanski, Clugnet, Bordi, and LeDoux, 1993). Nevertheless, several data show that, within Ld in
rats, gustatory, visceral and somatosensorial projections from cortex are restricted to Lda whereas
visual and auditive projections terminate within Ldp (McDonald, 1998). There is also clear evidence
about a separation of the projections from Lda and Ldp to Lv: Lda projects mainly to Lvl whereas
Ldp projects mostly to Lvm (McDonald, 1998; Pitkänen, Stefanacci, Farb, Go, LeDoux, and Amaral,
1995). As a consequence, it seems plausible that at least part of the gustatory, visceral and somatosen-
sory information remains relatively segregated from sensory information at the level of the lateral dor-
sal amygdaloid nucleus. Lv has efferent projections to bothB and AB. both B and AB also get direct
projections from gustatory, visceral, and somatosensory areas and projections from high-converging
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Figure 2.2: Nuclear divisions and subdivisions of rat amygdala. Acronyms: AB (accessory basal amygdaloid nucleus),

B (basal amygdaloid nucleus), BL (basolateral amygdaloid nucleus), BLA (basolateral amygdaloid complex), BNST (bed

nucleus of the stria terminalis) CEA (central extended amygdala), CM (central medial amygdaloid nucleus), CL (central

lateral amygdaloid nucleus), CLC (central amygdaloid nucleus, lateral capsular subdivision), ITC (intercalated nuclei), LA

(lateral amygdaloid nucleus), Ld (lateral dorsal amygdaloid nucleus), Lvl (lateral ventrolateral amygdaloid nucleus), Lvm

(lateral ventromedial amygdaloid nucleus), MEA (medial extended amygdala), Md (medial amygdaloid nucleus, dorsal

part), Mv (medial amygdaloid nucleus, ventral part).

areas such as vmPFC and Hip (McDonald, 1998; Pitkänen, Jolkkonen, and Kemppainen, 2000; Price,
2003; Sah, Faber, Armentia, and Power, 2003). One feature atthis level is that olfactory information
seems to be predominantly directed to AB whereas no inportant olfactory projections have a direct
connection with B (McDonald, 1998; Sah, Faber, Armentia, and Power, 2003). Thus within BLA con-
vergence between CSs and USs should take place in two sites organised in sequence: (a) at the level of
Lv visceral, somatosensory and gustatory information (USs) converges with bimodal auditory-visual
information; (b) at the level of BL information about USs converges with highly integrated polimodal
information from hippocampal, cortical associative and cortical prefrontal areas. Notably, within the
two rostro-ventral axex of BLA, the Lvl-AB axis is reached bythe olfactory signals, whereas the
Lvm-B axis has no direct olfactory information.

2.3.2 CeA: afferent projections and internal connectivity.

CeA is reached by afferent intra-amygdaloid projections from LA, BL and MeA (see figure 2.3). LA
projections are both direct and undirect. The direct projections reach CLC. The undirect reach CM
through a double inhibition (disinhibition) pathway basedon two ITC (see figure 2.2 and figure 2.5).

CeA also receives afferent external projections coming from the same thalamic and cortical areas,
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A)
Figure 2.3: the general connectivity organization within BLA. For neuroanatomic data see McDonald (1998), Jolkkonen

and Pitk̈anen (1998), and De Olmos, Beltramino, and Alheid (2004)

unimodal and polymodal, which project to LA and BL (Jolkkonen and Pitk̈anen (1998); McDonald
(1998); Sah, Faber, Armentia, and Power (2003), see figure 2.4). Moreover, gustatory, visceral and
somatosensory information reaches CEA directly. Within CeA, there is a widespread convergence of
signals carrying internal and external information, at different level of elaboration, coming from LA,
BLA and from other brain areas and ending in CLC and CM (see figure 2.4). CLC is the main point
through which BLA modulates CEA. MEA mainly projects to CLC and CL. Within CEA, projections
from CLC and CL mainly converge within CM.

2.3.3 MEA: afferent projections and internal connectivity.

Afferent intra-amygdaloid projections to MEA come mainly from BLA, in particular from Lvm
(De Olmos, Beltramino, and Alheid, 2004; Pitkänen, Jolkkonen, and Kemppainen, 2000; Pitkänen,
Savander, and LeDoux, 1997; Sah, Faber, Armentia, and Power, 2003), Afferent projections of MEA
from outside Amg come from two kind of brain areas. First, there are projections from Hyp, coming
mainly from VMH, LH and PVN (De Olmos, Beltramino, and Alheid, 2004; Pitk̈anen, Jolkkonen, and
Kemppainen, 2000). These projections reach both Mv and Md nuclei. Second, MEA gets projections
from high associative areas such as vmPFC, Hip, and PC. Theseprojections reach only its dorsal part,
Md (De Olmos, Beltramino, and Alheid, 2004).

2.3.4 Amygdala: efferent projections to other functional systems.

While LA efferent connections are mainly directed to CeA andBL, these two latter components,
together with MEA, have a wide range of targets within the nervous system. Such efferent connections
are organised into four major pathways.
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Figure 2.4: The general connectivity organization within CeA . For neuroanatomic data see McDonald (1998), Jolkkonen

and Pitk̈anen (1998), and De Olmos, Beltramino, and Alheid (2004)

Figure 2.5: The afferent indirect pathway of CeA based on ITC (modified from Paŕe, Quirk, and LeDoux 2004).

CeA is the first major output gateway of Amg through which it regulates whole body and brain
states and triggers some unlearned behaviours. In particular, CeA efferent connections are mainly
directed to the brain stem, where they target regions such asthe PAG controlling unlearned behavioural
reactions (e.g. startle and freezing), and other brain systems such as Hyp controlling unlearned body
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Figure 2.6: the general connectivity organization within MeA . For neuroanatomic data see McDonald (1998), Jolkkonen

and Pitk̈anen (1998), and De Olmos, Beltramino, and Alheid (2004)

reactions (Davis and Whalen, 2001; Nader, Majidishad, Amorapanth, and LeDoux, 2001; Paré, Quirk,
and LeDoux, 2004; Phelps and LeDoux, 2005). CeA has also efferent connections directed to sites
that play a fundamental role in regulating diffuse brain activation, and also in enhancing important
learning processes, such as LC, VTA, and Raphe (Fudge and Emiliano, 2003; Pitk̈anen, Jolkkonen,
and Kemppainen, 2000; Rosen, 2004; Weidenfeld, Newman, Itzik, Gur, and Feldman, 2002). These
are in fact key control centres of, respectively, the neuromodulators norepinephrine, dopamine and
serotonin (5-HT), which play an important role in regulating the sleep/vigilance cycle, the overall
brain arousal, attentional processes, and molecular reactions underlying learning.

BL has a major efferent pathway directed to NAcc (Baxter and Murray, 2002; Cador, Robbins, and
Everitt, 1989; Pitk̈anen, Jolkkonen, and Kemppainen, 2000; Sah, Faber, Armentia, and Power, 2003;
Setlow, Holland, and Gallagher, 2002). This is the second Amg’s major output pathways through
which Amg can exert an indirect influence on striato-cortical loops sub-serving habit (S-R) and goal-
oriented action selection by transferring Pavlovian incentive values to instrumental behaviours.

BL has also an important strong connection to vmPFC, implemented directly through reciprocal
connections with OFC and indirectly through reciprocal connections with Hip, on its turn connected
with vmPFC (McDonald, 1998; Richter-Levin, 2004; Rolls, 2000; Saddoris, Gallagher, and Schoen-
baum, 2005). This constitutes the third major Amg’s output pathway. Through this Amg can influence
the behavioural regulatory processes taking place in vmPFC(and downstream pre-motor, motor areas
and loops with dorsomedial striatum), including working memory, reasoning, decision making, plan-
ning, and goal-oriented action selection. In this regards,the connections between Amg and PFC can
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be considered as a fundamental bridge between sub-corticalemotional processes involving overall
brain and body internal states and cortical high-level cognitive processes.

BL has also efferent connections directed to CeA, and this allows BL to exert control on the
whole range of behavioural reactions and body/brain regulatory processes on which CeA has control
(Pitkänen, Jolkkonen, and Kemppainen, 2000).

MeA efferent intra-amygdaloid projections reach Lv and BL nuclei (Pitk̈anen, Savander, and Le-
Doux, 1997), while amost all MeA projections outside Amg have Hyp as target (in particular VMH,
LH and PVN) (De Olmos, Beltramino, and Alheid, 2004).

2.4 The roles of amygdala in classical conditioning

Individual learning plays a fundamental role in the adaptive behavior of organisms, especially in
the most sophisticated ones like mammals. For this reason, animal psychology has devoted great
efforts to the study of learning processes. In particular, in the last century a huge body of empirical
data have been collected around the two main experimental paradigms of ‘classical conditioning’ and
‘instrumental conditioning’.

Classical conditioning(or Pavlovian conditioning) refers to the experimental paradigm in which a
certain basic behaviour such as salivation or approaching (UR), that is innately linked to a biologically
salient stimulus such as food ingestion (US), gets associated to a neutral stimulus like the sound of
a bell (CS), after the neutral stimulus is repeatedly presented before the appearance of the salient
stimulus. Such acquired associations, as mentioned in section 2.2, are briefly referred to as ‘CS-US’
or ‘CS-UR’ associations (Lieberman, 1993; Pavlov, 1927, see below).

Instrumental conditioning(or operant conditioning) refers to an experimental paradigm in which
an animal, given a certain stimulus, such as a lever in a cage (the stimulus, ‘S’), learns to produce a
particular action such as pressing the lever (the response,‘R’), if the performed action consistently
leads to a rewarding outcome, such as the access to food. In this case, the acquired associations are
briefly referred to as ‘S-R’ associations (Domjan, 2006; Skinner, 1938; Thorndike, 1911).

The current most influential models of conditioning phenomena, those based ontemporal-diffe-
rence reward prediction error(Schultz, 2002; Schultz, Dayan, and Montague, 1997; Schultz and
Dickinson, 2000; Sutton and Barto, 1998), suffer of variouslimitations (cf. Berridge, 2007; Dayan,
2002; Mannella et al., 2007; Redgrave and Gurney, 2006; Redgrave et al., 1999). For example, they
tend to conflate classical and instrumental conditioning, and they do not take into account the influ-
ences of internal states on the acquisition and expression of conditioned responses. On of the reasons
of these limits is that such models have been developed within the machine learning framework, with
the aim of building artificial intelligent systems capable of autonomously learning to perform actions
useful for the user. As a result, they are more suitable for investigatinginstrumental conditioning
phenomena but less adequate to explain Pavlovian ones (Dayan and Balleine, 2002; O’Reilly, Frank,
Hazy, and Watz, 2007).

From the scientific point of view, the available empirical knowledge indicates that the basal ganglia
represent the main neural substrate of the S-R associationsacquired through instrumental condition-
ing (Bar-Gad, Morris, and Bergman, 2003; Barto, 1995; Yin and Knowlton, 2006), while amygdala
represents the main neural substrate where the associations acquired through Pavlovian conditioning
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are stored (Baxter and Murray, 2002; Cardinal, Parkinson, Hall, and Everitt, 2002).
A crucial question on classical conditioning regards the nature of the acquired association be-

tween the CS and the UR: is this association direct (CS-UR), as Hull (Hull, 1943) suggested, or does
it pass through the unconditioned stimuli (CS-US-UR), as Pavlov himself seemed to claim (Pavlov,
1927)? The long-lasting debate on this topic (Lieberman, 1993) seems now to have settled in fa-
vor of both hypotheses: there is in fact strong empirical evidence supporting the co-existence of both
CS-UR and CS-US associations (Dayan and Balleine, 2002). Inparticular, the available empirical evi-
dence suggests that CEA stores CS-UR associations, while BLA stores CS-US associations (Cardinal,
Parkinson, Hall, and Everitt, 2002; Mannella, Zappacosta,and Baldassarre, 2008). The rest of this
section describes our hypotheses on the specific mechanismsthat Amg might exploit to implement
these two basic functionalities and to modulate them on the basis of the current internal states.

2.4.1 CEA as the locus of US-UR associations

All animals are genetically endowed with a set of basic responses that have a high direct relevance
for their survival and reproduction. These responses belong to three classes: (a) internal responses
directed to regulate the states of the body of the organism (discussed in section 2.5.1); (b) neuromod-
ulatory responses that influence the general states of the brain or the relative activity of different parts
of it (discussed in section 2.5.2); (c) basic behavioral responses (discussed in section 2.5.3). These
responses are innately linked to specific stimuli so that when a given stimulus is perceived, the ap-
propriate responses are automatically triggered. For example, when an animal perceives the odour of
a predator its heart-rate speeds up (body), its general alertness increases (brain), and its body might
freeze (behavior).

In the case of complex animals living in a complex and dynamicworld it is not possible for
evolution to a-priori associate the appropriate responsesto all the possible stimuli that the animals can
encounter during life. The solution that evolution found tothis problem is endowing animals with a
learning system that associates the basic (unconditioned)responses to the (conditioned) stimuli that
are systematically experienced in conjunction to (as predecessors of) the relative basic (unconditioned)
stimuli. In our view, CEA is the part of the brain that learns and stores these CS-UR associations.
In fact, CEA has been shown to be necessary for the acquisition and expression of both aversive
and appetitive conditioned reactions (e.g., startle and freezing behaviors in fear conditioning: see
Lanuza, Nader, and LeDoux, 2004; Nader, Majidishad, Amorapanth, and LeDoux, 2001; Shi and
Davis, 1999; and orienting and approaching behavior in appetitive conditioning: see Hatfield, Han,
Conley, Gallagher, and Holland, 1996; Parkinson, Robbins,and Everitt, 2000). For example, Hatfield,
Han, Conley, Gallagher, and Holland (1996) showed that CEA lesions impede the capacity of rats to
acquire the association between an unconditioned response(orienting) and a conditioned stimulus
(light), while lesions of BLA do not affect this capacity.

CEA is able to make these associations thanks to its pattern of connectivity (see figure 2.7). From
the efferent side, CEA constitutes the main output gateway of Amg, sending projections to several
brain areas that control all three kinds of basic, unlearnedresponses (affecting the body, the brain, and
basic behaviors, see section 2.5). On the afferent side, CEAreceives external projections from both
the brain areas having information about unconditioned stimuli (i.e. visceral, somatosensory, olfactory
and gustatory) and from those having information about conditioned stimuli (i.e. visual, auditory,
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polimodal, and associative) (Jolkkonen and Pitkänen, 1998; McDonald, 1998; Sah, Faber, Armentia,
and Power, 2003). Furthermore, both these kinds of information arrive to CEA also indirectly, via its
afferent projections from BLA, in particular from LA, whichconstitutes the principal input gateway
of the whole Amg: in fact, also LA receives information on both innately relevant and on neutral
stimuli required for classical conditioning associations(Maren, 2005; McDonald, 1998; Paré, Quirk,
and LeDoux, 2004; Pitk̈anen, Jolkkonen, and Kemppainen, 2000; Sah, Faber, Armentia, and Power,
2003). CS-UR associations seem to involve both the internal(from BLA) and the external (from the
rest of the brain) afferent projections to CEA since LA lesions sometimes impede these associations
to take place (Blair, Sotres-Bayon, Moita, and LeDoux, 2005; Lanuza, Nader, and LeDoux, 2004),
while in other cases they do not (Hatfield, Han, Conley, Gallagher, and Holland, 1996).

Figure 2.7 provides a schematization of how CR-US associations can take place within CEA
through the modification of the afferent connections going from conditioned stimuli (CS), represented
both within LA and outside Amg, to the unlearned responses (UR), thanks to the experienced co-
occurrence of innately relevant stimuli (US) and such unlearned responses (the scheme is both a
simplification and an elaboration of the computational model that we used for simulating experiments
on second-order conditioning in normal and BLA lesioned rats, cf. Mannella, Zappacosta, and Bal-
dassarre, 2008, and also section 2.5.2).

Figure 2.7: CEA: schematization of the learning of CS-UR associations (thin arrows) on the basis of the pre-existing

unlearned US-UR associations (thick arrows). Ancronyms: Amg (amygdala), CEA (central extended amygdala) LA (lateral

amygdaloid nucleus).

2.4.2 BLA as the locus of CS-US associations

Direct CS-UR associations have a clear adaptive advantage,but has two limits. First, among the
unconditioned responses that can be triggered by CEA (and hence can be associated to conditioned
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stimuli through CS-UR learning) there is not the productionof learning signals, for example the pro-
duction of phasic dopaminergic bursts (Schultz, Dayan, andMontague, 1997; Schultz and Dickinson,
2000) or noradrenergic bursts (Berridge and Waterhouse, 2003), which are usually at the basis of
learning. Various facts indicate that this is the case. First, CEA has inhibitory GABAergic efferent
connections McDonald (1998), for example reaching VTA producing dopamine (DA) or LC produc-
ing norepinephrine (NE). When this type of connections reach target areas having neurons producing
neuromodulators, they tend to produce modulatory tonic signals instead of phasic signals as those
usually used to trigger learning (cf. section 2.5.2). Second, while CEA lesion disrupts the capacity
to show CS-UR associations, it does not disrupt the capacityof conditioned stimuli to be used as
reinforcements in second-order conditioning (Hatfield, Han, Conley, Gallagher, and Holland, 1996).
Third, the direct association of stimuli with basic reactions would not allow using of conditioned
stimuli for influencing more complex cognitive processes. In order to overcome these limits the brain
needs a mechanism tolink neutral stimuli to unconditioned stimuli, so that the presentation of a CS
can recall the associated US and both trigger the phasic bursts of neuromodulators driving learning
and modulate high-level cognitive processes.

There is plenty of evidence that BLA is the part of the brain that learns and stores CS-US as-
sociations. In fact, BLA has been shown to be necessary: (a) for having second-order conditioning
phenomena, where a conditioned stimulus (e.g. a light) is used as a secondary reward in extinction (i.e.
without first order reward) to condition a second neutral stimulus (e.g. a tone) (Hatfield, Han, Conley,
Gallagher, and Holland, 1996): this can rely on BLA glutamatergic connections directly or indirectly
targeting neurons of neuromodulators, suitable for causing phasic responses (e.g., see figure 2.8 for
DA); (b) for influencing high-level cognitive processes, asdescribed in detail in section 2.6.

BLA is able to make these associations thanks to its connectivity (figure 2.8). As discussed above,
LA (which is part of BLA) is the main input gateway of the wholeAmg, receiving information both
regarding USs (from visceral, gustatory, olfactory, and somatosensory areas) and regarding CSs (from
visual, auditory, polimodal and associative areas). Furthermore, the areas of BLA that receive these
two kinds of information are reciprocally interconnected,thus permitting the associations between
CSs and USs to take place.

Interestingly, the internal connectivity within BLA seemsto suggest that the convergence be-
tween CSs and USs takes place in two sites organised in sequence: (a) at the level of Lv (which is
a part of LA) visceral, somatosensory and gustatory information (USs) converges with auditory and
visual information (Maren, 2005; Pitkänen, Stefanacci, Farb, Go, LeDoux, and Amaral, 1995; Ro-
manski, Clugnet, Bordi, and LeDoux, 1993); (b) at the level of BL, information about USs converges
with highly integrated polimodal information from hippocampal, cortical associative and cortical pre-
frontal areas (McDonald, 1998; Pitkänen, Jolkkonen, and Kemppainen, 2000; Price, 2003; Sah, Faber,
Armentia, and Power, 2003). This hierarchy in BLA’s internal connectivity suggests that USs can be
associated with stimuli of different levels of complexity:from the simplest, unimodal stimuli that are
typically used in classical conditioning experiments (e.g. lights or tones), to complex objects, context,
or places, like in conditioned place preference experiments (Hiroi and White, 1991; McDonald and
White, 1993).

Finally, the representations of USs (that can be recalled byassociated CSs) can control three
different classes of systems thanks to different sets of BLAefferent projections (see figure 2.8):
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(a) projections to Hip (McDonald, 1998; Richter-Levin, 2004), NAcc (Cador, Robbins, and Everitt,
1989; Pitk̈anen, Jolkkonen, and Kemppainen, 2000), and PFC (Rolls, 2000; Sah, Faber, Armentia, and
Power, 2003) allow conditioned stimuli to influence cognitive functions (for details, section 2.6); (b)
projections to neuromodulatory systems (e.g., VTA and SNpcfor DA, reached by BLA through LH
and PPT (McDonald, 1998; Pitkänen, Jolkkonen, and Kemppainen, 2000)) allow conditionedstimuli
to act as second-order reinforcements by producing the activity bursts that are supposed to drive learn-
ing; (c) intra-amygdaloid projections to CEA (Sah, Faber, Armentia, and Power, 2003) allow CSs to
trigger all the URs normally triggered by the associated USs.

Figure 2.8 represents a schematization of the BLA functioning: CS-US associations are learned
through the modification of the collateral connections that, within BLA link the representations of
the unconditioned stimuli (innately linked to their respective unconditioned responses) and the condi-
tioned ones (the scheme is both a simplification and an elaboration of the computational models that
we used for simulating real experiments on both second-order conditioning, Mannella, Zappacosta,
and Baldassarre, 2008, and devaluation, see Mannella, Mirolli, and Baldassarre, 2007, 2009a, and
section 2.6.2).

Figure 2.8: BLA: schematization of the learning of CS-US associations (thin arrows) on the basis of the pre-existing

unlearned US-UR associations (thick arrows). Ancronyms: Amg (amygdala), BL (basolateral amygdaloid nucleus), CeA

(central amygdaloid nucleus), LH (lateral hypothalamus),PPT (pedunculopontine tegmental nucleus), SNpc (substantia

nigra, pars compacta), VTA (ventral tegmental area).

Finally, it is important to mentioned that all the CS-US associative properties and other properties
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discussed so far in relation to BLA are likely implemented bya wider whole system formed by BLA
and OFC, a region of PFC with which BLA exchanges dense reciprocal interconnections. In this
respect, it would be more correct to say that such associative functions are produced by the whole
BLA-OFC ‘system’ instead of by BLA alone. Experiments involving lesioning either BLA or OFC
show in fact that it is very difficult to dissociate the functions of BLA and OFC (Pickens, Saddoris,
Gallagher, and Holland, 2005; Roesch and Schoenbaum, 2006;Schoenbaum, Saddoris, and Stalnaker,
2007), although recent investigations are starting to showthat OFC is more closely involved with
working memory processes whereas BLA is more closely related to learning CS-US associations
(Schoenbaum et al., 2003, cf. also section 2.6.3).

2.4.3 MEA as the locus of the modulation of USs and URs by internal states

The mechanisms for which an organism can learn to associate innately neutral stimuli to innately
specific responses strictly linked to survival and reproduction is really useful only if there is a way to
modulate these associations according to the current internal state of the organism. For example, let’s
consider feeding behavior. Even in presence of the stimuli that have been repeatedly experienced as
predictive of food, it is useful to trigger all the responsesrelated to feeding (e.g. orienting, approach-
ing, salivating, etc.) only when the energy level of the organism is low (i.e. when it is hungry), but not
when the organism is satiated. Otherwise when encounteringa place where there is plenty of food an
animal would indefinetely continue to produce feeding related responses, thus risking, for example, to
die of thirst. As discussed in section 2.1, regulating whichkind of activity an organism pursues in each
moment is exactly the function of a well designed motivational system. The regulation of organisms’
activities on the basis of its current internal state is whatmakes organisms’ behaviorproactive(i.e.
controlled by their needs) rather thanreactive(i.e. completely determined by external stimuli).

The need to flexibly and efficiently modulate basic unconditioned responses on the basis of the
current state of the body might even represent one of the mostimportant reasons why the CS-US
system in BLA has evolved to supplement the probably more basic CS-UR system in CEA. In order
to understand why, let’s consider the case of food devaluation. There can be two types of devaluation:
‘temporary’, for example when the organism is satiated, and‘permanent’, for example when a food
resulted to be toxic (e.g., its ingesting was followed by nausea or stomachache).

Temporary devaluation could in principle be faced even withonly a CS-UR system: if the current
state of the body modulates directly the unconditioned responses related to feeding (e.g., orienting,
approaching, and salivating) then these responses could betemporarily blocked regardless of the stim-
ulus that would trigger it (be it unconditioned or conditioned). But the same solution is not viable for
permanent devaluation: an animal cannot permanently blockall feeding responses, otherwise it would
die of starvation. With a direct CS-UR system, even the solution for which the permanent devaluation
is done at the level of the US is satisfying. In fact, such solution could not prevent the execution of
preparatory feeding responses eventually triggered by CSslinked to the food, with the result of an
inefficient activity directed to an devaluated, even dangerous food.

A CS-US system allows preventing these drawbacks. The reason is that in such a system de-
valuation can be done at the level of the US. The devaluated UScan thus inhibit the URs that are
innately associated to it without preventing other stimulito trigger those responses when neither the
devalued US nor the CSs linked to it are present. This would work equally well for both temporary
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and permanent devaluation.
While a considerable amount of empirical research has been dedicated to understanding the roles

of CEA and BLA in CS-(US)-UR associations, much less work hasbeen done for clarifying the exact
neural mechanisms through which unconditioned responses are modulated by the internal states of
organisms. The available empirical evidence suggests thatthis is exactly the function of the third main
group of Amg nuclei, namely MEA. First of all, there is evidence that MEA does indeed play a role in
regulating the triggering of basic behaviors on the basis ofthe state of the body: for example, lesions
to MEA have been shown to produce disturbances to feeding behavior that lead to obesity (King,
2006), which depends on the incapacity of regulating the triggering of an unconditioned behavior (e.g.
feeding) on the basis of the current state of the body (e.g. the level of hunger). Second, MEA has just
the right kind of connectivity for supporting this modulatory function (see figure 2.9). In fact, MEA is
reciprocally connected to Hyp (in particular VMH, LH, and PVN: De Olmos, Beltramino, and Alheid,
2004; Pitk̈anen, Jolkkonen, and Kemppainen, 2000), which is the main center of information regarding
the current states of the body. Moreover, MEA sends efferentinhibitory GABAergic projections to
both CEA and BLA (De Olmos, Beltramino, and Alheid, 2004; Pitkänen, Savander, and LeDoux,
1997), and receives excitatory connection from BLA.

Figure 2.9 represents a schematization of how MEA could modulate both US and UR representa-
tions in BLA and CEA on the basis of the current body states. Once a representation of US in BLA
gets activated (either directly, or via the activation of anassociated CS), it tends to activate the respec-
tive representation in MEA. If the parts of the brain representing the state of the body (e.g. the Hyp)
inform MEA that that US is devalued, the corresponding unit in MEA gets fully activated and can in-
hibit both the representation of the stimulus in BLA and the representations of the corresponding URs
in CEA. For the effectiveness of temporary devaluation (e.g., caused by free feeding and satiation),
it is necessary that inhibitory connections from MEA to CEA/BLA have both fast learning and fast
forgetting, so that, for example, when the organism is satiated they grow up and inhibit the related US
and UR whereas when its hungry they decrease so permitting feeding.

This schema might also explain a last important phenomenon,known asincentive learning(Bal-
leine and Dickinson, 1998; Balleine and Killcross, 2006), showed in experiments where the current
value of a US (say ‘USa’) is transferred to another US (say ‘USb’) only if the animal can experience
USb after the devaluation of USa. In fact, if USb is not re-experienced after devaluation of USa the
connections from its representation in MEA and the one in BLA(and the relative URs in CEA) has
not grown up, thus not inhibiting the responses to the associated CSs. On the other hand, as soon as
USb is re-experienced when the animal is in a sated condition, the inhibitory connections immediately
grow thus preventing the associated CS to trigger the unconditioned responses.

2.5 The roles of amygdala in emotional processes

According to the framework presented here, Amg has evolved to efficiently associate all the innate re-
sponses (URs) that are directly important for organisms’ survival and reproduction to innately neutral
stimuli (CSs) that are repeatedly experienced as predictors of those stimuli (USs) that trigger those
responses. This section illustrates in detail the operation of this fundamental function of Amg with
respect to the three classes of unconditioned responses: regulation of body states (section 2.5.1), dif-
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Figure 2.9: MEA: schematization of the modulation of Pavlovian associations based on internal states, plastic connections

(thin arrows) and innate connections (thick arrows). Circle edges denote inhibitory connections whereas arrow edges denote

excitatory connections. Ancronyms: Amg (amygdala), BLA (basolateral amygdaloid complex), CeA (central amygdaloid

nucleus), MeA (medial amygdaloid nucleus).

fuse brain modulation (section 2.5.2), and triggering of unlearned behaviors (section 2.5.3). Recall
(see section 2.2) that the processes regulating these threekinds of basic responses are here assumed
to be essential components of emotions.

2.5.1 Regulation of body states

The regulation of body states based on external events is a fundamental functionality for complex
organisms which have a several needs to satisfy. For example, if an organism is going to eat, it will
be useful for it to prepare digestion with salivation and an increase of blood flow to the guts. But if
a predator suddenly arrives, the same organism has to prepare its body for fighting or flighting, for
example by suddenly redirecting the blood flow to the muscles, increasing the heart rate, increasing
glucose release, etc.

Thanks to its associative properties, Amg can transfer all these body regulations from stimuli that
innately trigger them to stimuli that are learned to be predictors of them. The adaptive advantages
rendered by these processes are evident: body states can be regulated in advance with respect to
the events that make them useful. These processes are captured in the laboratory by the classical
experiments of Pavlov, in which a dog learns to prepare its body to digestion by salivating in advance
when it hears a bell that has been systematically associatedwith the delivery of food.

Many of these body regulations take place via the influence ofthe ‘autonomic nervous system’
(‘ANS’, working aside the Central Nervous System, ‘CNS’), which includes the sympathetic and
parasympathetic nervous systems (‘SNS’ and ‘PSNS’, respectively). The SNS is always active at
a basal level (‘sympathetic tone’) and becomes more active during times of stress. With stress the
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SNS prepares the body tofight-or-flightresponses in that it boasts arousal and energy generation and
inhibits digestion. In particular, it diverts blood flow away from the gastro-intestinal tract and skin
via vasoconstriction, enhances blood flow to skeletal muscles and lungs, dilates bronchioles of lungs,
increases heart rate, dilates pupils, inhibits peristalsis (Davis and Whalen, 2001; Iversen, Iversen, and
Saper, 2000). The PSNS has a complementary function with respect to the SNS: in general, it can be
said to prepare the body to arest-and-digestmode of behaviour in that it promotes calm action and
digestion. In particular, in absence of salient stimuli andcompelling needs PSNS dilates blood vessels
leading to the gastro-intestinal tract, constricts the bronchiolar diameter in lungs, diminish heart rate,
causes constriction of pupils, stimulates salivary gland secretion, accelerates peristalsis, and cause
erection of genitals (Iversen, Iversen, and Saper, 2000).

Amg influences the SNS and the PSNS mainly via CeA (Davis and Whalen, 2001): in partic-
ular, through its efferent connections directed to variousnuclei of Hyp, mainly LH, PO, and PVN
(Jolkkonen and Pitk̈anen 1998; Knapska, Radwanska, Werka, and Kaczmarek 2007; see figure 2.10),
and through efferent connections to the brain-stem and the spinal-cord (Davis and Whalen, 2001).
Through the connections to LH, CeA can influence thirst and hunger (that is, the perception of the
internal lack of water and food); through the connections toPO it can modulate urination, heart rate,
and blood pressure; and through the connections to PVN CeA can influence gastric reflexes, blood
pressure, and temperature regulation.

The innervations to PVN are also very important as they allowCeA to control thehypothalamic-
pituitary-adrenal axis, which, via the Pituitary gland (or ‘hypophysis’), has a major role in the regu-
lation of the network of body hormones (Iversen, Iversen, and Saper, 2000). Hence, through this axis,
CeA can influence virtually all internal processes, including water retention, blood pressure, tem-
perature regulation, male aggression, uterine contractions and lactation, the production of extrogens,
analgesy and metabolism of nutrients (Iversen, Iversen, and Saper, 2000).

2.5.2 Diffuse brain modulation

Like the regulation of body, the regulation of diffuse brainstates plays a central role for organisms
that have to satisfy several different needs. In fact, the performance of different activities and actions
requires the differential involvement of different brain areas and the functioning of such areas with
different modes. The modulation of brain activity is accomplished in two ways: (a) indirectly, via
the body, through the activation of endocrine glands that release hormones in the blood (hormones
regulate both the body and brain states); (b) directly, via the activation of ancient nuclei of neu-
rons that release the four principal neuromodulators: the monoamineserotonin(5-HT), and the three
catecholaminedopamine(DA), norepinephrine(NE; also named ‘noradrenaline’), andacetylcholine
(ACh).

The neuromodulators are produced in two main ways, that tendto have different effects on target
neurons:

1. Tonic productioninvolves a prolonged populational activation of the neuromodulatory neurons,
typically induced via their diffused GABAergic disinhibition, which leads to the accumulation
of the neuromodulator in the extrasynaptic space. The main effect of tonic production of neu-
romodulators is the general modulation of the targeted areas.
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Figure 2.10: Body states regulation: schematization of how amygdala contributes to regulate the body states via the sympa-

thetic, parasympathetic and hormonal systems. Ancronyms:AMB (nucleus ambiguus), CEA (central extended amygdala),

DMX (dorsal motor nucleus of the vagus nerve), Hyp (hypothalamus), LH (lateral hypothalamus), MEV (midbrain trigemi-

nal nucleus), PO (preoptic nucleus of hypothalamus), PVN (paraventricular nucleus of hypothalamus), Pit (pituitary gland).

2. Phasic productioninvolves a high but short activation of the neuromodulatoryneurons, typically
induced via their glutammaergic direct activation, which leads to the fast but temporary high
increase of neuromodulator in the intra-synaptic space. Phasic production of neuromodulators
is supposed to have an important effect for learning (see thecase of DA, below) or for quick
regulation of brain states when speed is paramount (e.g. to face a predator).

Even with respect to the brain modulation, the core functionof Amg is based on its capacity to
transfer the effects originally associated to stimuli which have been genetically established as salient
by evolution (US) to previously neutral stimuli (CS). So, for example, the increased levels of stress
and alertness innately associated to the perception of a predator, can be transferred to the type of
noises which preceded the attack, or to the sight of the placewhere the attack took place.

The Amg exerts brain modulations mainly via CEA (Davis and Whalen, 2001) which is connected
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Figure 2.11: Brain states regulation: schematization of how amygdala contributes to regulate brain states via the diffused

action of neuromodulators. Ancronyms: VTA (ventral tegmental area), SNpc (substantia nigra pars compacta), LC (locus

coeruleus), PPT (pedunculopontine tegmental nucleus), LDT (laterodorsal tegmental nucleus), SI (substantia innominata),

DR (dorsal raphe), ACh (acetylcholine), DA (dopamine), NE (norepinephrine), 5HT (serotonine).

to the main brain nuclei producing the neuromodulators. Oneimportant exception is the modulation
by BLA of the burst firing of the dopamine neurons via glutamatergic projections to LH (Petrovich,
Holland, and Gallagher 2005; Petrovich, Setlow, Holland, and Gallagher 2002; see also section 2.4.2).

Amg modulates the production of DA by influencing the two maincenters of dopaminergic neu-
rons: VTA, which reaches NAcc and PFC (Fudge and Emiliano, 2003; Fudge and Haber, 2000), and
SNpc, which sends projections principally to BG, especially DLS and DMS (Han, McMahan, Hol-
land, and Gallagher, 1997; Lee, Groshek, Petrovich, Cantalini, Gallagher, and Holland, 2005). Tonic
DA enhances the general level of processing of PFC, so enhancing working memory and attention
(Phillips, Vacca, and Ahn, 2008), and, via NAcc, the vigor ofperformance of selected actions (Flo-
resco, 2007; Niv, Daw, Joel, and Dayan, 2006). Phasic DA signals the positive/negative salience of
stimuli which is at the basis of some important learning processes within BG (Schultz, 2002; Surmeier,
Ding, Day, Wang, and Shen, 2007) and vmPFC (Otani, Daniel, Roisin, and Crepel, 2003).

Amg modulates the production of NE through LC, which innervates virtually the whole cortex, the
BG, Th, Hyp, Hip, Cer, and the spinal cord (Aston Jones and Cohen, 2005; Berridge and Waterhouse,
2003) (note that noradrenergic neurons play an important function also within the sympathetic system;
NE is also released as an hormone in the blood by adrenal medulla). NE plays an important function
in the regulation of the sleep/wake cycle, and in increasingattention, arousal, and working memory
on the basis of the general saliency of stimuli (that is on thebasis of their novelty) (Berridge and
Waterhouse, 2003).

Amg regulates the production of Ach mainly via PPT, LDT (Knapska, Radwanska, Werka, and
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Kaczmarek, 2007; Semba and Fibiger, 1992), and SI (Jolkkonen, Miettinen, Pikkarainen, and Pitkänen,
2002), which innervate the brainstem, Amg, Hip, and PFC. In the central nervous system, Ach is
known to modulate the sleep/wake cycle, synaptic plasticity (LTP), general excitability, arousal, and
reward (Chen, Nakamura, Kawamura, Takahashi, and Nakahara, 2006) (note that in the peripheral
nervous system, Ach is used to activate muscles).

Both directly and via LH and PAG (Bandler, Keay, Floyd, and Price, 2000; Peyron, Petit, Rampon,
Jouvet, and Luppi, 1998), Amg regulates the production of 5-HT by the DR, which innervates BG
(including NAcc), Th, Hyp, Hip, Amg, and virtually the wholecortex (Barnes and Sharp, 1999).
5-HT modulates mood, anger, aggression, stress, sleep, body temperature, and metabolism (Grahn,
Maswood, McQueen, Watkins, and Maier, 1999; Maier and Watkins, 2005; Nelson and Trainor, 2007;
Sørensen, Bjorvatn, and Ursin, 2000)(note that 5-HT is alsoa peripheral signal mediator, in particular
within the guts autonomic system).

2.5.3 Triggering of unlearned behaviors

In probably all animals, evolution has led to the emergence of a number of stereotyped unlearned basic
behaviours that are triggered when specific stimuli are perceived. For example, these behaviours lead
a hungry rat to approach food as soon as this is perceived (e.g. smelt), and, once it is close to the
mouth, to ingest it. Similarly, a rat will regularly performa rearing behaviour directed to looking for
predators. In case the rat spots one, it will freeze if the predator is far or startle and then engage in
flight or fight behaviors if the predators is close.

Amg plays an important function in the selection of these behaviors. First, it allows the anticipa-
tory execution of these behaviours: that is, in correspondence to previously neutral stimuli that predict
the appearence of the stimuli that innately trigger the behaviours. For example, the sight of a land-
mark previously associated with food might trigger an approaching behaviour directed to it and this
might allow obtaining the food, or a particular smell associated with a predator might trigger a startle
reflex and then a flight behaviour. Second, it allows triggering the behaviours only in the presence
of suitable internal states. For example, a rat can stop executing a feeding behaviour if it becomes
satiated, or can decide whether to fight or flight on the basis of its self-perceived internal state.

The Amg exerts a control on unlearned behaviours on the basisof a complex network of con-
nections that CeA has with various nuclei (figure 2.12). So, for example, CeA can trigger freezing,
flight or fight behaviours via PAG (Bandler, Keay, Floyd, and Price, 2000; Davis and Whalen, 2001),
the startle reflex via NRPC (Davis and Whalen, 2001). Furthermore, Cea might also exploit more
indirect mechanisms based on DA to modulate the triggering and execution of feeding, rearing and
approaching behaviours. In particular, CeA might enhance feeding behaviours via the dopaminergic
modulation of NAccS-VP-LH pathway through VTA (Ahn and Phillips, 2002; Smith and Berridge,
2005; Tindell, Smith, Peciña, Berridge, and Aldridge, 2006; Wyvell and Berridge, 2000). Similarly,
rearing seems to be performed on the basis of a striato-cortical loop passing through DLS-PMC-MC
and might be modulated by CeA via a DA influence passing through SNpc (Han, McMahan, Holland,
and Gallagher, 1997). In the same way, the fundamental behaviour of approaching, which plays a
central role in the adaptation of organisms as it allows themto get in contact with the needed re-
sources scattered in the environment, is performed via a second striato-cortical loop involving NAccC
and AC, that can be influenced by CeA through DA produced via a connection to VTA (Cardinal,
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Parkinson, Marbini, Toner, Bussey, Robbins, and Everitt, 2003; Parkinson, Willoughby, Robbins, and
Everitt, 2000). Note how these mechanisms differ from direct triggering, e.g. performed via PAG, as
they imply an existing tendency to perform the behaviour, e.g. to move towards a seen object, and a
modulation of Amg of this tendency, performed on the basis ofthe the VTA-NAcc or the nigro-striatal
dopaminergic connections. This difference seems to be a general feature when comparing the neural
substrates of fear-conditioning responses with those of appetitive-conditioning responses.

Figure 2.12: Triggering of unlearned behaviors: schematization of how amygdala contributes to the triggering of unlearned

behaviors via different sub-cortical and cortical brain areas. Acronyms: AC (anterior cingulate cortex), CeA (central amyg-

daloid nucleus), DLS (dorsolateral striatum), LH (lateralhypothalamus), MC (motor cortex), NAccC (nucleus accumbens

core), NAccS (nucleus accumbens shell), NRPC (nucleus reticularis pontis caudalis), PAG (periaqueductal gray), PMC

(premotor cortex), SNpc (substantia nigra, pars compacta), VTA (ventral tegmental area).

2.6 The roles of amygdala in cognitive processes

Thanks to its capacity to trigger basic emotional responseson the basis of conditioning processes,
amygdala also evolved the capacity to act as a link from emotional processes to cognitive ones, thus
allowing the development of important new functionalities. In this section we discuss three fundamen-
tal new cognitive functions allowed (or improved) by Amg: affective labeling (2.6.1), goal-directed
behavior (2.6.2), and planning and decision making (2.6.3).
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2.6.1 Affective labeling

One of the most important memory functions of the brain is itscapacity to quickly store specific events
characterised by unique and arbitrary configurations of objects and events in space. This capability
plays a very important role for organisms’ survival as it allows them to store important information
on the basis of a few experiences or, in extreme cases, even one single experience.

This functionality relies heavily on Hip and its peculiar anatomical and physiological properties.
These properties have been specified at a theoretical level in McClelland, McNaughton, and O’Reilly
(1995), have been modelled in Alvarez and Squire (1994), andcan be summarised as follows (cf.
Rolls and Kesner, 2006): (a) Hip has important reciprocal connections with many associative cortical
areas (e.g. PFC, IT, PPC) and sub-cortical nuclei (e.g. NAccand Amg); (b) Hip neurons have massive
lateral connectivity; (c) Hip is one of the brain loci where rapid associative learning leading to Long
Term Potentiation is strongly present; (d) Hip has been shown to reactivate during sleeping (Eschenko,
Ramadan, M̈olle, Born, and Sara, 2008; McClelland, McNaughton, and O’Reilly, 1995).

Figure 2.13: Affective labeling: schematization of how amygdala ‘tags’memories stored in Hip and cortex through emo-

tional evaluations of stimuli and episodes. Plastic connections and innate connections are respectively indicated with gray

and black arrows. Acronyms: Amg (amygdala), BLA (basolateral amygdaloid complex), Hip (hippocpampus), PFC (pre-

frontal cortex), PPC (posterior parietal cortex), Te (temporal cortex).

On this basis, McClelland, McNaughton, and O’Reilly (1995)suggested that Hip plays an impor-
tant role inepisodic memoryacquisition and consolidation. In particular, Hip can rapidly form neural
associations between sub-clusters of its neurons and several different multimodal activation patterns
that take place in different brain areas at the same time. Consequently, Hip can form representations
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of any arbitrary polimodal pattern existing at a certain time. According to the authors, the later spon-
taneous reactivation (e.g. during sleep) of Hip clusters cause the reactivation of the corresponding
patterns located in the various areas of the brain and so allows the formation ofdirect connectionsbe-
tween the neurons corresponding to them (consolidation). With consolidation, probably the patterns
initially stored in Hip fade away (within days/months), butthey might even continue to be stored, at
least in part, within Hip (Rolls and Kesner, 2006). The slow speed and intermixed order with which
consolidation of different experiences takes place allowsthe formation of semantic long-term memo-
ries having a high degree of generalisation since the areas innervated by Hip can capture thecommon
structureexisting behind different experienced episodes.

BLA plays at least two important roles in the formation of episodic memories within Hip. First
of all, it is important that only the experiences with high relevance for survival and reproduction are
stored. As pivot of emotions, Amg contains the information needed to decide which events, either with
a positive or negative valence, might have a high biologicalrelevance, and so deserve to be stored in
Hip. This allows the Amg to drive the Hip to store or not the various experiences. This first function
is likely played by the Amg on the basis of its influence on neuromodulators (cf. section 2.5.2), which
play a very important role in Hip learning.

A second, more direct, function played by Amg in episodic andsemantic memories is based on
the massive reciprocal connections it forms with Hip. Theseconnections allow Amg to furnish Hip
with the current emotional context, which is to be integrated with the other cognitive components
that form the episodes to be stored. With the consolidation process driven by Hip, the information
stored within Amg gets directly associated with other cortical and sub-cortical areas with which it is
directly or indirectly (especially via PFC) connected. In this way, such information comes to play
the role of a sort of emotional tag associated with the storedepisodes. This association allows two
fundamental processes to take place. First, it allows emotional reactions taking place withing Amg to
contribute to the recall of memories stored within the Hip orwithin the areas with which the current
affective context has been associated during consolidation (LaBar and Cabeza, 2006; Phelps, 2004).
Second, when Hip, or the areas linked between them during consolidation, recall particular episodes,
their association with Amg allow them to reactivate the emotional valence of such episodes within
Amg itself so as to: (a) trigger the suitable brain and body regulations suitable for such episode (this
might be important if the current situation is similar to therecalled episode), and (b) to get a feedback
from Amg (via reciprocal connections) on the biological saliency of the recalled episode (this might
be important when Hip processes excert a direct or indirect influence on action).

So, for example, if in the past a rat has experienced an attackfrom a predator after having perceived
a particular noise in a certain location of the environment,a later sight of such place might trigger the
recall of the noise (and hence trigger a useful priming effect which would facilitate its detection)
and this might activate the related negative effects of the attack within Amg (thanks to a CS-US
association). In turn, this reactivation might not only trigger a suitable regulation of body (e.g., making
the body ready for flight or fight) and brain (e.g., enhancing the general arousal of cognitive processes
such as attention), but also contribute to recall further useful memories within Hip (or within the areas
connected during consolidation), for example the paths followed to reach a safe place after the attack.
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2.6.2 Goal-directed behaviors

As mentioned in section 2.4, instrumental (or ‘operant’) learning represents, aside Pavlovian learning,
one of the two fundamental processes underling individual learning in complex organisms (Domjan,
2006; Skinner, 1938; Thorndike, 1911). As we have seen, instrumental learning allows organisms to
form stable S-R associations between stimuli and responses, initially produced by chance, if the latter
allow obtaining rewards or avoiding punishments. The acquisition of S-R associations is well captured
by reinforcement learning models (Barto, 1995; Sutton and Barto, 1998). Such S-R associations are
acquired only with prolonged training and form efficient butrather rigid ‘habits’ that are performed
independently of the current value of the pursued outcome (e.g. food, see below).

Figure 2.14: Goal-directed behaviour: schematization of how amygdala contributes to bias the selection of instrumentally-

acquired stimuli. Plastic connections and innate connections are respectively indicated with thin and thick arrows. Circle

edges denote inhibitory connections whilst arrow edges denote excitatory connections. Acronyms: Amg (amygdala), BG

(basal ganglia), BLA (basolateral amygdaloid complex), DLS (dorsolateral striatum), GPi (globus pallidus, internalseg-

ment), MC (motor cortex), NAccC (nucleus accumbens core), PL (prelimbic cortex), PMC (premotor cortex), VP (ventral

pallidum).

Basal ganglia are considered to be the main locus where operant conditioning associations take
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place. In particular, the macro-loop formed by DLS with cortex (in particular PMC/MC) via the Th, is
known to play a fundamental role in both the acquisition and the expression of S-R associations (Yin
and Knowlton, 2006).

Other portions of BG, in particular the two macro striato-thalamo-cortical loops DMS-PFC/PC
and NAcc/vmPFC, play a rather different role. In particular, the DMS-PFC/PC loop plays an important
role in the initial phases of learning, when the S-R habits are not yet formed (Yin and Knowlton, 2006).
The last NAcc/vmPFC loop, which has a higher interest for this review due to the strong projections
it gets from the BLA, is very important for the guidance of behaviour (the ‘action’ – A) on the basis
of the current value of its ultimate goal (the ‘outcome’ – O),for example the current potential value
of the pursued food.

The behaviors modulated on the basis of A-O associations have a typicalgoal-directednature in
that they lead to select actions on the basis of a relation which goesfrom the outcomes of actions
to the actions themselvesand soinvertsthe temporal and causal relationship existing between them
(actions cause the achievement of outcomes). In this respect, the goal-directed modulation of the
selection of instrumental behaviours considered here represents a first fundamental departure from the
S-R scheme which reaches its maximum degree of development with planning and complex decision
making processes described in section 2.6.3.

The functionality accomplished by the A-O mechanisms has a fundamental adaptive role. Indeed,
it allows internal body states and needs, via the MEA-BLA pathway, to bias the selection of differ-
ent habits which might be triggered in a given situation. Forexample, as elegantly captured by the
instrumental devaluation experiments mentioned below, ifa rat can perform two or more different
instrumentally acquired actions (i.e. different habits) to achieve two or more different outcomes (e.g.
different resources satisfying different needs), the current configuration of its internal states and needs
will allow it to decide on the fly which habit to select, without the need of re-learning. These mecha-
nisms add a great flexibility to the rigid habits and are fundamental to allow animals to select between
different courses of actions at each time on the basis of the needs related to the homeostatic regulation
of body states (cf. section 2.5.1).

Balleine and Dickinson (1998) boosted a whole new research agenda directed to study A-O be-
haviours and to contrast them to S-R behaviours traditionally studied within the behaviourist approach.
These authors give an operational definition of goal-directed behaviours based on two classes of ex-
periments:

1. Goal-directed behaviours are sensitive to the degradation of theA-O contingency, that is the
strength of the causal relationship existing between the performance of an action and the achieve-
ment of the related outcome (the contingency strength is measured on the basis of the relation
existing between the probabilities of obtaining the outcome with and without the action). If
this contingency is degraded, for example by delivering theoutcomes non-contingently to the
action, the considered action is performed less intensely or frequently in cases of goal-directed
behaviours but not in case of habits (Balleine and Dickinson, 1998).

2. Goal-directed behaviours areimmediately(i.e. without the need of re-training) sensitive to
manipulations of the value that the organism assigns to the outcome (Balleine and Dickinson,
1998). For example, in a typical instrumental devaluation experiment (Balleine et al. (2003))
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one of two foods (‘Food1’ and ‘Food2’) previously used to form two instrumental associations,
‘PressLever1-Food1’ and ‘PressLever2-Food2’ , is ‘devalued’ by letting the rat to freely access
it (e.g. Food1). In a successive test, when exposed to both Lever1 and Lever2 the rat has a
strong bias to select Lever2 associated to the currently non-devalued food (Food2).

.
Figure 2.14 presents a diagram which allows illustrating the most important mechanisms involved

in goal-directed behaviour, for example the instrumental devaluation experiment illustrated above (the
model has first been published in Mannella et al. (2007, 2009a) and is now being further refined). The
components reported on the left of the figure mimic the reinforcement-learning based acquisition
of S-R behaviours on the basis of prolonged training. This allows the rat to acquire the two habits
‘PressLever1-Food1’ and ‘PressLever2-Food2’ in the first phase of the experiment when the two levers
are presented separately. When in the last test phase, whichtakes place after one of the two foods has
been devalued (say Food1), the two levers are presented together, the rat exhibits a strong tendency to
select on of the two levers (Lever2) thanks to the biasing effects that Amg exerts on the habits.

This important effect is played by Amg on the basis of three fundamental mechanisms:

1. While in the first phase of the experiment the rat instrumentally acquires the S-R habits, the
creation of the contingency between the observation of eachlever and the following reception
of the corresponding food allows Amg to form the two CS-US contingencies Lever1-Food1 and
Lever2-Food2.

2. In the devaluation phase, when the rat can freely accessible one of the two foods, implies that
the rat gets satiated for such food (e.g. Food1): in the model, the resulting internal state inhibits
the corresponding representation of food (US) within BLA.

3. As a consequence, when in the last phase the rat is exposed to the two levers, only one of the
two representations the levers (CSs) within Amg can activate the corresponding US represen-
tation and so exert an influence on the corresponding S-R habits via NAccC (Corbit, Muir, and
Balleine, 2001). Importantly, the actual biasing effects of Amg on habits, which instantiate the
A-O associations within the model, is performed both via thestriato-nigro-striatal connections
(‘dopamine spirals’, Haber, 2003) and via PFC (in particular PL, Corbit and Balleine, 2003).

These mechanisms capture the essence on how Amg can increasethe adaptation of animals by
adding an important flexibility to the selection of the instrumentally acquired habits thanks to its
capabilities of forming CS-US associations (within BLA) and of modulating their activation on the
basis of internal states (detected by MEA).

2.6.3 Planning and decision making

Planning and decision making involving complex decisions can be he considered the hallmark of
complex cognition in mammals. Planning consists in the mental generation of trajectories of future
possible behaviours and states that can be achieved with them (Dagher, Owen, Boecker, and Brooks,
2001), whereas complex decision making involves the selection of a given alternative versus other
alternatives on the basis of a complex calculation of the associated consequences, their values and
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Figure 2.15: Planning: schematization of how amygdala contributes to planning by furnishing values to anticipated states.

Left: an hypothetical task involving planning. Right: a possible model to tackle the task. All connections in the model are

learned in the various phases of the process (see text).A, B, C, S states corresponding to being in different chambers;L:

lever;NS: neutral stimulus;CS: conditioned stimulus;S: state;A: action leading from one state to another. Acronyms:

Amg (amygdala), BLA (basolateral amygdaloid complex), PFC(prefrontal cortex), PMC (premotor cortex).

their probability of actually happening (Bechara, Tranel,Damasio, and Damasio, 1996). The core
functionality underlying planning and complex decision making is the capacity of producing internal
images of future states decoupled from current percepts butinstead related to percepts which might
be experienced in the future as a consequence of own actions (Miller and Cohen, 2001).

The development of these skills has reached the maximum level of sophistication in humans due
to the evolution of an exceptionally extended and complex PFC cortex. In this respect, the PFC
represents the brain area governing behaviour at the maximum level of abstraction and involving the
longest future time scope (Miller and Cohen, 2001).

Amygdala plays a fundamental role in planning and complex decision making: it furnishes the
values to the imagined possible future statesso as to allow animals to select the suitable course of
action which has the highest probability of achieving important biological advantages while reducing
physical damages and costs to a minimum (Kringelbach and Rolls, 2004). In this respect, imagine a
rat which has previously experienced food in a certain placein the environment but, on the way to it,
it smells the presence of a predator, for example a cat. In this case the rat has to decide if continuing
to move towards the food place, or, say, to detour and reach the food by following a much longer way,
on the basis of the chances of encountering the predator along the straight fast path (e.g., as signalled
by the intensity of the predator odour), the anticipated energy spent in the detour, the knowledge of
the path to be followed in the case of the detour, the information from the body related to the current
level of hunger and the residual amount of energy available,etc.

A possible experiment capturing this type of situation, which is inspired by the response-pre-
conditioning experiments , is one where a rat is set in a chamber S from which it can access either one
of two chambers A and B by entering their gated entrance (the gates prevent the rat from seeing the
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inside of A and B from S). Now assume that each of the two chambers A and B contains a different
distinguishable lever, respectively LeverA and LeverB, and that the rat is left free to explore this
environment for a prolonged time. Also assume that the rat can experience a further level, LeverC,
in a chamber C which does not communicate with none of S, A and B. Also assume that in a second
training phase the same rat experiences a LeverA-food association in A, a LeverC-food association in
C, and a Lever-no food condition in B. Now, if in a third phase the rat is set in S, one might expect
that the rat would exhibit the tendency to enter A more than B as in A it would expect to see LeverA
associated with food.

Figure 2.15 shows a sketch of a model which might be implemented to reproduce the role of
Amg and PFC (in particular OFC, IL and PL) in the described experiment. The figure shows that the
experience of the chambers A and B in the first phase might allow the rat to form associations between
the representations of such chambers and the representation of chamber S in PFC, linked by suitable
representations of the actions leading from S to A (AS−A) and from S to B (AS−B), and between the
representations of S, A, B and C and the corresponding representations in Amg (CSS , CSA,CSB ,
andCSC ). When in the third phase the rat is set in S, the PFC representation of S should cause
an anticipatory reactivation of the internal representations of A and B (but not C). This activation
would cause the corresponding representations within Amg to be activated (CSA and CSB): as only
CSA in turn reactivates the representation of food US, this might produce a feedback signal to the
PFC representation A and this would strengthen the activation of AS−A in comparison ofAS−B .
This might cause trigger the performance ofAS−A with the aid of downstream areas, for example
involving the striato-cortical loops involving in the specification of the detailed movements of action
(in particular, DMS and DLS, and PMC and MC) with which PFC is directly and indirectly connected.

Amg and PFC, in particular BLA and OFC, play also a key role in complex decision making.
This is for example demonstrated by the experiments of Winstanley, Theobald, Cardinal, and Robbins
(2004) (cf. also Mobini, Body, Ho, Bradshaw, Szabadi, Deakin, and Anderson, 2002) who trained
rats with two levers, one producing a small immediate amountof food and the second one producing
a larger but delayed amount of food. Interestingly, rats which received a post-training lesion of BLA
exhibited a higher tendency to select the immediate-food lever in comparison to shams whereas rats
which received a post-training lesion of OFC exhibited a higher tendency to select the delayed-food
lever. Although an agreed explanation of these experimentsis not yet available (cf. Mobini, Body,
Ho, Bradshaw, Szabadi, Deakin, and Anderson, 2002; Schoenbaum, Saddoris, and Stalnaker, 2007;
Winstanley, Theobald, Cardinal, and Robbins, 2004), they show that OFC and BLA play a pivoting
role in complex decision making.

It is interesting to relate these data on rats with those on complex decision making in humans. For
example, humans with a damaged Amg/OFC/vmPFC perform poorly in tasks requiring the integration
of information about imagined gains and costs in the financial domain. Bechara et al. (1994) developed
a task, the Iowa Gambling Task (IGT), directed to study this kind of dysfunction. In the test subjects
are allowed to choose an item from two decks of cards, one which produces low monetary gains with
a high probability and one which produces high gains but alsovery high cost with a low probability so
that the net gain this deck is lower than the net gain of the first deck. Whereas control subjects learn
to choose cards from the first deck and also exhibit an increased skin conductance before selecting a
card from the second deck, patients with damage to either theAmg or the vmPFC tend to prefer the
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high-risk deck and also fail to show an increased skin conductance.
Bechara et al. (1996) have proposed that Amg and vmPFC play a central role in guiding choices

in the IGT. The idea is that PFC generates possible future events (e.g., financial gains or damages) and
these are evaluated by the PFC-Amg re-entrant loops (cf. theaforementioned abstract model) thanks
to the capacity of Amg of activating the body reactions that would follow from the actual experience
of such events. In this respect, these emotional body reactions plays the role of ‘somatic markers’ of
such events that, once propagated back to PFC, support the selection or rejection of the alternative
available courses of action.

2.7 Conclusion

Amygdala is a brain system which palys a key role in the affective regulation of body, brain and
behaviour. This principled review has presented the general principles which might underly the inner
functioning of amygdala, and has illustrated how they allowamygdala to play a key role within various
sub-systems of brain. The review has first shown how Amygdalais capable of integrating information
from internal states, innately relevant stimuli and innately neutral stimuli on the basis of three core
functioning mechanisms: (a) amygdala associates the triggering of important basic behaviours (e.g.
approaching and salivation), innately triggered by biologically relevant stimuli (e.g. food), to neutral
stimuli (e.g., the sight of a landmark signaling the presence of food in the environment); (b) amygdala
associates representations of neutral stimuli (e.g., of the landmark) to representations of biologically
relevant stimuli (e.g., the food) so transferring all the properties of the latter ones (e.g., the capacity
of triggering basic behaviours) to the former ones; (c) amygdala modulates such associations on the
basis of internal states (e.g., satiation can stop the triggering of salivation caused by the sight of a
landmark predicting food, or it can inhibit the re-activation of the internal representation of the food
itself).

These mechanisms allow amygdala to play an important role inthe regulation of three emotional
processes fundamental for adaptation: (a) the regulation of body states; (b) the regulation of brain
states via the principal neuromodulators; (c) the triggering of a number of basic behaviours relevant
for organism’s survival and reproduction. Moreover, they allow amygdala to contribute to exert an
important emotional influence of three important high-level cognitive processes: (a) ‘labeling’ memo-
ries with emotional valence of stimuli and episodes; (b) biasing the selection of instrumentally-learned
habits on the basis of the current valence of their ultimate goals; (c) furnishing the current value of
stimuli and events to the processes of planning and complex decision making.

Both the overall picture and the specific claims proposed in this study have been developed by
trying to fulfil two main constraints: on one hand, they have been rooted in the currently available
empirical knowledge, and on the other hand, they have been developed on the basis of the func-
tional/adaptivistic stance, and the goal of isolating general principles, typical of artificial-life and
adaptive-behavior research. As a result, some of the ideas presented can be considered as acquired
knowledge in the field of affective neuroscience, others constitute original hypotheses, well supported
by available empirical knowledge, and finally some others (hopefully a minority) represent less sup-
ported hypotheses that may turn out to be just wrong from an empirical point of view.

In this respect, the authors are aware of the tentative nature of some of the ideas illustrated, but
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nevertheless they decided to present them as the goal of the article was to contribute to build a coherent
and biologically-constrained picture of the functioning of several brain sub-systems where amygdala
plays a central role for the organization of adaptive behavior.

Hopefully, in this way, on one hand this review contributes to foster more theoretically oriented
research within affective neuroscience, and on the other hand it contributes to produce more structured
and informed research based on the simulation of the motivational and emotional aspects of adaptive
behavior.
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Chapter 3

Navigation via Pavlovian Conditioning: A Robotic
Bio-Constrained Model of Autoshaping in Rats

Abstract

Within the autonomous robotics literature, bio-inspired models of navigation in organisms (e.g.
rats) usually rely on instrumental conditioning processesbased on the learning of associations
between places in the environment and navigation actions leading to rewarded goal places. This
paper presents a neural-network model capable of solving navigation tasks on the basis of Pav-
lovian conditioning processes which allow transferring innate approaching behaviours from bi-
ologically salient stimuli (e.g., food) to neutral stimuli(e.g., a landmark seen from far away and
close to the food) (‘autoshaping’). The overall architecture and functioning of the model is bio-
logically constrained on the basis of relevant neuroscientific anatomical and physiological knowl-
edge on amygdala, nucleus accumbens, and ventral tegmentalarea. The model is tested with a
simulated robotic rat engaged in autoshaping and devaluation experiments. The results show that,
although the model allows solving only simple navigation tasks, it produces fast learning and a
flexible sensitivity of behaviour to internal states typical of Pavlovian processes. The model is
also important for the investigation of adaptive behaviourin general as it clarifies the nature of
some core mechanisms which play a key role in several forms oflearning.

3.1 Introduction

Navigation is a fundamental adaptive behaviour which allows organisms to displace in space so to
get in contact with resources scattered in the environment and use them to increase their survival and
reproduction chances. For this reason, the brain machineryemerged during evolution to subserve
navigation behaviours is rather sophisticated and based onmultiple systems. Most models of animal
navigation proposed within autonomous robotic literatureare based on instrumental processes (for
some reviews, see Filliat and Meyer, 2003a,b; Trullier et al., 1997). Instrumental processes allow
organisms to form associations between stimuli and actionson the basis of the resulting reinforcing
outcomes (Domjan, 2006). Some of the most influential modelsuse reinforcement-learning algo-
rithms (e.g., based on the Temporal Difference rule, Suttonand Barto, 1998) to form, via aprologued
training, associations between places and the actions directed to achieve rewarded places. Those of
these models which are more strongly biologically constrained assume that places are represented in
‘place cells’ of hippocampus (HIP) (O’Keefe et al., 1998) and that actions are selected and triggered in
a reactive fashion by nucleus accumbens core (NAccC) (Arleoand Gerstner, 2000), or, alternatively,
that actions are triggered in a proactive fashion via prefrontal cortex (PFC) (Martinet et al., 2009).

The important processes involving complex spatial elaborations performed by HIP, NAccC and
PFC has led to overlook some processes underlying navigation behaviours which are simpler but also
faster and more flexible than instrumental ones. In this respect, a main tenet of the paper is that an im-
portant class of these simpler processes are based on Pavlovian conditioning mechanisms. Pavlovian
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conditioning (Lieberman, 1993) is an experimental paradigm in which a stereotyped ‘unconditioned
response’ (UR), innately associated with, and triggered by, a biologically salient ‘unconditioned stim-
ulus’ (US), might become associated with, and so triggered by (so becoming a ‘conditioned response’,
CR), an innately neutral ‘conditioned stimulus’ (CS), if the CS regularly precedes the US. For exam-
ple, the UR of salivation, innately triggered by the US of thetaste or smell of food, might become
associated and triggered by a CS consisting in the sight of food if the CS is repeatedly followed by
the US.

Approaching food or conditioned stimuli (e.g., a light) is atypical UR/CR studied in Pavlovian ex-
periments (in this case called ‘autoshaping’). Autoshaping mechanisms allow organisms to approach
(CR) a neutral stimulus (CS) if this has been regularly paired with an appetitive stimulus (US).

Pavlovian mechanisms related to approaching have a great evolutionary advantage. The approach-
ing behaviour is formed by a set of motor routines which involve a complex rhythmic pattern of muscle
activations which reduce the spatial distance with the target. In this respect, the advantage rendered
by autoshaping mechanisms is that the formation of afast-learnable and simple associationbetween
an US (e.g., food) and a CS (e.g., a big landmark close in spaceto the food and visible from far away)
can allow organisms torapidly transfer the whole complex target-approaching behaviour (UR) to the
CS.

Pavlovian navigation has also a second important advantageof flexibility: the sensitivity to body
states. In fact, internal representations of USs (via the activation of which approaching responses are
triggered) can be directly modulated by internal states. For example, the satiation for a particular food
(US) can prevent its internal representation from being activated by the activation of a CS associated
to it, so stopping costly inuseful URs associated to it (e.g., salivation and approaching).

The main contribution of the paper is the proposal of a model which is a first important step
towards a full detailed understanding of Pavlovian-based navigation processes in organisms. This not
only has great relevance for neuroscience and psychology, but also is very important for autonomous
robotics interested in learning processes for two reasons:(a) it suggests specific mechanisms for
implementing quickly-learnable and flexible navigation behaviours; (b) the Pavlovian mechanisms
investigated here play a key role in many learning processes, so they have an importance which spans
well beyond navigation behaviours (see Mannella et al., 2009b).

The rest of the paper is organised as follows. Section 3.2 illustrates the biological constraints of
the model, Section 3.3 the setup of the simulated experiments, and Section 3.4 the model in detail.
Section 3.5 presents the results of the autoshaping and devaluation tests, whereas Section 3.6 draws
the conclusions.

3.2 Biological Evidence on Pavlovian Navigation Mechanisms

This section presents biological evidence which on one sidesupports the claim that organisms acquire
some kinds of navigation skills based on Pavlovian mechanisms, and on the other side furnishes the
anatomical and physiological constraints used to design the architecture and functioning of the model.

A first piece of evidence is that lesions of HIP does not prevent the acquisition and expression
of autoshaping behaviours (Parkinson et al., 2000). This isfundamental as rules out that the spatial
computations performed by HIP underlie such behaviours.
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Another important piece of evidence is related to the basolateral complex of AMG (BLA). BLA
is the main locus where CS-US Pavlovian association processes take place (Cardinal et al., 2002;
Knapska et al., 2007; McDonald, 1998; Pitkänen et al., 2000). Surprisingly, BLA is not necessary for
learning and expression of autoshaping (Parkinson et al., 2000).

BLA, however, is necessary for the flexible modulation of Pavlovian mechanisms based on internal
states. An example of this, relevant to this work, is that it is necessary to allow satiation for one food
to inhibit not only approaching to such food but also approaching to a CSs associated with it (Blundell
et al., 2003). This without the need of relearning.

BLA is also necessary for the functioning ofsecond order conditioning, that is conditioning of a
neutral stimulus on the basis of the presentation of anotherneutral stimulus previously associated with
it (this can be done ‘in extinction’, i.e. without presenting the US after the first CS; Cardinal et al.,
2002). This might be relevant to extend the model in the future and let it learn to approach a landmark
(CS2) if this is followed by another landmark (CS1) previously associated with reward (US).

BLA is also capable of triggering phasic dopamine bursts viaits connections with lateral hypotha-
lamus (LH; Pitk̈anen et al., 2000). These types of dopamine signals are very important for learning.

Another important fact to consider is that the central complex of AMG (CEA) is needed for learn-
ing conditioned approach behaviours but not for expressingthem (Cardinal et al., 2002). This property
seems related to the capacity of CEA of causing a population diffused activation of the ventral tegmen-
tal area (VTA) and a consequent production oftonic dopamine: this acts as a necessary precondition
for phasic dopamine to trigger learning. Tonic dopamine is also at the basis ofvigor of actions, that is
of the mechanisms for which the intensity and frequency of execution of actions can increase due to
expectation of appetitive stimuli (cf. Niv et al., 2006).

A further important piece of evidence is that the ventral part of the striato-cortical system (Kandel
et al., 2000) is needed to learn and express conditioned approach behaviours. In particular, lesions of
the basal-ganglia and cortical components of such loops, namely respectively the nucleus accumbens
core (NAccC; Cardinal et al., 2002) and anterior anterior cingulate cortex (ACC; Cardinal et al., 2002,
2003) prevent both learning and expression of conditioned approach.

3.3 The Simulated Rat, the Maze, and the Tasks

The robot used to test the model is a robotic rat (‘ICEAsim’) developed within the EU funded project
ICEA on the basis of the physics 3D simulator WebotsTM. The model was written in MatlabTM (We-
bots has an interface for Matlab code). The numerical integration of the equations of the model is
performed with the Euler method and an integration time stepof 0.05 (also used for the 3D simula-
tor). The robotic setup used to test the model is shown in Figure 3.1 and it is now briefly described.

The training and test environment is composed by a grey-walled Y maze (only the two upper arms
of it were used: the lower arm will be used in future work). Each upper arm contains a landmark,
respectively red and blue for the two arms, which the rat can see from far away, and a rectangular food
dispenser, which the rat can see only from the middle of the arm onward. The two food dispensers
contain food A and food B respectively. When the rat touches afood dispenser it receives a rewarding
signal corresponding to the ingestion of the food.

The simulated rat is a two-wheel robot equipped with varioussensors. Among these, the tests
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Figure 3.1: Top: The simulated Y maze and robot. Bottom: The left and right retina images perceived by the rat while

positioned as indicated in the top graph.

reported here use two cameras (furnishing a panoramic 300 degrees view) and the whisker sensors.
The rat uses the cameras to detect the red and blue landmarks and the two green and yellow food
dispensers. Suitably tuned pre-processing colour filters allow the system to perceive stimuli as binary
signals. Landmarks are seen from far away, for example from the crossing of the Y maze, but only
when positioned in the frontal zone of the two retinas (approximately within 900). Also the food
dispensers are visible only if within the frontal zone, but their visibility is limited to positions within
a half-arm distance. The rat is also endowed with two binary sensors which detect the ingestion of
respectively food A or B, and with two binaryinternalsensors respectively encoding satiety for either
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food A or B.
The rat also uses the whiskers, activated with one if bent beyond a certain threshold and zero

otherwise, to detect contacts with obstacles. The whiskersare used to control a low-level hardwired
‘obstacle avoidance routine’ which ‘overwrites’ all otheractions and leads the rat away from obstacles.

The actuators of the rat are two motors which can independently control the speed of the two
wheels. The system controls such speed by selecting one of three hardwired routines: ‘turn left’ and
‘turn right’, which lead the robot to respectively turn anticlockwise or clockwise on the spot, and ‘go
ahead’ which leads the robot to move forward. If none of theseroutines is selected and active, the
speed of wheels is set to zero. A further ‘consummatory routine’, mimicking eating, is triggered when
the rat is on a dispenser and perceives the related US.

The rat undergoes three training/testing phases:
1. Pre-training phase.In this phase, the rat is first trained for 2 mins, divided in trials, in the food-B
maze arm without the landmark and blocked with a wall at the other end; then it is trained in a similar
condition in the food-A arm. Trials terminate either after 20 secs or when the rat ingests the food. In
this phase the rat learns to associate the seen foods (CSs) with the ingested foods (USs).
2. Training phase.This phase lasts 2 mins, divided in trials as in the first phase, and involves the two
upper arms. In this phase the rat learns to associate the landmarks (CSs) with the seen foods (CSs)
and the ingested foods (USs).
3. Devaluation phase.This phase is composed of three sub-phases of 4 mins each: onewith both
fully-valued foods, one with the devalued food A, and one with the devalued food B. Each sub-phase
is divided in trials as in the other two phases. In this phase the learning coefficients were set to zero
to collect more controlled data. This phase allows testing if the rat has a tendency to explore more
extensively the maze arm where the non-devalued food is located.

3.4 The model

This section uses the following conventions: bold capital letters (X) represent matrices, bold small
letters (x) represent vectors and small letters (x) represent scalars. The notation[x]+ means that the
positive part ofx is considered, while the notation[x]− means that the negative part ofx is considered.
The functionφ (x, θ) returns1 if x > θ, 0 otherwise. Note that each unit activation is here assumed
to represent the firing rate of a population of neurons reached by a similar input pattern.

Figure 3.2 shows the architecture of the model based on threemain components: (a) the AMG:
this is responsible for implementing the stimuli associations of Pavlovian conditioning; (b) the stri-
atocortical system formed by the ventral basal ganglia (VBG: these are a set of nuclei formed by
the NAccC, the subtalamic nucleus, STN, and the susbstantianigra pars reticulata, SNpr) the dorso-
medial thalamus (DM) and the ACC: this is responsible for selecting the actions to execute; (c) the
dopaminergic system formed by LH and VTA: this modulates both the learning processes and the
speed of selection and duration of execution of actions (this is the model correspondent of vigor of
actions, see Section 3.2).

With the exception the units of AMG (see Section 3.4.1), all the of the model are leaky integrators
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Figure 3.2: The architecture of the model.

as described in Amari (1977):

τ u̇i = − ui + κuI +
∑

j

wij · vj

vi = [tanh[ui]]
+ (3.1)
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whereui andvi are respectively the potential and the activation of unit i,I is the input signal from
either the external environment or the body,κu is a multiplying coefficient, andwij is the weight of
an afferent connection from another unit j.

3.4.1 The Amygdala, an CS-CR and CS-US Associator

This section first describes the general functioning and learning of AMG units and then describes the
specific functions of BLA and CEA.

BLA and CEA are each formed by six input units which receive one-to-one input signals from the
six external input units of the model: two encoding visual conditioned stimuli, two encoding the two
seen foods, and two encoding the taste of ingested food. Two additional internal input units of the
model, respectively encoding the satiation for the two foods, send strong one-to-one inhibitory signals
to the two units of BLA and CEA encoding the two food tastes. Another group of units (intercalated
nuclei, ITC) serve as a disinhibitory interface between BLAand CEA (see Paré et al., 2004)

The units of BLA and CEA (denoted withbla andcea) are different from the other units, in
particular each one activates in correspondence to stimulionset and then fades away (many single
neurons in brain have this property). For each AMG unit, thisonset-detection function is achieved on
the basis of two leaky integrators,oin andoout:

τ1ȯin = − oin + I

τ2ȯout = − oout + [I − oin]+ (3.2)

This kind of activation is needed to allow the internal connections of BLA and CEA to be updated
on the basis of a ‘differential Hebb rule’ (Mannella et al., 2007; Porr and Ẅorgötter, 2003). This
rule captures the temporal correlation (or ‘apparent causality’) existing in incoming input patterns. In
particular, if one has two units with two reciprocal connections, the rule tends to increase the weight
of the connection which goes from the first unit to the second unit, and at the same time tends to
decrease the weight that goes from the second unit to the firstunit, if the first unit tends to be activated
within a certain time window before the second unit. In detail, the learning rule works as follows.
First the leaky traces of the derivatives of the activation of the onset units are computed:

τtr ṫr = − tr + κtr · ȯout (3.3)

whereκtr is a multiplying factor.
Then a difference in the sign of the traces of the presynapticand postsynaptic unit determines the

amount of the increment of the weights:
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∆wij =

η · φ (da, θda) · (da− θda) ·
(

[

ṫri

]

−

·
[

ṫrj

]+
−
[

ṫri

]+
·
[

ṫrj

]

−

)

·
(

θwij
− wij

)

(3.4)

whereθwij
is a threshold near which the weights saturate,da is the dopaminergic level andθda is the

threshold of dopamine level above which learning take place.
BLA.When connections between the AMG visual stimuli units and food-taste units are strengthened
via the differential Hebb rule illustrated above (stimulus-stimulus associations), the former ones ac-
quire the ability to activated the output unit in the same wayas done by USs.

One of the output responses of BLA consists in triggering, via LH, the activation of VTA output
units: this leads to a phasic dopaminergic signal underlying learning (see Section 3.4.3).

A second output reaches NAccC: this has the function of biasing the selection of actions taking
place within VBG.

A last output reaches CEA, and allows BLA processes to excertcontrol on the output of CEA.
As mentioned above, BLA US units are also reached by internalsignals about satiety. Through

these connections the activity of these units can be modulated by the rat internal states, for example
here they can be suppressed by satiation. In this way, the US can dynamically change its motivational
value. This property is also transferred to CSs if they have been associated to USs within AMG.
CEA. CEA has six input units and one output unit controlling VTA dopaminergic processes. All
internal connections are trained with the differential Hebb rule mentioned above, with the exception
of those carrying the information about the USs which are fixed (‘innate’). This learning process
allows the formation of CS-CR associations (stimulus-response associations).

CEA component triggers the dopaminergic system through a disinhibition of the internal pop-
ulation of VTA. Thus this mechanism is able to maintain tonicdopaminergic efflux upon baseline
through time. This dopamine is not sufficient to trigger learning within NAccC but at the same time it
is necessary to allow the BLA signal to VTA (via LH) to cause dopamine-based learning (see 3.4.3).
Moreover, tonic dopamine acts as a multiplier of signals from BLA to NAccC, so implementing a
‘vigor’ function (see Section 3.2 and 3.4.2).

The internal signals related to satiety modulate the US input units of CEA similarly to what hap-
pens in the BLA, and so allow the modulation of its output.

The CEA receives input not only from external stimuli, but also from the BLA. This allows BLA
to have access to the output of CEA (dopamine in this case).

3.4.2 The Striatocortical System

The VBG component is a simplified implementation of the basalganglia ‘GPR’ model proposed by
Gurney et al. (2001a,b). We implemented a three channel version of the model consisting of the basal
ganglia ‘direct pathway’ (from NAccC to SNpr) and ‘indirectpathway’ (STN to SNpr; cf. Kandel
et al., 2000). The three channels activate respectively the‘turn-left’, ‘go ahead’, and ‘turn right’
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routines (see Section 3.3). As in the GPR model, the input to NAccC is amplified by dopamine:

τnaccc ˙naccci = −naccci +
∑

j

[

wblaj→naccci
· blaj

]

·

(blnaccc + wda→naccc · da) (3.5)

whereblaj is the jth output unit of BLA andblaj→naccci
is its connection weight tonacccj , blnaccc

andwda→naccc are respectively a baseline and a multiplication coefficient of the amplification effects
of dopamine on input. The amplification effects of dopamine are very important as they are the means
through which CEA can cause approaching in the absence of BLA.

Another important aspect of VBG is that the input signal it receives from BLA is affected by
noise. This noise is generated in the form of a random number,uniformly drawn in [0, 1] with a
probability of 0.05 at each step of the simulation, added to each VBG input signal received by BLA.
The connections from BLA to NAccC are trained on the basis of the following Hebb rule modulated
by dopamine:

∆wblai→nacccj
=

ηbla→naccc ·

(φ [da, θda] · (da− θda)) ·

(φ [naccci, θnaccc] · nacccj) · blaj ·
(

θbla→naccc − wblai→nacccj

)

(3.6)

whereηbla→naccc is a learning rate,θnaccc is a learning threshold for the activation of NAccC units,
andθbla→naccc is a threshold for saturating the weights. Note that in this learning rule the information
related tonacccj should be brought to the NAccC units by ACC-NAccC backward connections not
explicitly simulated in the model.

3.4.3 The Dopamine System

The dopaminergic activity in the model depends on the LH-VTAsystem. VTA is formed by one input
and one output unit. The input unit is activated by CEA and inhibits the output unit. The output unit
receives also an excitatory input from LH and produces as output the dopaminergic signals. Figure 3.3
shows an example of the overall functioning of VTA. The first graph of the figure shows the negative
input received by the input unit from CEA. The second graph shows the excitatory input received by
the output unit from LH. The last two rows show respectively the activation of the input and output
units. It can be seen that the inhibition of the input unit (caused by CEA) can augment dopaminergic
activity but never lead it over a certain threshold, e.g. necessary to trigger learning of the dopamine
target areas. Similarly, an excitatory signal (from LH) to the output unit is not sufficient to lead
dopamine activity over the threshold when presented alone.This implies that both disinhibition and
excitation are needed for the dopamine signal to trigger learning.
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Figure 3.3: An ‘in-vitro’ test on the VTA responses.

3.5 Results

This section reports the outcome of the tests of the rat in thethree learning/training phases described
in Section 3.3.

During the pre-training phase, the rat initially randomly explores the maze arm where it is by
triggering sporadic actions under the effect of noise affecting NAccC. Motion is rather slow due to
the low levels of dopamine. Eventually this behaviour leadsthe rat to step on the food dispenser and
eat the food (US). The resulting dopaminergic signal leads CEA to form associations between the CS
seen-food unit and the with the output unit triggering the tonic dopamine in VTA, and BLA to form
associations between the seen-food unit and the taste-foodunits. Learning of BLA and CEA lead the
system to increase the frequency of selection of actions andthe duration of their execution: overall
the vigor of the rat seems increased when the rat sees the food.

Figure 3.4 shows the activation of BLA caused by these learning processes. Notice how the
activation of the CS units cause an activation of the corresponding US units.

During the training phase, the rat initially explores the environment and speeds up its action when
the food becomes in sight. This leads it to rapidly approach the food dispenser while the coloured
landmark of the arm is visible. Within CEA, this causes the formation of the associations between the
units encoding the seen landmarks and the output unit. In parallel, BLA forms associations between
units encoding the seen landmarks and units encoding the sight and the taste of foods.

Figure 3.5 shows the connection weights formed during the pre-training and training phases. No-
tice how the system has formed positive connection weights from CS units to US units and negative
weighs in the opposite direction thanks to the differentialHebb leaning rule.
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(a)

(b)

Figure 3.4: Example of activation of BLA during the pre-training phase.Notice the activation of the units in correspondence

to CSs and USs onsets.

(a)

(b)

(c)

Figure 3.5: Learned connection weights of the system after the pre-training and training phase. (a) BLA lateral-connection

weights. (b) CEA internal connection weights. (c) BLA-NAccc connection weights.

During the devaluation test the rat exhibits a tendency to move with a higher frequency and vigor
towards the non-devalued food and the corresponding landmark (Figure 3.6).

Figure 3.7 shows the activations of the striatocortical system during the devaluation tests. The
figure shows how the sight of the landmarks of the non-devalued food causes a higher chance of
selection of the go-ahead action, and hence a higher chance of approaching and eating such food.

Interestingly, the intercalated neurons revealed important in this phase as they prevented the CEA
from performing its non-selective effects on vigor (the CSshave access to the CEA output unit without
being affected by satiety). Indeed, setting low values of the inhibition exerted by these neurons on
CEA produced much less pronounced devaluation effects (data non reported).

3.6 Conclusions

This paper presented a bio-constrained model with the goal of giving a coherent overall picture of
Pavlovian mechanisms underlying navigation behaviours. The model architecture and functioning
was designed with a number of biological constrains in mind,in particular in relation to the specific
brain areas which putatively correspond to its constituentparts: (a) one corresponding to amygdala
which learns Pavlovian associations between innately-salient and neutral stimuli; (b) another one cor-
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Figure 3.6: Number of contacts with the (empty) dispenser during the devaluation test in three conditions: with no devalu-

ation, with devaluation of food A, and with devaluation of food B.

Figure 3.7: Example of activation in time of the components of the striatocortical system. Note how activations are always

biased toward the “go straight” action within NaccC and STN layers as far as no food is satiated. When food B is satiated

only the vision of landmark B produces the biasing.

(a) (b)

Figure 3.8: A graphic representation of the movements of the agent during the test phases. (a) movements when food A is

devalued. (b) movements when food B is devalued

responding to nucleus accumbens which selects navigation actions; (c) and a last one corresponding to
lateral hypothalamus and ventral tegmental area responsible for generating dopamine learning signals
and vigor of action.

Preliminary results of the test of the model with autoshaping and devaluation experiments, run
with a simulated rat, show that the behaviour exhibited by the system is qualitatively similar to the
behaviour exhibited by real rats in corresponding experiments. Together with the biological con-
straints imposed to the architecture and functioning of themodel, these results furnish a first proof of
soundness of the hypotheses incorporated by the model.
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The importance of the model for autonomous robotics residesin that the investigated Pavlovian
mechanisms, although allow tackling only simple forms of navigation, might be relevant it for at least
two reasons. The first is that they allow very fast learning typical of Pavlovian processes. The reason
of this is that they rely upon the formation of simple associations between biologically salient stimuli
and any relevant neutral stimuli associated with them. These associations allow transferring a complex
but readily-available behaviour (basically: ‘approach what you are looking’) from the former ones to
the latter ones.

The second reason is that they add flexibility to behaviours.The reason is that Pavlovian mecha-
nisms allow internal body states to modulate the internal representations of the stimuli through which
the navigation behaviours are triggered. For example, suchmechanisms allow a rat to navigate to-
wards the region where it expects to find a particular resource (say shelter), but not towards another
region where it expects to find a second resource (say a certain kind of food), depending on the current
needs for the two resources.

We are aware that much further work needs to be carried out to refine the model so that it can
account for all the biological constraints and behaviouralevidence reported in Section 3.2, especially
in a more quantitative and detailed way with respect to what is done here. However, we believe that
the model proposed here is a fundamental starting step towards this purpose.



Published as:Mannella, Francesco, Zappacosta, Stefano, &Baldassarre, Gianluca. 2008. “A computational model of the
amygdala nucleis role in second order conditioning”. Pages321330 of: Tani, Minoru Asada Jun, Hallam, John, & Meyer,
Jean-Arcady (eds),Proceedings of the tenth international conference on simulation of adaptive behavior: From amimals to
animals 10,vol. 5040. Osaka, Japan: Springer.

Chapter 4

The Role of the Amygdala in Second Order Conditioning: a
Computational Model

Abstract

The mechanisms underlying learning in classical conditioning experiments play a key role in
many learning processes of real organisms. This paper presents a novel computational model
that incorporates a biologically plausible hypothesis on the functions that the main nuclei of the
amygdala might play in first and second order classical conditioning tasks. The model proposes
that in these experiments the first and second order conditioned stimuli (CS) are associated both
(a) with the unconditioned stimuli (US) within the basolateral amygdala (BLA), and (b) directly
with the unconditioned responses (UR) through the connections linking the lateral amygdala (LA)
to the central nucleus of amygdala (CeA). The model, embodied in a simulated robotic rat, is
validated by reproducing the results of first and second order conditioning experiments of both
sham-lesioned and BLA-lesioned real rats.

4.1 Introduction

Individual learning plays a fundamental role in adaptive behavior of organisms, especially in most
sophisticated ones like mammals. Some of the most importantmechanisms underlying learning are
those studied in classical (Pavlovian) conditioning experiments. In these experiments an animal ex-
periences a systematic association between a neutral stimulus, for example a light (the “conditioned
stimulus” or “CS”), and a biologically salient stimulus, for example food (the “unconditioned stim-
ulus” or “US”), to which it tends to react with an innate set ofresponses appropriate for the US, for
example orienting and approaching (the “unconditioned responses” or “UR”). After repeated exposure
to couples of CS-US the animal produces the UR even if CS are presented alone.

Since Pavlov’s pioneering works Pavlov (1927), a lot of research has addressed classical condi-
tioning phenomena producing a huge amount of behavioral andneural data Lieberman (1993). How-
ever, we still lack a comprehensive theory able to explain the full range of these empirical data.
Trying to build detailedbiologically plausiblecomputational models is a necessary step to overcome
this knowledge gap. The current most influential models on classical conditioning, those based on
“temporal-difference reward prediction error” Schultz etal. (1997); Sutton and Barto (1998) , suffer
of several limitations. The main reason is that they have been developed within the machine learning
framework with the aim of building artificial machines capable of autonomously learning to perform
actions useful for the user. For this reason they are suitable to investigateinstrumental conditioning
phenomena – a type of associative learning based on stimulus-actions associations – but less adequate
to explain Pavlovian phenomena mainly based on stimulus-stimulus associations Dayan and Balleine
(2002); O’Reilly et al. (2007).

A crucial question on classical conditioning regards the nature of the acquired association between
the CS and the UR: is this association direct (CS-UR), as Pavlov himself seemed to claim Pavlov
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(1927), or does it pass through the unconditioned stimuli (CS-US-UR), as Hull Hull (1943) suggested?
The long-lasting debate on this topic Lieberman (1993) seems now settled in favor of both hypotheses:
in fact, there is now strong empirical evidence supporting the co-existence of both CS-UR and CS-
US associations Cardinal et al. (2002); Dayan and Balleine (2002). However, a clear understanding
of the neural substrates which might be responsible for these two kinds of associations has yet to
be gained. In particular, none of the computational models of classical conditioning based on the
temporal-difference mechanisms, nor the models which havebeen proposed as alternatives to them
Balkenius and Moŕen (1999, 2000); Dayan and Balleine (2002); O’Reilly et al. (2007), make any
significant claim on this point.

Within the empirical literature, Cardinal et al. Cardinal et al. (2002) formulated an interesting
hypothesis on the neural basis of stimulus-stimulus and stimulus-response Pavlovian associations.
According to this hypothesis, the basolateral amygdala (BLA) stores the CS-US associations, whereas
the central nucleus of amygdala (CeA) receives or stores theCS-UR associations (CS-UR associations
encoded in the cerebellum Thompson et al. (2000) are not considered here).

This paper presents an original computational model implementing that general hypothesis. In
particular, it represents the first working model specifying the different functions played by the main
sub-nuclei of amygdala in classical conditioning. The model, embodied in a simulated robotic rat, is
validated by reproducing the results obtained with some first and second order conditioning experi-
ments conducted with sham and BLA-lesioned real rats Hatfield et al. (1996).

Sect. 4.2 presents the target experiment and the simulated experimental setup. Sect. 4.3 describes
the model’s general functioning and the biological constraints taken into account. The mathematical
details of the model are presented in the Appendix. Sect. 4.4shows the results of the tests of the model
and compares them with those obtained with real rats. Finally, Sect. 4.5 concludes the paper.

4.2 The target experiment and the simulated environment

The model is validated by reproducing second-order conditioning experiments on real rats (reported as
experiment 1a in Hatfield et al. (1996)). The real experimentwas conducted with19 BLA-lesioned rats
and27 sham-lesioned rats, measuring the behaviours of walking, orienting and “food-cup” (insertion
of head in the food dispenser). Namely, in the first phase bothgroups were trained for8 sessions
lasting64 min each to acquire a first order conditioned behaviour. Each session was formed by a
sequence of trials. In each trial a10 sec light stimulus was presented, followed by the delivery of
Noyes pellets (food) in the food dispenser. Recordings showed that both sham and lesioned rats were
able to acquire first order conditioned behaviours. In the second phase the same rats were trained
for 3 sessions of64 min each to acquire a second order conditioned behaviour. A tonestimulus
was presented for10 sec followed by the light stimulus; every3 trials a “reminder” of the light-food
association was presented. The key result was that only shamrats acquired the second order CS-UR
association. In accordance with other empirical evidences(see Cardinal et al. (2002) for a review),
these experiments suggest that BLA plays a fundamental rolein the formation of the association
between the CS and the incentive value of the US, and that thisassociation plays a key role in the
acquisition of the CS-UR association in second order conditioning.

The real experiment was simulated through a robotic rat (“ICEAsim”) developed within the EU
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(a) (b)

Figure 4.1: (a) A snapshot of the simulator, showing the simulated rat atthe centre of the experimental chamber, the food

dispenser (at the rat’s right hand side), the light panel (behind the rat) and the tone panel (in front of the rat). (b) The

architecture of the model: bold and plain arrows indicate innate and trained connections, respectively.

project ICEA on the basis of the physics 3D simulator WebotsTM. The model was written in MatlabTM

and was interfaced with ICEAsim through a TCP/IP connection. The robotic setup is shown in
Fig. 4.1. The environment is formed by a gray-walled chamber, and the stimuli are expressed by
3 panels (vision is used, as no sound is supported by Webots): food delivering in the dispenser oc-
curs when the green panel turns on, light when the yellow one is on, and tone when the red one is
on. When one of those stimuli elicits an orienting response within the controller (see Sect. 4.3), the
rat turns toward the panel and then approaches it (these behaviors are hardwired). This behavioural
sequence terminates when the rat touches the food-dispenser (that is assumed to correspond to a food-
cup behaviour). Although the “degree of embodiment and situatedness” of the setup is rather limited,
nevertheless a robotic test was used because in the future weplan to scale the model to more realistic
scenarios (for example, the random-lasting time intervalselapsing between rats’ orienting and food
deliver already started to challenge the robustness of the associative learning algorithms used).

4.3 The model

This section presents a general description of the functioning of the model and the biological con-
straints that it satisfies, while a detailed mathematical description of it (included all the equations) is
reported in the Appendix. A key feature of the model (Fig. 4.1) is the explicit representation of the
three major anatomical components of the amygdala Pitkänen et al. (2000): the lateral amygdala (LA),
the basolateral amygdala (BLA), and the central nucleus of amygdala (CeA). The model assumes that
these components form two functional sub-systems: (1) the LA-CeA sub-system, which forms S-R
associations, and (2) the BLA sub-system, which forms S-S associations. Note that in the following
“neurons” have to be intended as units whose functioning abstracts the collective functioning of whole
assemblies of real neurons.
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4.3.1 The Stimulus-Response Associator (LA-CeA).

The LA is the main input of the amygdala system. It receives afferent connections from various
sensory and associative areas of cortex, from thalamus, andfrom deeper regions within the brain-
stem, and it sends efferent connections both to BLA and to CeA. The model has an input layer (INP)
of four leaky neurons (inp) activated by four binary sensors (s) which encode the presence/absence of
four stimuli: light (sli), tone (sto), food sight (sfs) and food taste (sft) (Eq. (4.1)). LA (la) is formed
by four leaky neurons receiving one-to-one afferent connections from INP (Eq. (4.2)).

The CeA is one of the main output gates of amygdala. Its efferent connections innervate regions
of the brainstem controlling mainly: (1) body and behavioral reactions through the hypothalamus and
periaqueductal gray Phelps and LeDoux (2005); (2) the release of basic neuromodulators through
the ventral tegmental area (dopamine), the locus coeruleus(norepinephrine), and the raphe nuclei
(serotonin) Fudge and Emiliano (2003); Pitkänen et al. (2000); Rosen (2004). These neuromodulators
play a fundamental role in learning processes but for simplicity this model considers only dopamine
LaLumiere et al. (2005) (in particular it ignores the role that norepinephrine plays in AMG learning
Berridge and Waterhouse (2003)). In the model CeA (cea) is formed by two leaky neurons, one
(ceaor) encoding the rat’s orienting behavior, and one (ceada) connected to the ventral tegmental area
(VTA) to produce the dopamine signal (da) (Eqs. (4.4) and (4.5)).

In the model, all LA neurons are connected to the orienting neuron of CeA (ceaor), whereas
only the food taste neuron (laft) is connected to the neuromodulator neuron of CeA (ceada). These
connectivity allows stimuli representations of LA to be associated with the orienting behaviour in
CeA but not with the dopamine neuromodulation. This is a key assumption to explain why LA-CeA
associations can learn first order CS-US associations but not second order ones: conditioned stimuli
cannot access the incentive value of rewarding stimuli.

The connections from LA to CeA are trained on the basis of a Hebb rule. In particular, the
strengthening of connections takes place in the presence ofthree conditions (Eq. (4.6)): (1) a high
value of the trace of the LA activation onset (la tr): the use of theonsetmakes learning happen only
when LA neurons’ activation precedes CeA neurons’ activation, while the use of thetrace allows
overcoming the time gap between CS and UR; (2) a high activation of CeA neurons (ceaor andda);
(3) a dopamine level (da) over its threshold (thda).

4.3.2 The Stimulus-Stimulus Associator (BL).

The BLA has afferent connections from LA and efferent connections to CeA Rolls (2000); Saddoris
et al. (2005). BLA is also interconnected with the orbitofrontal cortex and hippocampus, and sends
efferent connections to the nucleus accumbens: all these connections are ignored here (see Mannella
et al. (2007) for a model where BLA-nucleus accumbens connections play a key role).

In the model, BLA (bla) is formed by four leaky units which receive one-to-one connections from
LA ( la) and have all-to-all lateral connections (Eq. (4.7)). Onlythe neuron encoding food taste (blaft)
is connected to CeA neurons. This implies that all neurons ofBLA representing stimuli different
from the US (blaft) can exert effects on the CeA output neurons only via lateralstimulus-stimulus
connections with the BLA’s US neuron.

Learning of BLA lateral connections is based on a time-dependent Hebb algorithm. The key
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Figure 4.2: (a) Percentage of orienting behaviours of sham (S) and lesioned (L) rats in response to the tone after second

order conditioning: data from real (first two bars) and simulated rats (last two bars). (b) Stimuli, activations of key neurons,

and dopamine release in 3 conditions: first-order and second-order conditioning phases of a sham rat (first and second block,

respectively), and second-order conditioning phase of a BLA-lesioned rat. Trials are separated by short vertical dotted lines;

thresholds (for orienting behavior and dopamine learning)are represented as gray horizontal dotted lines.

aspect of the algorithm is that it allows both the onset and the offset of BLA neurons preceding the
onset of other BLA neurons to increase the connection from the former to the latter, provided that
dopamine overcomes its threshold (Eqs. (4.8), (4.9), (4.10)). The sensitivity to the offset of stimuli
was necessary due to the long duration of the CS stimuli, see Sect. 4.2 (cf. Mannella et al. (2007) for
a simpler version of the algorithm using only the onset of presynaptic neurons).

4.4 Results

Figure 4.2a compares the percentage of times the tone elicits an orienting behaviour in real Hatfield
et al. (1996) and simulated rats after the second order conditioning phase. The main result of the
experiment has been qualitatively reproduced by the model:in both real and simulated rats a BLA
lesion prevents second order conditioning to take place. The analysis of the detailed functioning of the
model provides an explanation for this result. Figure 4.2b shows the activations of some key neurons
of: (1) a simulated sham rat during the first order conditioning phase with the light-food contingency;
(2) the same sham rat during the second order conditioning phase with the noise-light contingency;
(3) a simulated BLA-lesioned rat during the second order conditioning phase.

Figure 4.2b, first block, shows the mechanisms underlying first order conditioning in a sham
simulated rat. At the beginning of the first trial, the appearance of light activates the light-related BLA
neuron (blali). After a while, the appearance of food activates the food-sight BLA neuron (blafs). The
blafs pre-activates the BLA food-taste neuron (blaft) before the rat actually reaches the food thanks
to ablafs-blaft excitatory connection which is assumed to be learned beforethe conditioning training
(see the Appendix). In turn, theblaft triggers both the orienting behavior via the orienting CeA
neuron (ceaor) and the release of dopamine (da) by the VTA via the CeA neuromodulation neuron.
The release of above-threshold dopamine triggers the learning of both the connection between the
light neuron in LA and the orienting neuron in CeA (implementing the CS-UR association) and the
connections linking the light neuron with the food sight andfood taste neurons in BLA (implementing
the CS-US association). The result is that after a very few trials theblafs andblaft neurons start to be
pre-activated as soon as the light is perceived. This results in an early activation of both CeA neurons
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and, consequently, in an early dopamine release and an earlyorienting response to the light.
As in the target experiment, during the second order conditioning phase the rats are exposed to

sequences of four trials composed by three tone-light presentations and one light-food “reminder”.
Thanks to the CS-US BLA association acquired during the firstphase, in sham rats (Fig. 4.2b, second
block) the presentation of light immediately triggers bothorienting behavior and dopamine release.
This ability of light to trigger dopamine release permits the acquisition of the second-order associa-
tion between the tone and the URs (orienting response and dopamine release) in a manner which is
completely analogous to what happens in the first-order conditioning with respect to light.

On the other hand, second order conditioning cannot take place in BLA-lesioned rats (Fig. 4.2b,
third block). The reason is that in this case light can trigger only the orienting response via the con-
nection linking the light representation in LA with the orienting neuron in CeA (the direct CS-UR
association), but not the dopamine release, which requiresthe activation of the food-taste representa-
tion in either BLA (which is lesioned) or LA (which is activated only when food is effectively eaten).
As a result, since synaptic modification depends on dopamine, no learning can takes place during
second-order conditioning.

4.5 Conclusions

This paper presented an original computational model of thebasic brain mechanisms underlying clas-
sical conditioning phenomena. The architecture and functioning of the model was constrained on the
basis of neural empirical data on the amygdala. The fundamental assumption underlying the model
is that the association between conditioned stimuli (CS) and unconditioned responses (UR) formed
in classical conditioning experiments is due to two relatedbut distinct mechanisms: (1) stimulus-
stimulus associations (CS-US-UR) involving unconditioned stimuli (US) stored in the BLA; (2) direct
stimulus-response associations (CS-UR) stored in the LA-CeA neural pathway.

The model was embedded in a simulated robotic rat and was validated by reproducing the be-
haviours exhibited by both sham and BLA-lesioned rats in first and second order conditioning ex-
perments. In particular, as in real rats, while after training the simulated sham rats react with UR
(orienting) to both first and second order CS, BLA-lesioned simulated rats associate UR only to first
order CS, but not to second order CS. The model is able to reproduce and explain these results thanks
to the fundamental aforementioned assumption. During firstorder conditioning sham rats acquire
both the direct CS-UR and the indirect CS-US-UR association. It is the first order CS-US associa-
tion within BLA which permits the acquisition of the second order association as it allows the CS
to reactivate the appetitive value of the US even when the US is absent. In contrast, BLA-lesioned
rats can acquire direct first order CS-UR associations stored in the LA-CeA neural pathway but they
cannot acquire the second order association because the first order CS has not access to the appet-
itive value of the US. To the best of the authors knowledge, this is the first model to propose such
a specific computational hypothesis regarding the double association CS-US and CS-UR in classical
conditioning.

Notwithstanding its strengths, the model suffers at least two significant limitations. First, the
whole behavioral sequence triggered by the activation of the orienting neuron in CeA (orienting, ap-
proaching, and food-cup) is fully hard-wired. For this reason, the model cannot reproduce the results
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on CeA-lesioned rats which are reported in the same article of the experiment targeted here Hatfield
et al. (1996). Second, in contrast to most existing models ofclassical conditioning Balkenius and
Morén (1999); Dayan and Balleine (2002); O’Reilly et al. (2007), the current model does not imple-
ment any mechanism for reproducing the exact timing of dopamine release observed in real animals.
For this reason the model cannot reproduce another fundamental aspect of classical conditioning, that
is extinction (the ability to re-learn not to respond to the CS if it stops to be followed by the US). We
are currently working on improved versions of the present model for tackling both these limits.

Appendix: Mathematical details of the model

Throughout the Appendix,τx denotes the decay rate of a leaky quantityx, the sub-index·p denotes
the activation potential of the corresponding neuron, symbols X, x, andx are used respectively to
denote matrices, vectors and scalars, the functionϕ is defined asϕ[x] = max[0, x] and the function
χ asχ[x] = 1 if x ≥ 0 else χ = 0. The values of parameters are listed at the end of the Appendix.

LA-CeA: Functioning and Learning. INP (inp) processes the input signal from sensorss =

(sli, sto, sfs, sft)
′ with a leak function:

τinp · ˙inp = −inp + s . (4.1)

LA is formed by four leaky neurons (la) activated as follows:

τla · ˙lap = −lap + winp,la · inp , la = ϕ[tanh[lap]] (4.2)

wherewinp,la is the fixed weight of the connections from IMP to LA. The “double leak” processing
of signals implemented by IMP and LA is used to smooth the derivative of LA (see Eq. (4.3)).

The trace of LA neurons (la tr) is a leak function of the positive value of the derivative oftheir
activation (˙la):

τla tr · ˙la trp = −la trp + bla tr · ϕ[ ˙la] , la tr = ϕ[tanh[la trp]] (4.3)

wherebla tr is an amplification coefficient.
CeA is formed by two leaky neurons (cea) activated as follows:

τcea · ˙ceap = −ceap + Wla,cea · la + Wbla,cea · bla (4.4)

cea = ϕ[tanh[ceap]]

VTA is formed by a dopamine leaky neuron (da) which activates as follows:

τda · ḋap = −dap + blda + wcea,da · cea , da = ϕ[tanh[dap]] (4.5)

whereblda is the dopamine baseline.
The weights of the LA-CeA connections (Wla,cea) are updated with a three-element Hebb rule
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involving CeA, LA’s trace and dopamine:

∆Wla,cea = ηla,cea · (χ[da− thda] · da) · cea · la tr′ · (1 − |Wla,cea|) (4.6)

whereηla,cea is a learning rate, the term(χ[da − thda] · da) implies that learning takes place only
whenda ≥ thda, and the term(1 − |Wbla|) keeps the weights in the range[−1, 1].

BLA: Functioning and Learning. BLA is formed by four leaky neurons (bla) activated as follows:

τbla · ˙blap = −blap + Wbla · bla + (wla,bla · la + cbla · la tr) (4.7)

bla = ϕ[tanh[blap]]

wherecla tr is an amplification coefficient. According to this equation,with a transient constant input
signal the activation of a BLA neuron presents a high initialpeak (due tola tr) followed by a lower
constant value (due tola) and then by a smooth descent to0 (due to the leak after the signal end): this
activation has a derivative suitable for BLA learning (see below).

In order to train lateral connections of BLA, a trace of the derivative of the activation of BLA
neuronsbla tr is computed as follows:

τbla tr · ˙bla trp = −bla trp + · ˙bla . (4.8)

Small values of this trace are ignored in the learning algorithm by considering the “cut trace”bla tr cut

defined as:bla tr cut = bla tr if |bla tr| < thbla tr else bla tr cut = 0. Given the activation
dynamics of BLA (Eq. (4.7)), the corresponding derivative (and, with some delay, its trace) presents:
(1) an initial peak at signal onset; (2) a negative peak at theend of the signal onset; (3) a negative
peak at the signal offset. The key point of the learning algorithm of BLA is that a connection between
two neurons is potentiated in coincidence of a negative peakof the presynaptic neuron and a posi-
tive peak of the postsynaptic neuron. These two events mark apre-synaptic-onset/post-synaptic-onset
sequence (or a pre-synaptic-offset/post-synaptic-onsetone). The matrixS, reported below, captures
these conditions for all couples of neurons:

S = χ[bla tr cut] · χ[−bla tr cut]′ − χ[−bla tr cut] · χ[bla tr cut]′ . (4.9)

Denoting withpre andpost the presynaptic and postsynaptic neurons,S has an entry equal to1 when
bla tr copre < 0 andbla tr copost > 0, equal to−1 whenbla tr copre < 0 andbla tr copost > 0,
and equal to0 otherwise. The learning rule of lateral connections is then:

∆Wbla = ηbla · χ[da− thda]da · (ltpbla · ϕ[S] + ltdbla · ϕ[−S])(1 − |Wbla|) (4.10)

whereηbla is a learning rate,ltpbla is a long time potentiation coefficient, andltdbla is a short term
depression coefficient.

Model’s Parameters. The model’s parameters were set as follows:τinp = τla = τbla = 500 ms,
τla tr = τbla tr = 5000 ms, τcea = 100 ms, τda = 50 ms, winp,la = 10, bla tr = 1000, wla,bla =

0.5, cbla = 60, blda = 0.3, thda = 0.6, thla tr = 0.00001, ηbla = 0.0005, ηla,cea = 0.15,
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ltpbla = 1.0, ltdbla = 0.3. Some connections, assumed to be innate or pre-learned, areclumped to 1

(l=learned):wblafs,ft = 1, wcea,da = (1, 0), Wla,cea =

(

l l l 1

l l 1 1

)

, Wbla,cea =

(

l l l 1

l l l 1

)

.

The model’s equations were integrated with the Euler methodwith a50 ms step.
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Chapter 5

Brain Mechanisms
underlying Learning of Habits and Goal-Driven Behaviour:
A Computational Model of Instrumental Devaluation

Abstract

This paper presents an embodied biologically-plausible model investigating the relationships
existing between classical and instrumental conditioning. The architecture and functioning of
the model are constrained by anatomical and physiological assumptions drawn from the rel-
evant neuroscientific literature. The model is validated bysuccessfully reproducing the pri-
mary outcomes of instrumental-conditioning devaluation experiments conducted with normal and
amygdala-lesioned rats (amygdala is a nucleus of the brain’s limbic system playing a key func-
tion in classical conditioning). These experiments are particularly important as they show how
the sensitivity to internal states (such as satiety) exhibited by classical conditioning mechanisms
can transfer to behaviors acquired on the basis of instrumental conditioning mechanisms. The
work presented here is relevant for the behavioral and brainsciences as it based on a model,
constrained and validated at both the neural and behaviorallevel, that indicates how internal
states might modulate learning and performance of rigid habits so to produce the flexibility which
is typical of goal-directed behaviour. Moreover, the present work is also relevant for autonomous
robotics as it starts to investigate how the use of sophisticated motivational systems might allow
building robots that are capable of exhibiting some of the flexibility of real organisms.

5.1 Introduction

The flexibility and capacity of adaptation of organisms greatly depends on their learning capabilities.
For this reason, animal psychology has devoted great efforts to the study of learning processes. In
particular, in the last century a huge body of empirical datahave been collected around the two main
experimental paradigms of ‘classical conditioning’ (Lieberman, 1993; Pavlov, 1927) and ‘instrumen-
tal conditioning’ (Domjan, 2006; Skinner, 1938; Thorndike, 1911).

‘Classical conditioning’ refers to an experimental paradigm in which a certain basic behaviour
such as salivation or approaching (the ‘unconditioned response’ – UR), which is linked to a biologi-
cally salient stimulus such as food ingestion (the ‘unconditioned stimulus’ – US), gets associated to a
neutral stimulus like the sound of a bell (the ‘conditioned stimulus’ – CS), after the neutral stimulus
is repeatedly presented before the appearance of the salient stimulus. Such acquired associations are
briefly referred to as ‘CS-US’ or ‘CS-UR’ associations (Lieberman, 1993; Pavlov, 1927).

‘Instrumental conditioning’ refers to an experimental paradigm in which an animal, given a certain
stimulus/ contexts such as a lever in a cage (the ‘stimulus’ –S), learns to produce a particular action
such as pressing the lever (the ‘response’ – R), which produces a certain outcome such as the opening
of the cage (the ‘action outcome’ – O), if this outcome is consistently accompanied by a reward such
as the access to food. In this case, the acquired associations are briefly referred to as either ‘S-R’
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associations, when the reactive nature of the acquired behaviour is stressed, or ‘A-O’ associations,
when the goal-directed nature of behaviour is stressed (Domjan, 2006; Skinner, 1938; Thorndike,
1911, see below).

This empirical work has been paralleled by the development,within the machine learning lit-
erature, of ‘reinforcement learning algorithms’ (Sutton and Barto, 1998, 1981), that is algorithms
directed to provide machines with the capacity of learning new behaviors on the basis of rewarding
stimuli (i.e. signals from the external environment that inform the machine about the achievement
of desired goals). Interestingly, reinforcement learningalgorithms have gained increasing interest
within the empirical literature on animal learning as they represent theoretical models that can poten-
tially furnish coherent explanations of organisms’ learning processes. Indeed, one of such models, the
so-called temporal-difference (TD) learning algorithm, is currently considered as the best theoretical
account of several key empirical findings (Dayan and Balleine, 2002; Schultz, 2002).

Notwithstanding their success, standard reinforcement learning models suffer of several limita-
tions from a biological point of view. In particular, three of the main drawbacks are as follows. First,
such models ignore the role of internal states (e.g. hungriness vs. satiety related to a certain type of
food) in modulating the effects of ‘external’ rewards (e.g.the receival of such a food). Such kind of
effects are demonstrated by organisms, for example, in ‘devaluation’ experiments in which animals
tend to change their reinforced behaviors in case the value of a rewarding stimulus, such as a food,
is suddenly decreased through satiation or its associationwith poison. By ignoring the role of inter-
nal states in learning and behavior, current reinforcementlearning models can not account for such
effects.

Second, standard models tend to conflate the notions of classical conditioning (also called ‘Pav-
lovian conditioning’) and instrumental conditioning (also called ‘operant conditioning’). On the con-
trary, accumulating empirical evidence indicates that classical and instrumental conditioning are based
on different processes that rely on distinct neural systems. Furthermore, such processes interplay
in complex ways (Dayan and Balleine, 2002), as demonstrated, for example, by phenomena like
‘Pavlovian-Instrumental Transfer’ (where a conditioned stimulus that is predictive of reward can en-
ergize the execution of instrumentally acquired behaviours), and ‘incentive learning’ (where, under
certain conditions, the valence of an action’s outcome needto be re learned to exert its effects on
behaviour).

Different brain mechanisms underlying operant and classical conditioning There is nowadays
a wide evidence that the amygdala (Amg - an almond shape groupof nuclei within the temporal lobe,
part of the brain limbic system) is a main actor in classical (pavlovian) conditioning processes linking
CSs to both appetitive and negative USs (Baxter and Murray, 2002; Cardinal et al., 2003). In particu-
lar, the basolateral complex of amygdala (BLA) is necessaryfor a CS to acquire the same rewarding
and motivational value of the US. When BLA is lesioned associations between CSs and URs can still
be made, but the behavioural responses cannot be further transferred from a CS to another neutral
stimulus, second order associations between USs and CSs being thus impeded (Hatfield et al., 1996).
Furthermore lesions of BLA disrupt an animal’s ability to keep a CS linked to the current motivational
value of an US. When a rat is presented with a stimulus, let’s say a light, associated with a food which
it was previously satiated or nauseated of, in normal conditions the animal diminishes its appetitive
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responses to the light as in the case it is presented with the devalued food (conditioned devaluation).
Lesions to BLA disconnect the current value of the food US from that of the light CS, leading to appet-
itive behaviours when the animal is presented with the CS after CS-US conditioning and subsequent
US devaluation (Hatfield et al., 1996). In permitting secondorder conditioning and conditioned de-
valuation behaviours, BLA processing is part of a complex associative system including orbitofrontal
cortex (OFC). In fact OFC has been showed to be highly integrated with BLA, being necessary for
second order associations in BLA to be correctly built (Saddoris et al., 2005; Schoenbaum et al.,
2003), and for long term mantainance of those associations (Pickens et al., 2003).

When an association between a reinforcement or a punishmentand actions made to produce it
has to be learned, the role of the corticostriatal loops becomes evident (Yin and Knowlton, 2006).
The striatum is the input portion of the basal ganglia, a set of forebrain subcortical nuclei playing an
important function in voluntary movement; in rats, the striatum can be divided in (Yin and Knowl-
ton, 2006): (1) dorsolateral striatum, mainly underlying motor- execution functions (Romanelli et al.,
2005), (2) dorsomedial striatum, playing a role in motor- preparation, attention and cognitive func-
tions (Lawrence et al., 2000), and (3) ventral striatum, considered an important interface (Mogenson
et al., 1980) between the motivational processes taking place in the limbic system and the motor pro-
cesses taking place within the rest of the basal ganglia and cortex. Each part of the striatum is reached
by a different set of cortical afferents, from motor and premotor cortices (dorsolateral part) to asso-
ciative cortices (dorsomedial part) and prefrontal cortical districts (ventral part). These cortical areas
receive themselves inputs from the correspective striatalareas, through afferents from the basal gan-
glia outout nuclei to the thalamus (Haber, 2003; Haber et al., 2000; McFarland and Haber, 2002). A
large set of data confirms that the dorsolateral striatum - cortical loops are necessary to form the S-R
associations underlying instrumental behaviours at the level of motor reactions to stimuli (Yin and
Knowlton, 2006; Yin et al., 2004). These associations are formed through long sessions of trials and
errors, and, once learned, tend to be automatically recalled by specific stimuli in a fixed way, being
insensitive to expectations about future. The behaviours emerging through this kind of learning are
what we call ‘habits’. Ventral striatum, instead, seems to act as an interface between the processing
of contingencies between actions and possible outcomes (A-O) within the ventromedial prefrontal
cortex, and the elaboration of the current motivational value of outcomes within the limbic system,
mainly Amg. This interaction between the A-O associative system and the CS-US associative sys-
tem should be at the base of the devaluation behaviours, permitting to the animal to switch between
outcomes to persecute, according with the current motivational value of each outcome. Within this
theoretical framework, the A-O system is thought to guide learning of the S-R mechanisms during the
initial phases of an instrumental training, then, once learned, S-R associations could directly trigger
behaviours.

The role of ventral striatum as al limbic-motor interface includes a set of functional properties. In
particular accumbal activation influences both general neural activation and goal selection in presence
of a stimulus carrying a motivational value. The internal structure of ventral striatum can be divided
in two areas: nucleus accumbens shell (NAccS) and nucleus accumbens core (NAccC) (Brauer et al.,
2000).

A direct contribution of the ventral striatum over instrumental behaviours goes through NAccC.
In fact, while lesions to NAccS doesn’t have any effect over devaluation tasks, NAccC disruption
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abolishes devaluation behaviours in instrumental tasks similar to the task targeted in this paper (Corbit
et al., 2001) (see section 5.2). Moreover, animals with NAccC lesions are also impaired in second
order reinforcement tasks, where a CS (acquired instrumentally or through pavlovian conditioning)
is able to lead a subsequent instrumental learning (Ito et al., 2004). Both instrumental devaluation
and second order reinforcement share the necessity for the motivational value to be transferred, in a
pavlovian way, from the US to a CS (being it the manipulandum in the devaluation task or the CS used
as a reinforcer in second order reinforcement). While thereis evidence that BLA processing is also
necessary for instrumental devaluation to take place (Balleine et al., 2003), there is also evidence that
direct interactions between BLA and NAccC underlie the ability to resolve second order reinforcement
tasks (Di Ciano and Everitt, 2004). Activation by BLA influences the processing of the striato-cortical
loop including NAccC and prelimbic cortex (PL) (Gorelova and Yang, 1997; Zahm, 2000). While
doing so, it also lead to modulation of the activation of the dorsomedial striatal-cortical loop and
finally of the dorsolateral striatal-cortical loop, both via striatonigrostriatal spiral projections (Haber
et al., 2000), cortico-thalamo-cortical projections (McFarland and Haber, 2002) and cortico-cortical
reentrant connections , (Haber, 2003), thus linking the elaboration of goal selection to the action
selection mechanisms.

NAccS, instead, seems to be responsible of phenomena such as’pavlovian - to - instrumental
transfert’, in which a CS, previously associated with an US,enhances activation when presented dur-
ing an instrumental task where the reinforcer is different from that of the conditioning procedure
(US’) (Corbit et al., 2001). This property should emerge from a particular efferent pathway of this
area, that includes a strong output to ventral tegmental area (VTA), both directly and through the
ventral pallidum, the pedunculopontine tegmental nucleus(PPT) and the lateral hypothalamus (LH)
(Usuda et al., 1998; Zahm, 2000). Together with a strong afferent projetion from VTA itself (Voorn
et al., 1986), this pathway should exert a major influence on the overall modulation of dopaminergic
activation and, through this, on dopamine-dependent sensomotory activation. Following this over-
all schema, BLA - NAccC pathway should be a direct channel through which pavlovian associative
mechanisms exert their influence over reinforcement learning, permitting devaluation behaviours in
instrumental tasks.

Therefore devaluation instrumental paradigms reveal to bethe best framework to start overcoming
the three limits of standard reinforcement learning algorithms discussed in the previous section, for
through them 1) the necessity for an elaboration of the motivational value throught the internal states
of the organism is revealed, 2) the interaction between pavlovian and instrumental learning processes
can be analyzed and 3) an hypothesis can be drawn about the relation between habits and goal-directed
behaviours.

This paper presents a novel computational model which is strongly rooted in the anatomy and
physiology of the mammal brain and starts to address the drawbacks of current reinforcement learn-
ing models within the biological framework illustrated above (a preliminary version of the model
was presented in Mannella et al., 2007). In particular, the model reproduces the results of an em-
pirical experiment (Balleine et al., 2003) which demonstrates the phenomenon ofdevaluationin an
instrumental conditioning task and proposes a coherent picture about the discussed possible neural
mechanisms underlying it. The model is based on the following fundamental hypotheses discussed
previously:
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1. theamygdalaconstitutes the CS-US associator at the core of Pavlovian conditioning phenom-
ena;

2. thecortex-dorsolateral striatumpathway, forming S-R associations, constitutes the main actor
involved in instrumental conditioning;

3. thecortex-ventral striatumpathway, forming A-O associations, constitutes the main actor in-
volved in goal selection processes and planning;

4. theamygdala-ventral striatumpathway ‘bridges’ classical conditioning processes happening in
the amygdala and instrumental processes taking place in thebasal ganglia.

By reproducing the basic results of both normal and lesionedrats the model provides significant
evidence for these three fundamental hypotheses and, more importantly, it contributes to clarify the
relationships existing between the neural structures and processes underlying them.

5.2 The target experiment and the simulated environment

The model presented here was tested within an embodied system because, as mentioned in the intro-
duction, one of the long-term goal of this research is to build models that are based on sound anatom-
ical and physiological neuroscientific evidence and that atthe same time are capable ofscaling to
function in realistic robotic setups. Although we are awarethat the role of the ‘degree of embodiment
and situatedness’ of the model and simulations presented here is rather limited (e.g. the sensors and
actuators used are rather simplified, low-level behaviors are hardwired, etc.), nevertheless the use of
a robotic test forced us to design a model potentially capable to cope with the difficulties posed by
more realistic setups. For example, the randomly variable duration of the trials, actions’ execution,
and rewarding effects posed interesting challenges to the robustness of the learning algorithms of the
model.

The model was tested with a simulated robotic rat (‘ICEAsim’) developed within the EU project
ICEA on the basis of the physics 3D simulator WebotsTM. The model was written in MatlabTM and
was interfaced with ICEAsim through a TCP/IP connection. The robotic setup used to test the model
is shown in Figure 5.1 and it is now briefly described skippingirrelevant details. The training and
test environment is composed by a grey-walled chamber containing a yellow lever, a red chain, and a
food-dispenser that turns green or blue when respectively food A or food B is delivered in it. When
‘pressed’ or ‘pulled’, the lever and chain make respectively food A or B (the rewarding stimuli)
available at the dispenser.

The simulated rat is a two-wheel robot equipped with varioussensors. Among these, the exper-
iments reported here use two cameras (furnishing a panoramic 300 degrees view) and the whisker
sensors. The rat uses the cameras to detect the lever, the chain and the food dispenser, in particular
their presence/absence (via their color) and their (egocentric) direction. The rat uses the whiskers,
activated with one if bent beyond a certain threshold and zero otherwise, to detect contacts with ob-
stacles. The rat is also endowed withinternal sensors related to satiety for either food A or B (these
sensors assume the value of one when the rat is satiated, and zero otherwise). The rat’s actuators are
two motors that can independently control the speed of the two wheels.
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Figure 5.1: Left: A snapshot of the simulator, showing the simulated ratat the center of the experimental chamber, the

food dispenser (behind the rat), the lever (at the rat’s lefthand side) and the chain (at the rat’s right hand side). Right: The

architecture of the model.

The information fed to the model is only related to the presence/absence of the lever and chain in
the test chamber and food A and food B in mouth, whereas the other information is used to control
a number low-level hardwired behavioral routines. These routines, triggered either by the model or
directly by stimuli, are as follows: (1) ‘obstacle avoidance routine’: this routine, triggered by the
whiskers, ‘overwrites’ all other actions to avoid obstacles; (2 and 3) ‘lever press routine’ and ‘chain
pull routine’: these routines, activated by the model, cause the rat to approach the lever/chain on
the basis of their visually detected direction; when the lever/chain are touched they activate the food
delivery in the dispenser; (4) ‘consummatory routine’: when the dispenser turns green or blue (this
signals the presence of food in it), the rat approaches and touches it (‘consummation’ of the food) so
causing the perception of either food A or food B in mouth; theroutine ends after the rat touches the
dispenser ten times.

The devaluation experiment is divided in a training phase and two test phases. The training phase
lasts 16 mins and the two test phases 4 mins each. Each phase isdivided in trials that end either when
the rat executes the correct action and consumes the food or after a 15 s timeout. In each trial the
rat is set in the middle of the chamber with an orientation randomly set between the lever and the
chain direction. In the trials of the training-phase eitherthe lever and food A or the chain and food
B are used in an alternate fashion and the rat is always ‘hungry’ (the two satiation sensors are set to
0). In the two test phases, the rat is respectively satiated either with food A (the satiation sensors for
food A and B are respectively set to one and zero) or with food B. In all trials of the two test phases
both manipulanda are present and the rat is evaluated in extinction (i.e. without delivery of food).
The experiment (the three phases) was run 20 times with ‘unlesioned’ artificial rats and 20 times with
‘lesioned’ rats.

5.3 The Model

The model’s input component is formed by three vectors of units activated by the sensors illustrated
in Section 5.2. First, a vectorv1 = (v1lever, v1chain)′ of two units, corresponding to the primary
visual cortex (V1), encodes the presence/absence of the lever and the chain in a 0/1 binary fashion.
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Second, a vectort1 = (t1foodA, t1foodB)′ of two units, corresponding to the primary taste cortex
within the insular cortex (T1 Verhagen et al., 2004), encodes the presence/absence of food A and
food B in the rat’s mouth in a 0/1 binary fashion. Finally, a vector ic = (icfoodA, icfoodB)′ of two
units, corresponding to both the processing by insular cortex (IC; Yeterian and Pandya, 1995) and the
elaboration made by hypothalamus (Hyp; King, 2006), encodes the non-satiation/satiation for food A
and food B again in a 0/1 binary fashion. Inputs fromv1 are further processed within a vectorit of
two leaky units, corresponding to the inferotemporal cortex (Yeterian and Pandya, 1995):

τit · i̇tp = −itp + v1 (5.1)

it = ϕ[tanh[itp]]

whereitp encodes the activation potential of IT units, andϕ[x] is part of IT units transfer function (if
x ≤ 0 thenϕ[x] = 0, elseϕ[x] = x).

The model (Figure 5.1) is formed by three major sub-systems:(a) a S-S associator, corresponding
to BLA; (b) a static S-R action selector, corresponding to the cortico-dorsolateral striatal pathway
passing through IT, DLS, entopeduncular nucleus of basal ganglia (EP), and premotor cortex (PMC);
(c) adynamicS-S-R associator, corresponding to the cortico-ventral striatal pathway passing through
Amg, ventral striatum (VS), in particular to the nucleus accumbens core (NAccC), ventral pallidum
(VP), and prelimbic cortex (PL). Note that ‘static’ and ‘dynamic’ terms are used here to refer re-
spectively to associators which do not or which do implementassociations which can be modulated
on-the-fly by internal states. Now the three sub-systems arepresented in detail.

5.3.1 The Amygdala, an S-S Associator, and the Dopamine Learning Signal

The S-S associator implements Pavlovian conditioning through the association between CSs and USs
(‘stimulus substitution’). In real brains this role seems to be played by BLA (Baxter and Murray, 2002;
Cardinal et al., 2003). There are massive reciprocal connections between BLA and several brain areas,
including inferotemporal cortex (IT), prefrontal cortex (PFC), and hippocampus (Hip) (McDonald,
1998; Pitk̈anen et al., 2000; Price, 2003; Rolls, 2005). Furthermore, BLA receives inputs from insular
cortex (IC), Hypothalamus (Hyp) and posterior intralaminar nuclei of thalamus (PIL) (McDonald,
1998; Pitk̈anen et al., 2000; Shi and Davis, 1999). These connections underlie an interplay between
processes related to perceived or represented external context and stimuli (IT, PFC, Hip) and processes
related to internal states (IC, Hyp, PIL). In general, BLA can be seen as playing the function of
assigning a “subjective valence” (i.e. a mark of biologicalrelevance) to external previously-neutral
events on the basis of the animal’s internal states (needs, motivations, etc.), and to use this to both
regulate learning processes and directly influence behavior.

The S-S model’s associator, considered to abstract the processes taking place in the BLA, per-
forms ‘asynchronous learning/synchronous functioning’ associations. First, the associator associates
between them asynchronous stimuli perceived at different times (namely, it associates CSs with USs):
this associative learning takes place only if USs cause a dopamine (DA) release (see below). Then,
once the association is established, CSs are able to synchronously re-activate the USs’ representations
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in BLA.
Mathematically, the associator is composed by a vectorbla = (blalever, blachain, blafoodA,-

blafoodB)′ of four laterally-connected leaky units that process the input signals as follows:

τbla · ˙blap = −blap+ (5.2)

Wit−bla · it + Wt1−bla · t1+

Wic−bla · ic + Wbla · bla

bla = ϕ[tanh[blap]]

whereblap are the activation potentials of BLA units,Wit−bla is the matrix of connection weights
between IT and BLA,Wt1−bla is the matrix of connection weights between T1 and BLA,Wic−bla is
the matrix of connection weights between IC and BLA, andWbla is the matrix of all-to-all lateral con-
nection weights within BLA. Note that while external stimuli play the function of input signals to the
model, internal stimulimodulatethe internal representations of external stimuli. In particular,icfoodB

andicfoodB assume a value of either zero or one when the corresponding satiation is respectively low
or high, and this activation inhibits the hedonic internal representation of such foods within BLA via
inhibitory connections (see Section 5.3.3). This assumption is supported by evidence indicating that
a similar computation is performed in the secondary taste areas of the prefrontal/insular cortex which
are connected to BLA (Rolls, 2005). This part of the model is particularly important because, as we
shall see, it mediates the influence of the shifts of primary motivations on both learning and behaviour.

The associator’s learning is based on theonsetof input signals, detected as follows. First, ‘leaky
traces’tr of the derivative ofbla, ˙bla, trunked to positive values, are computed:

τtr · ṫr = −tr + CBLA · ϕ[ ˙bla] (5.3)

whereCBLA is a coefficient used to amplify the small signalṡbla. Second, the derivatives of the
elements oftr are computed. Notice that when positive these derivatives detect the onset of the
original signals, whereas when negative they detect the fact that some time elapsed since such onset
took place.

The weights between BLA’s units are updated on the basis of the signs ofṫr and the DA signal
(see below). In particular, when (and only when) the derivative of the presynaptic unit’s trace is
negative and the derivative of the postsynaptic unit’s trace is positive (i.e. when the presynaptic unit
fires beforethe postsynaptic unit) the related connection is strengthened. Instead, when (and only
when) the derivative of the presynaptic unit’s trace is positive and the derivative of the postsynaptic
unit’s trace is negative (i.e. when the presynaptic unit fires after the postsynaptic unit) the related
connection is weakened. This condition is encoded, for all couples of units, in the Boolean matrixL:
each element of this matrix is equal to + 1 for synapses to be strengthened and equal to -1 for synapses
to be weakened. Formally, the rule used to update weights of BLA’s lateral connections is as follows:



5.3. The Model 71

∆Wbla = ηbla · ϕ[da− thda] · L· (5.4)

(1 − |Wbla|)

whereηbla is a learning rate coefficient,da is the dopamine signal, andthda is a threshold over which
dopamine elicits learning.

DA release (corresponding to activation of the ventral tegmental area, VTA, and in the substantia
nigra pars compacta, SNpc) is triggered by BLA through its units blafoodA andblafoodB which is-
sue signals to the dopamine unit of VTA/SNpc through connections which are an abstraction of the
connections going from BLA to Hyp and hence to the VTA (Petrovich et al., 2002,?). Notice that,
thanks to these unlearned connections, BLA unitsblafoodA andblafoodB come to represent the ‘hedo-
nic impact of food’, that is internal representations of food directly causing the DA signals underlying
learning (as simulated here) and motivation (not represented here). DA release is also triggered by the
‘primary reward signals’ (which is signals associated to stimuli which cause DA learning signals via
unlearned connections) received from the pedunculopontine tegmental nucleus (PPT) denoted asppt

(ppt = t1foodA + t1foodB) (Kobayashi and Okada, 2007; Pan and Hyland, 2005). Specifically, the
DA signal is computed as follows:

τdap
· ˙dap = −dap + dabaseline+ (5.5)

wbla−da · (blafA
+ blafB

)+

wppt−da · ppt

da = ϕ[tanh[dap]]

DA not only drives learning taking place within the BLA (Equation 5.4) but it also drives learning
involving the two action selectors pivoting respectively on the DLS (see Section 5.3.2, Equation 5.9)
and NAccC (see Section 5.3.3,Equation 5.13).However, notethat although here the choice of DA as
a unique signal underlying learning in all the three brain systems was done for simplicity and because
it was not in contrast with neuroscientific evidence, norepinephrine (NE) might alternatively or com-
plementarily drive associative learning in BLA, as suggested by some empirical evidence (McIntyre
et al., 2002). Indeed, at least in some cases DA might not be suited to drive learning in BLA. In
fact, BLA is known to implement associations between neutral stimuli and both positive andnegative
stimuli whilst DA seems to be mainly involved in signalling stimuli with positive valence (citeShultz,
getting formal) whereas stimuli with negative valence tendto cause its depression (citepaper on pinch;
depression might be useful for active avoidance learning).

Note that in the experiments reported in Section 5.4 the lesions of rats’ BLA were simulated by
clumping the BLA units at a zero activation.

5.3.2 The Dorsolateral Corticostriatocortical Pathway: AStatic S-R Action Selector

The static action selector learns ‘habits’, that is rigid S-R associations, through reinforcement learning
processes. In real brains, this function might be implemented by the corticostriatal loops involving
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in particular the DLS and premotor cortex (PMC) or motor cortex (MC) (Yin and Knowlton, 2006;
here for simplicity only PMC will be considered). At the input level, this sub-system receives signals
from IT, feedback input signals from PMC, and modulation DA signals from VS (see Section 5.3.3).
At the output level, represented by the PMC, the sub-system selects the actions to be executed (e.g.,
lever-press or chain-pull).

In the model this component is formed by four layers of units encoded in four vectors: (a) a leaky-
unit layerit corresponding to IT;(b) a non-leaky unit layerdls = (dlslever, dlschain)′ corresponding
to DLS and encoding the total signals in favour of the execution of the two actions (‘votes’);(c) a
leaky-unit layerep = (eplever, epchain)′ corresponding to the EP, formed by reciprocally inhibiting
units which implement a competition in order to select one ofthe two actions (this is an abstraction
of the selective function which in real brains might be implemented by the re-entrant thalamo-cortical
connections, Dayan and Balleine, 2002);(d) a layerpmc = (pmclever, pmcchain)′ corresponding to
PMC, representing the selected action with a 0/1 binary code.Note that some of these notations are
mainly aimed at understanding the model architecture. In particular, the implementation of dorsolat-
eral basal ganglia presented here is focused on the overall functionality of selection via competition
more than on the its detailed micro-architecture (for a moreaccurate computational model of basal
ganglia, see Gurney et al., 2001a, Gurney et al., 2001b, and Humphries et al., 2006).

IT is connected through all-to-all connections to DLS. DLS (non-leaky) units receive the signals
from IT, together with the feedbacks from PMC, which can be though of as ‘votes’ in favour of the
selection of either one of the two actions. Importantly, these votes are modulated by NAccC activa-
tion naccc (see Equation 5.10) which should be considered an abstraction of the striatonigrostriatal
connections (seeSection 5.3.3 and 5.1; the way of representing the modulatory effect of DA used here
is as in Humphries et al. (2006)):

dlsp = (W(it−dls) · it + pmc + naccc)· (5.6)

(1 + Cnaccc · naccc)

dls = ϕ[tanh[dlsp + dlsbaseline]]

The selection of actions is performed on the basis of these votes through a competition taking
place between the leaky units of EP:

τep · ėpp = −epp + Cep · dls+ (5.7)

epbaseline + nep + Wep · ep

ep = ϕ[tanh[epp]]

whereCep is a coefficient scaling the DLS votes,epbaseline is a baseline activation,nep is a noise
vector with components uniformly drawn in[−nep,+nep], andWep are the EP lateral connection
weights.

When one of the EP units overcomes an activation thresholdthpmc, the corresponding unit of
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PMC is set to one (otherwise PMC units are kept at zero) and thecorresponding action is executed.
PMC ’s activation is also influenced by the activation of PL units pl (see Equation 5.12):

pmc = ψ[(ep + pl) − thpmc] (5.8)

whereψ[x] is the step function (ifx ≤ 0 thenψ[x] = 0, elseψ[x] = 1). Once the execution of the
routine corresponding to the selected action terminates, the connection weights between IT and DLS,
Wit−dls, are modified according to the DA signal (this is null in the case the wrong action is selected):

∆Wit−dls = ηit−dls · ϕ[da− thda] · dls · it′ (5.9)

whereηit−dls is a learning coefficient. Note that here PMC’s feedback to DLS is essential to allow the
Hebbian productdls · it′ to strengthen the connection weights between correlating stimuli and actions
in the presence of DA.

5.3.3 The ventral Corticostriatocortical Pathway: A Dynamic S-R Action Selector

The dynamic action selector learns (S-)S-R associations through a reinforcement learning process
that exploits the information encoded in the BLA’s S-S associations (e.g., the ‘lever-hedonic value
of food A’ association). In real brains this function might be implemented by the neural pathway
connecting the BLA nuclei of BLA to the ventral striatum, in particular to the portion of it called
nucleus accumbens core (NAccC; see Corbit et al., 2001 and Baxter and Murray, 2002). This pathway
sends signals (‘votes’) to VP which then selectsdesired statesvia the prelimbic cortex (PL). These
‘desired states’ are the potential outcomes of actions, in the model ‘food A with hunger-for-food-A
expected after execution of a lever-press action’ and ‘foodB with hunger-for-food-B expected after
execution of a chain-pull action’. As we shall see below, as these outcomes can participate to trigger
the execution of specific actions in the DLS (habit) pathway,the BLA- NAccC-DLS can be said to
implement inverted O-A relations which allow desired outcomes (i.e. USs) elicited by CSs in BLA,
to contribute to select actions at the level of the habit pathway either biasing the DLS competition
via the BLA-NAccC-DLS pathway or by ‘overwriting’ the action selection in PMC via the BLA-
NAccC-VP-PL-PMC pathway.

In the model, the BLA-NAccC neural pathway is implemented byan all-to-all connection matrix
Wbla−naccc linking the BLA’s hedonic representations of food (here denoted asblaus = (blafoodA, blafoodB)′),
to the NAccC (non-leaky) units. Similarly to DLS and PMC, NAccC also receives re-entrant input
signals from PL (these signals play an important role in for learning, see below):

nacccp = Wbla−naccc · blaus + pl (5.10)

naccc = ϕ[tanh[nacccp + nacccbaseline]]

NAccC units play a function similar to DLS units for EP in thatthey represent ‘votes’ that bias
the competition taking place between the VP leaky-units units and directed to select one ‘desired
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outcome’:

τvp · v̇pp = −vpp + Cvp · naccc+ (5.11)

vpbaseline + nvp + Wvp · vp

vp = ϕ[tanh[vpp]]

whereCvp is a coefficient scaling the votes,vpbaseline is a baseline activation of VP,nvp is a noise
vector with components uniformly drawn in[−nvp,+nvp] Wvp are the EP lateral connection weights.

When one of the VP units reaches the activation thresholdthpl, the corresponding desired outcome
is activated in PL (as PMC, PL has binary activations):

pl = ψ[(vp + pmc) − thpl] (5.12)

Note that PL activation is also influenced by PMC activationpmc: this signal has a very im-
portant function for updating BLA-NAccC connection weights as it can carry the information related
to the executed action, represented in PMC, to the expected outcomes, represented in PL, and then
backward to the NAccC which can then form suitable associations with the representations of BLA. In
particular, similarly to IT-DLS connections, BLA-NAccC connectionsWbla−naccc are modified after
action execution on the basis of the DA-dependent Hebbian rule involving the activations of BLA and
NAccC (on its turn influenced by the re-entrant signals from PL):

∆Wbla−naccc = ηbla−naccc · ϕ[da− thda]· (5.13)

(blaus · naccc)

whereη(bla−naccc) is a learning rate coefficient.
The importance of the BLA-NAccC dynamic action selector resides in the fact that its ‘votes’ for

the various actions can be modulatedon-the-flyby the organism’s motivational states, in particular
by satiety for either one of the two foods. In general, this mechanisms opens’ up the possibility for
the motivational-sensitive Pavlovian system (mainly the BLA in the model) to exert a direct effect
on actions without the need to pass through re-learning processes, as it will be exemplified by the
devaluation experiments illustrated in the next section.

5.4 Results

This section describes the basic functioning of the model onthe basis of Figures 5.2 and 5.4. The
figures show the activations of various units related to the lever (data related to the chain are omitted
as qualitatively similar) during both the training ( 5.2) and testing phases ( 5.4) of an experiment run
with a non-lesioned simulated rat. ( 5.4) also shows the activations of the same units in the two test
phases for rats with three kind of lesions.

At the beginning of the training phase, the baseline activations of DLS and NAccC (dlslever

naccclev), together with noise, are sufficient to occasionally trigger the execution of an action (mlever)
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by the competition taking place in PMC (pmclever). When the behavioral routine corresponding to the
selected action is appropriate for the environment configuration (‘lever press’ in the presence of lever),
the dispenser becomes yellow, the rat approaches it and consumes the corresponding food (sfoodA).
The food consumption activates the internal hedonic representation of food in BLA (blafoodA) and
hence the units in VTA/SNpc with the consequent release of DAin DLS. This drives the learning of
the dorsal corticostriatal instrumental pathway.
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Figure 5.2: Activations of some key units of a non- lesioned rat during the training phase; Trials are separated by short

vertical lines.

The effect of these events is that after a few learning trialsthe model learns to reliably and fast
perform the action which is appropriate to the current context. The progress of learning can be seen in
terms of: (a) the increase of DLS’s votes for the press lever action (dlslever) in the trials in which the
lever is present; (b) the increase of the regularity of the peaks of the food A amygdala units (blafoodA);
(c) the DA release in VTA-SNpc (vta− SNpc).

When instrumental S-R associations begin form due to instrumental learning, the vision of the
neutral stimuli of the lever (slever, blalev) starts to be reliably followed, within a relatively small
time interval, by the food perception (sfoodA) and the consequent DA release (da). This contingency
and the DA signal allow the Pavlovian learning taking place within BLA to ‘take off’ and form S-
S associations between the lever and BLA’s food A representation. This is evident from the fact
that after a few successful trials theblafoodA unit’s activation not only show a peak when the food
A is delivered but are also pre- activated by the presence of the lever: this reveals that a Pavlovian
association is being acquired between the conditioned stimulus (lever) and the unconditioned stimulus
(food). The pre-activation of theblafoodA unit due to the perception of the conditioned stimulus is
responsible for the early DA releaseda which anticipates the future delivery of reward: this mimics
an important well-known phenomenon observed in real animals (Schultz, 2002).

The last important learning process takes place in the BLA-NAccC pathway. The rat’s consump-
tion of food A activates both the BLA’s hedonic representation of it (blafoodA) and, via the VTA/SNpc,
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which results in a strong DA signal. This creates a strong association between the hedonic represen-
tation of food and the last executed action. The key point here is that once the S-S associations are
formed in the BLA, conditioned stimuli such as the lever can trigger the activation of the BLA’s hedo-
nic representation of the related food and, via these, influence PUT’s action selection via NAccC. This
is shown by the fact that, after some training, NAccC starts to be activated and to vote for the correct
actions (naccclever). The importance of the formation of this Stimuli-BLA-NAcc-PM pathway resides
in the fact that it constitutes the fundamental bridge between the the Pavlovian processes happening in
the amygdala and the instrumental processes happening in the basal ganglia pathway (cortex–dorsal
striatum– putamen–thalamus–frontal cortex). We argue that this pathway plays a central role in the
flexibility demonstrated by real organisms. In particular,it is through this pathway that instant motiva-
tional manipulations that characterize Pavlovian conditioning are able to affect instrumentally learned
behaviors, as in the devaluation experiments now illustrated.

During the two test phases, the satiety of respectively foodA or B are kept at one, i.e. at their
maximum level (the other satiety level is kept at zero). The satiety for a food causes a strong inhibition
to the BLA’s hedonic representation of such food. As a consequence both the direct consumption of
that food and the perception of the conditioned stimulus previously associated with it cannot elicit the
related BLA’s hedonic reaction. This is shown by the lack ofblafoodA’s activation during the second
test phase when the rat is satiated with food A. The perception of both the lever and the chain leads

Figure 5.3: Activations of some key units in four test phases. Each blockshows a test phase where satiation for food B

was induced. The first block shows activations in a rat with nolesions (SHAM). The second block shows activations in a

rat where a lesion to the BLA component was produced before the training session. The third block shows activations in

a rat where connections between NAccC and DLS (SPIRALS) weredestroyed before trainning. The fourth block shows

activations in a rat where connections from PL to PMC (PL-PMC) were lesioned before training. Trials are separated by

short vertical lines.

PUT to ‘vote’ for both the lever press and chain pull actions at the same time. This rules out the
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influences of the S-R instrumental pathway on action selection. Note that this experimental condition
was precisely designed by Balleine et al. (2003) to stop the effects of habits that would otherwise
‘mask’ the motivation-sensitive Pavlovian influence on action selection. On the other hand, satiation
stops only one of the two influences of the BLA-NAccC pathway on action selection in that it inhibits
only the amygdala representation of the conditioned stimulus which has been satiated (compare the
naccclever activation in the two test phases). The fact that the BLA-NAccC pathway ‘votes’ only
for the action associated with the non-satiated food breaksthe symmetry and makes the related action
reliably win the competition in PM (compare thepmclever andmlev activations in the two test phases).
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Figure 5.4: Means of responses to lever during tests where rats were devalued or not for food B (left bars), compared with

means of responses of BLA- lesioned rats in the same tests (right bars). Rats with BLA lesions (BLA), lesions of NAccC
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The comparison between the lesioned and non-lesioned conditions (see Figure 5.4) reproduces the
basic finding of the target experiment of Balleine et al. (2003) and confirms the aforementioned inter-
pretation of the devaluation tests: as it happens in real rats, a lesion to the BLA pathway linking the
amygdala to the NAccC prevents the devaluation of food from having any effect on the action selection
process. More in particular, during the four minutes of testnon-lesioned (SHAM) rats perform the ac-
tion associated to the non-devalued (ND) food 21.3 times on average whereas they perform the action
associated to the devalued (D) food 8.8 times on average (t = −10.2203, df = 39, p−value < 0.001).
On the contrary, BLA-lesioned (BLA) rats select actions randomly: the averages of performed ac-
tions associated with the non-devalued and the devalued foods are respectively 15.325 and 14.375
(t = −0.772, df = 39, p−value > 0.05). Furthermore the findings of Corbit et al. (2001) and Corbit
and Balleine (2003) about lesions of NAccC an PL on instrumental devaluation are also confirmed
(see Fig. 5.4).

Lesions to NAccC or PL prevents in simulated as in real rats prevents the devaluation of food from
having any effect on the action selection process.During the four minutes of test, NAccC-lesioned
(NAccC) rats select actions randomly: the averages of performed actions associated with the non-
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devalued and the devalued foods are respectively 15.45 and 14.00 (t = −1.3746, df = 39, p −

value > 0.05). Also PL-lesioned (PL) rats select actions randomly: the averages of performed
actions associated with the non-devalued and the devalued foods are respectively 12.65 and 12.55
(t = −0.1701, df = 39, p− value > 0.05).

These results show the plausibility of the hypothesis for which the BLA-NAccC pathway bridges
the Pavlovian processes happening in the amygdala with the instrumental processes happening in
the cortex-basal ganglia pathway, so allowing the current state of animals’ motivational systems to
modulateon the flytheir action selection mechanisms.
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Figure 5.5: In (a), (b) and (c) the maps of weights of learned connectionswithin the model are showed. White and black

squares respectively correspond to positive and negative weights. The areas of squares are proportional to the absolute values

of the corresponding weights. (a) shows weights connectingall units within BLA. (b) shows weights of the connection

between BLA and NAccC. (c) shows weights of the connection between IT and DLS.

5.5 Conclusions and Future Work

This paper presented an embodied model of some important relations existing between Pavlovian
and instrumental conditioning. The model’s architecture and functioning was constrained with rele-
vant neuroscientific knowledge on the brain anatomy and physiology. The model was validated by
successfully reproducing the primary outcomes of some instrumental conditioning devaluation tests
conducted with normal and amygdala-lesioned rats. These tests are particularly important for studying
the Pavlovian- instrumental interplay as they show how the sensitivity to motivational states exhibited
by the Pavlovian system can transfer to instrumentally acquired behaviors.

To the best of the authors’ knowledge, the model represents the first attempt to propose a com-
prehensive interpretation of the aforementioned phenomena, tested in an embodied model. The works
most closely related to this one are those of Armony et al. (1997), Dayan and Balleine (2002), Morén
and Balkenius (2000), and O’Reilly et al. (2007). The model presented here differs from these works
in that it proposes an embodied model (absent in all mentioned researches), presents a fully developed
model (Dayan and Balleine, 2002, presented only a ‘sketched’ model), and tackles the issue of the
relations existing between Pavlovian and instrumental conditioning (Armony et al., 1997, Morén and
Balkenius, 2000, and O’Reilly et al., 2007, focussed only onPavlovian conditioning).
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Notwithstanding the proposed model has these several strengths, it will be improved along many
directions in future work.The first limit of the work is that the model was tested with an embodied
system where input signals were heavily pre-processed before being fed into the model in the form of
‘localistic representations’ (one neuron-one object), and where actions could be specified at a rather
abstract level by relying on hardwired low-level behavioral routines. In the future the whole model,
or some of its parts (e. g. the amygdala component), will be tested with more challenging embodied
systems where the model will be fed with realistic distributed input patterns (e.g., the activations of
retina’s pixels) and will be required to issue low-level motor commands (e.g., the desired displace-
ment and turning speed).Second, the model has several limitations with respect to available biological
evidence. For example, it does not learn to inhibit the dopamine signal at the onset of the USs if
these are preceded by CSs, as it happens in real organisms (Schultz, 2002). This prevents the model
from performing ‘extinction’ (i.e., to un-learn a classical conditioning association or an instrumen-
tal response if these are not followed anymore by a reward) and from stopping the weights’ update.
In future work, the model will be added this capability by drawing ideas from other works, for ex-
ample O’Reilly et al. (2007). Moreover, the model cannot reproduce classical- conditioning based
modulation of thevigor with which instrumental actions are performed (Niv et al., 2006), nor it is
capable of triggering innate actions on the basis of classical-conditioning (e.g. approaching an US,
or approaching a CS after this has been associated to an US; Dayan and Balleine, 2002). Finally,
the model assumes that the selection ofactions takes place within premotor cortex. However, there is
strong evidence (Redgrave et al., 1999) that in real brains action selection takes place at the level of
the DLS itself, and so PM activations might only reflect such selection without causing it (cf. Cisek,
2007). This possibility, however, opens up the problem of how the NAccC might influence such action
selection, as requested for the Pavlovian processes to exert an influence on instrumental processes. In
this respect, an interesting neural pathway through which this influence might be implemented are the
striato-nigro- striatal connections (or ‘dopaminergic spirals’; Haber et al., 2000). These topics will be
addressed in future work.

Notwithstanding these limitations, the proposed model represents an important step in the con-
struction of an integrated picture on how animals’ motivational systems can both drive instrumental
learning and directly regulate behavior. Constructing such a picture is of paramount importance from
the scientific point of view as psychology and neuroscience have now amassed a large body of evi-
dence and knowledge on the phenomena investigated here which would greatly benefit of theoretical
systematization. As mentioned in Sect. 5.1, although this papers has mainly a scientific relevance,
the research agenda of the work presented here has also a potential interest for overcoming the limited
autonomy of current robots. In fact, a way to tackle these limits is to attempt to understand the mecha-
nisms underlying organisms’ behavioural flexibility so as to use them in designing robot’s controllers.
In this respect, notwithstanding the motivational and emotional regulation of behavior is very impor-
tant for behavioural flexibility, it has been almost completely overlooked by autonomous robotics. For
this reason Parisi (2004) has advocated the need of an ‘Internal Robotics’ research agenda dedicated
to the study of these processes.In line with this, recently machine learning and robotics communi-
ties have been devoting increasing efforts to the study of autonomous learning by trying to improve
the standard reinforcement learning algorithms mentionedin Sect. 5.1 on the basis of ideas coming
from the study of real organisms (Weng et al., 2001; Zlatev and Balkenius, 2001). In this respect, the
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investigations on emotional regulation of learning and behaviour in animals, such as those reported
here, are expected to produce important insights on possible new principles and techniques to be used
to design more powerful learning algorithms exhibiting a degree of autonomy similar to that of real
organisms (see Barto et al., 2004, and Schembri et al., 2007,for two examples of this).



Chapter 6

Conclusions

The approach of all work described in this thesis consisted in employing tools from computational
neuroscience in order to explain data acquired by psychobiological research on emotions and motiva-
tions and to furnish a strong operational theoretical framework to interpret them.

The achievements of the research presented in the thesis canbe grouped into two areas. First,
an operational hypothesis was given on the functional processes taking place within amygdala and
their interactions with the other functional brain systemsby collecting the neuroscientific data and
analyzing it through “computational” lens (see chapter 2).Second, this theoretic framework was used
to build computational models of some of the systems centered on amygdala processing. The use of
computational models allowed furnishing specific computational hypotheses about: (1) how different
associative learning mechanisms are implemented within the amygdaloid system, (2) how such mech-
anisms elicit the activation of unlearned responses to the environment, (3) how such mechanisms bias
cognitive processes of choice and decision making . Specificmodels were developed in chapters 3),
4), and 5 to investigate all these processes.

Specifically, the model presented in chapter 3 explains how Pavlovian mechanism add flexibility
to unlearned behaviours, allowing internal body states to modulate the internal representations of
the stimuli through which the cue-guided navigation behaviour (one of the most important unlearned
behaviours) is triggered. Such mechanisms allow a rat to navigate towards a region of space where it
expects to find a particular resource, but not towards another region where it expects to find a second
resource, depending on the current needs for the two resources. Furthermore, the model shows the role
these Pavlovian mechanisms in focusing attention. Biasingthe navigation behaviours, the Pavlovian
mechanisms within amygdala contribute to bring under the focus of attention specific portions of the
world depending on internal needs. The importance of the contribute of this chapter resides in that the
specific mechanisms underlying unlearned navigation behaviours are not yet fully understood.

The model presented in chapter 4 about internal associativePavlovian mechanisms implements
the hypothesis that the association between conditioned stimuli (CS) and unconditioned responses
(UR) formed in classical conditioning experiments is due totwo related but distinct mechanisms:
(1) stimulus-stimulus associations (CS-US-UR) involvingunconditioned stimuli (US) stored in the
BLA; (2) direct stimulus-response associations (CS-UR) stored in the LA-CeA neural pathway. The
importance of this investigation resides in the fact that the relations between these two associative
processes and their location within amygdala is not yet fully understood.

The model described in chapter 5 about the interaction between Pavlovian mechanisms imple-
mented within the amygdala and cognitive processes implemented within striatocortical loops fur-
nishes a computational hypothesis on how Pavlovian mechanisms can bias instrumental actions in
order to produce goal-directed behaviour. The novelty of this investigation resides in the fact that,
although much data has been furnished on goal-directed behaviours, habit behaviours, and Pavlovian
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processes, an overall picture of their relations is emerging only now and computational models can
greatly help this synthesis effort.

Future work related to this research will include an investigation in three directions. First, an
exploration on the very nature of the reward signal: is it genetically determined? Is it built, at least
in part, during the first stages of life? Second an analysis ofthe mechanisms that, starting from the
processing of incentive salience, produce both plasticityof neural populations leading to learning and
amplification of the general activity of the agent. Third, two neural subsystems should be investigated
at a lower computational level: on one side, the system including the basolateral complex of amygdala,
the orbitofrontal cortex, their strict interconnections and the relationship with the associative learning
features of amygdala; on the other side, the mechanism defined by the heavily reentrant connections
existing between the medial complex of amygdala and the ventromedial hypothalamus, that could
underly the very mechanisms of modulation of the incentive value.

The embodiment of simulations should also be improved so as to achieve a more realistic re-
production of the environment, the body of the subjects of the target experiments and the interactions
between them. Furthermore, the sensory processing of the simulated organisms should be improved in
order to face situations in which learning occurs in the presence of stimuli with partially overlapping
features.



Appendix A

Neural networks

A.1 Natural and artificial neural networks

Artificial neural networks can be considered as simplyfied models which capture the essence of the
functioning of the brain, and, more generally, of the nervous system. The basic, fundamental units
of the nervous system areneurons, special types of cells capable of trasmitting elettrical signals. The
number of neurons in the human brain is about1011-1012, and each neuron is connected to about103-
104 other neurons. There are a number of different kinds of neurons, but there is a general structure
that underly all of them (except for a few rare subtypes of neuron, such as analog neurons in the
mammalian retina). This structure can be divided in four parts, namely the dendrites, the soma, the
and the axon. The electrical signal emmitted by neurons are called action potentials or spikes and
are constituted by rapid, binary, electical impulses propaging mostly through axons. When the action
potential reaches the end of the axon, it triggers the emission of some chemicals, called neurotrans-
mitters, which are released in the space between the axon andthe dendrite of another neuron, the
synaptic cleft (the synapses are regions where neurons are connected). The neurotrasmitters bind to
the receptors of the post-synaptic neuron and cause, through a chain of events, either the depolariza-
tion or the hyperpolarization of the membrane of the receiving neuron. A depolarization corresponds
to an excitation in that it favors the emission of a spike in the post-synaptic neuron, while a hyperpo-
larization corresponds to an inhibition in that it oppose spike emission. Changes in the polarization
of the neurons propagate passively from the dendrites to thecell body, where their effects are inte-
grated. If at the origin of the axon the depolarization reaches a certain threshold, an action potential
is generated. After the spike, there is a brief refractory period in which the neuron is slightly hyper-
polarized and cannot generate another action potential (for a detailed account, see Kandel, Schwartz,
and Jessel, 2000). Generally speaking, an artificial neuralnetwork is a collection of artificial neurons,
units or nodes, linked to each other by connection weights. There are several classes of neural models,
that simulate neurons and neural networks at any scale and with any level of sophistication: from the
detailed models of single neurons that simulate the effectsof particular chemicals on ionic channels
(which are the mechanisms through which the membran potential changes), to neural networks con-
sisting of several thousand of abstract, idealized neurons(for an overview, see Floreano and Mattiussi,
1996).

Classical connectionist neural models (McClelland and Rumelhart, 1986) represent the state of
a neuronat any given moment by its activation, which correspond to the average firing rate of a real
neuron. Connection weights are represented by real numbersthat corresponds to the number and
strength of synapses between two neurons. Weights can be either positive, corresponding to excitatory
synapses, or negative, corresponding to inhibitory synapses. A neuron’s activity is a function of the
sum of the excitatory and inhibitory inputs that comes from all other neurons connected to it. The
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Figure A.1: Some examples of neurons’ activation functions. Linear:y = x. Step: Sigmoid (or logistic):y = 1

1+e−x
.

Hyperbolic tangent:y = tanh(x).

value of each excitation or inhibition arriving to a (post-synaptic) neuron through a connection is in
turn calculated by multiplying the activity of the pre-synaptic neuron by the weight of the connection
that link the two neurons. The sum of these contributions is called activation potential. Formally, at
any given moment, the activationai of a given neuron is given by the following formula:

ai = f(
∑

wijaj)

wherewij is the connection weight that connect thejth neuron, with activationaj , to neuroni,
andf(x) is the so called activation function, which determines how the neuron reacts to stimulation.
There are a number of possible activation functions, some ofwhich are depicted in figure A.1.

A class of more realistic models take into account the natural decay of the potential leading to the
activation of neurons during time. Eachi-th unit is defined by a potentialp given by a linear ordinary
differential equation called leaky integrator (Amari, 1977, see):

τ ṗi = −pi + I +
∑

j

wijf (pj)

whereτ is the decaying rate of the unit,I is the external input,wij is the value of the connection
weight from thej-th unit to thei-th unit andf (wijpj) is a function of the sum of the inputs from
other units, the activation of each unitf (pi) being defined, for example, as:

ai =

{

0 if p ≤ 0

tanh pi if pi > 0
.

The units of these models (commonly known as dynamic “firing-rate” or “population rate” models
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Figure A.2: an example of the activation of a firing-rate unit (black line) in response to an input (green line).

(Amari, 1977; Gerstner and Kistler, 2002b)) are intended torepresent the mean activity of populations
(or fields) of real neurons (see Fig. A.2).

Models of the activity of neurons can be even more sophisticated, allowing the reproduction of
the spiking activation of single neurons. One way of doing itis the “integrate-and-fire” neuron model
(Gerstner and Kistler, 2002b), built adding a thresholdthp to the amplitude of a leaky-integrator func-
tion. When the potentialp gets over the threshold the activation of the neuron is set toits maximum
and the potentialp is reset to a valueminp under its baseline (see Fig. A.3):

ai =











0 if pi ≤ 0

tanh pi if pi > 0 andpi < thp

thp if pi >= thp

pi =

{

pi p < thp

minp if pi >= thp

.

Other more complex neuron models can reproduce the complex behaviors of different types of
neurons through compact dynamic systems (e.g. Izhikevich,2004) or taking into account the interac-
tions between the internal ionic currents (the Hodgkin-Huxley model and its derivated, see Gerstner
and Kistler (2002b)).

All simulations within this thesis are based on population firing-rate models. This level of abstrac-
tion has been chosen because the research presented here aims at the exploration of neural substrates
of behaviour at a system level. This perspective implies twoclasses of constraints: (1) first, the tech-
nical difficulties to be faced in order to model each of the single components of the studied systems,
would go beyond the scope of our study. For example, by following a more detailed approach the
onset activation of units within the models of amygdala presented here (see sections 4.3, 3.4 and 5.3)
should be reduced to the real interactions between single neurons that produce that behaviour. (2) Sec-
ond, the computational power needed to implement the modelspresented here at the level of spiking
neurons should not allow us to analyze the properties of the entire system within a reasonable research
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Figure A.3: An example of the activation of a integrate-and-fire unit (black line) in response to an input (green line). The

red line indicates a leaky-integrator function of the input, modelling the summation of all synaptic currents.

time .Furthermore, some of the issues to be faced at the single-neuron level of modeling could reveal
to be independent, that’s our hope, from their abstraction at the level of populations. Again, the onset
activation of the units within amygdala can be a good exampleas the solution that can be found by re-
producing it with spiking neurons does not seem to depend on the synchronization between the spikes
of different populations, but on the changes in the mean firing rates of neurons (data not shown).

A.2 Learning algorithms

The way a neural network responds to inputs depends on (a) itsarchitecture and (b), the connection
weights. If some of the weights of a given neural network are changed, then its behavior will change.
A fundamental feature of neural networks is their capacity to learn, that is, their capacity to adjust
connection weights in such a way that the overall behavior gets better (according to some criterion)1.
A number of learning algorithms have been developed in the literature. Here we will focus on one
family of them, the hebbian learning models.

In his most-famous bookThe Organization of Behavior, Donald Hebb proposed a possible rule for
synaptic modification according to which : “When an axon of cell A is near enough to excite cell B and
repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of the cells firing B, is increased” (Hebb, 1949).
In the connectionist research is termed the Hebb(ian) rule and it is often paraphrased as “Neurons that
fire together wire together”, In mathematical terms:

∆wji = λxiyj , (A.1)

1The change in connection weights of a neural network corresponds to the increase or decrease of the number of synap-
tic connection (and their efficacy) that happens between twoconnected neurons of the real brain due to brain activity.
These changes are the mechanisms that underlie brain’s plasticity, that is, the capacity of brain to continually adapt to new
circumstances.
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where∆wij represents the change of the weight that connects neuronj with neuroni, xi andyj

are the activations of neuronsi andj, respectively, andλ is the learning rate, typically a number in
the range[01] which determines the rate of change of the connection. It is acorrelation learning rule:
concurrent activation of neurons strengthen the connection between them. It has been proven (see
Linsker, 1988) that this rule is a maximizer of the output variance, and plays an important role as an
abstract input-output mapping in information- theory.

Such a setup has been largely used in the early formulations of neural networks to deal with
problems where no desired target is a- priori known (unsupervised learning). Self- organization of
activations of neurons have been studied mainly with a focuson the capacity of such networks to
perform pattern associations. Indeed, using the basic Hebbian learning rule (A.1) it is sufficient that
the set of inputs are mutually orthogonal to let a standard single-layered architecture with a linear
activation function (perceptron) a good associator. By theway mutual orthogonality of input patterns
may be biologically implausible, as well as mathematicallyunprovable. Extreme interference (and
subsequent growth blow-up) may occur whenever noisy, overlapping or incomplete stimuli are pre-
sented since changes are accumulated all over the training phase. Therefore, the network may not be
able to learn associations. This limitation of Hebbian learning can be overcome by modifying both
the learning rule and the architecture of the network itself.

The learning rule (A.1) can be modified in different ways. Mathematically speaking, the learning
rule (A.1) may be seen as a simplified form of a general law

∆wji = F (wji, xi, yj) (A.2)

whereF is a suitable function (see Gerstner and Kistler, 2002a,b).A straightforward way to control
the dangerous effects of unbounded growth is to plug in the formula a “forgetting” or “memory decay”
term:

∆wji = λxiyj − ηwji (A.3)

whereη is the decay factor. On the other hand (A.3) forces every connection to collapse to a null
baseline when the input is absent.

Another way of control divergence is to assume a normalization. That may be physiologically
motivated by the boundedness of some factors involved in thesynaptic competition (such as the num-
ber of receptor molecules, the surface area of the postsynaptic membrane or the energy resources). In
this case we have the following discrete formulation

∆wji =
wji + λxiyj

√

∑

k (wjk + λxkyj)
2
− wji (A.4)

in such a way that the Euclidean norm of the weights is set to1 on each time step.
Another Hebbian rule named after Oja (see Oja, 1982) is givenby:

∆wji = λyj (xi − yjwji) (A.5)

In this case, if the input sequence is regarded as a stochastic process, then the output is able to extract
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the statistically most significant factor. That is, it can berelated with a statistical technique called
principal component analysis (PCA) or “Karhunen-Loéve feature extraction”.

The sign postulated by the initial conjecture may be switched to − as well. That is the case of
anti-Hebbian rule:

∆wji = −λxiyj (A.6)

introduced (see F̈oldiák, 1990; Lisman, 1989) to describe the dynamics of excitatory and inhibitory
(EXIN) networks. Indeed, adding lateral inhibitions makesthe inhibitory component of the network
beeing capable of minimizing cross-correlations and decorrelating associated output activations. That
capacity improves the competition between nodes(see Marshall, 1995; Spratling and Johnson, 2002)
2

A.2.1 Differential Hebbian Learning

Spike Timing Dependent Plasticity

Spike timing of neurons plays an important role in the synaptic plasticity, as recent studies and tech-
nologies have proven (see Abbott and Nelson, 2000; Caporaleand Dan, 2008). Firstly, the sequential
order of spikes plays an important role: presynaptic spikespreceding postsynaptic spikes or postsy-
naptic spikes preceding presynaptic spikes (known aspost-pre or pre-post spiking, respectively) may
trigger quite different effects.

Pioneer studies on the hippocampus shown thatpre-post spiking causes long-term potentiation
(LTP) of the synapse (see Bliss and Gardner-Medwin, 1973; Bliss and Lømo, 1973; McNaughton,
2003). Similar results have been found in neocortical areas(see Artola and Singer, 1987), in the
amygdala (see Chapman, Kairiss, Keenan, and Brown, 1990; Clugnet and LeDoux, 1990), and in the
midbrain reward circuit (see Liu, Pu, and Poo, 2005). In thistype of experiments LTP was obtained
by either the lonely high- frequency stimulation (HFS) of the presynaptic neuron or by low-frequency
stimulation (LFS) with large (overshoot) postsynaptic depolarization.

In the inverse situation, in which inputs signals follow target spiking, a long-term depression
(LTD) has been observed. Such a behavior was observed in hippocampus (see Debanne, Gähwiler,
and Thompson, 1994; Dudek and Bear, 1992), in neuromuscular(see Dan and Poo, 1992). In this
type of experiments LPD was obtained by either the lonely low-frequency stimulation (LFS) of the
presynaptic neuron or by pairing it with small (undershoot)postsynaptic depolarization.

Currently many of the cellular mechanisms that are involvedin LTP have been unveiled. The main
responsible components are shown to be the postsynaptic N-methyl D-aspartate (NMDA) receptors,
which are are highly sensitive to the membrane potential. Due to their high permeability for calcium,

2If a Taylor expansion of the general Hebbian rule (A.2) is considered (with respect to the learning rateλ around0) we
have the following relation

∆wji = c0(wji)+

c
post
1 (wji)yj + c

pre
1 (wji)xi+

c
post
2 (wji)yj

2 + c
pre
2 (wji)xi

2 + c
corr
2 (wji)xiyj , (A.7)

which contains all the modifications presented above, if thefunctionscx
h(wji) are set in a suitable way (h = 0, . . . , 2 is the

degree of the term,pre stands forpresynaptic, post stands forpostsynaptic, andcorr stands for thecorrelation).
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they generate a local chemical signal that is largest when the back-propagating action potential (BAP)
in the dendrite arrives shortly after the synapse was active(pre-post spiking). Large postsynaptic
calcium transients are known to trigger LTP. The mechanism for LTD is less well understood, but is
thought to involve inactivation of ion channels.

The temporal difference between the offset of the presynaptic signal and the onset of the postsy-
naptic one, that is the length of interstimulus interval (ISI), has been recently shown to be crucial for
associative plasticity (see Levy and Steward, 1983). Moreover, the timing sensitivities are on the order
of milliseconds, that is only a fixed temporal window lets synaptic plasticity to occur. The studies of
spike timing dependent plasticity (STDP) have initially focused on the changes in synaptic potentials
and activations of neurons, rather than analyzing the electrochemical mechanisms underlying those
behaviours. STDP was firstly detected in neurons in the neocortex (Markram, L̈ubke, Frotscher, and
Sakmann, 1997). Dual patch clamping techniques were used torepetitively activate pre-synaptic neu-
rons10 milliseconds before the postsynaptic target neurons, and the strength of the synapse turned out
to increase. When the activation order was reversed so that the presynaptic neuron was activated10

milliseconds after its postsynaptic target neuron, the strength of thepre-to-post synaptic connection
decreased. The phenomenon was observed later in the cerebellum (Bell, Han, Sugawara, and Grant,
1997) and in various other preparations, with a lot of variations in the time-window and the shape of
the curve of plasticity with respect to the spiking timing.

STDP may be seen a differential Hebbian learning because theplasticity processes underlying
registrations in all these studies depend on temporal difference between changes of the presynaptic
signal and changes of the postsynaptic one.

Models of differential hebbian learning

The Hebbian rule (A.1) and its modifications model the efficacy of synaptic transmission (known as
synaptic plasticity) in such a way that if the presynaptic activation persistently concur to cause the
postsynaptic target neuron to increase its activation their synaptic efficiency is modified (increased
in the plain rule) in the long run. Following the very same rationale proposed by Hebb’s conjecture,
rather than concurrent levels of activations, concurrent changes of activations underlie the learning
mechanism (see Klopf, 1986; Kosko, 1986). Modelling Hebbian learning in terms of variations fits
more realistically with the contingency features requested for learning to take place in animals. That is
straightforward in classical conditioning, where the learning of asynchronous signals (the conditioned
and the unconditioned one) has to be achieved (see Sutton andBarto, 1981, 1990; Sutton, Barto, and
Watkins, 1989).

Mathematically speaking, the differential Hebbian rule corresponding to the standard Hebbian
rule (A.1) is given by:

∆wji = σx′iy
′

j , (A.8)

where the derivatives replaces the activations. It turns out that differential Hebbian rule is a covari-
ance3 learning rather than a correlation learning (Choi, 2003, 2006), and it is related to the problem

3Sejnowski and Tesauro (1989) have suggested a learning rulenamed “covariance” rule, of the form∆wij =
η (xi − xi)

`

yj − yj

´

, with its pre-synaptic version:∆wij = ηxi

`

yj − yj

´

, and its post-synaptic version:∆wij =
η (xi − xi) yj wherexi andyj represent the mean activations of the unitsxi andyj , respectively. The use of those rules
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of independent component analysis (ICA).
Another interesting approach is the isotropic sequence order (ISO) learning, whose differential

learning rule follows:

∆wji = ηxiy
′

j , (A.9)

wherey′j is the derivative of the output signal (whose activation function is linear), andxj is the traced
input, that is decaying trace of the input signal (see Porr and Wörgötter, 2003; Ẅorgötter and Porr,
2005). The trace is important in order to define a time window in which an output signal is eligible
for learning.

A general differential Hebbian learning rule can be considered:

∆wpost,pre = σα

[

upre
′
]+ [

upos
′
]+

+ σβ

[

upre
′
]+ [

upos
′
]

−

+

σγ

[

upre
′
]

−
[

upost
′
]+

+ σδ

[

upre
′
]

−
[

upost
′
]

−

+

ηαupre

[

upos
′
]+

+ ηβupre

[

upos
′
]

−

+

ηγ

[

upre
′
]+
upost + ηδ

[

upre
′
]

−

upost ,

(A.10)

where the coefficientsσ’s refer to the products between derivatives (the subindeces denotes the signs
of the parts considered) and the coefficientsη’s refer to the mixed products between a signal and a
derivative. Since for any functionf the basic relationf = [f ]+−[f ]− holds, (A.10) is a generalization
of the previous ones, since ifσα = −σβ = −σγ = σδ = σ, λ = 0 andη’s are also null the Kosko
learning rule is obtained, while if theσ’s are null,λ = 0, ηγ = ηδ = 0 andηα = −ηβ ’s the ISO
learning rule is obtained;

This general rule can be parametrized to obtain different behaviours. In figure A.2.1 three ex-
amples are shown. On the left, column A shows a comparison between registrations of changes in
the amplitude of EPSPs at several time differences between signals, made on a slice culture from
rat visual cortex (top figure) (Froemke and Dan, 2002) and thecorresponding curve of variation of
weights in the model suitably parametrized. Column B, at thecentre, shows another study done on
slice cultures taken from rat hippocampus (Nishiyama, Hong, Mikoshiba, Poo, and Kato, 2000) and
the correspondent curve from the model. Finally, column C, shows registrations from different cells in
the rat hippocampus (Woodin, Ganguly, and Poo, 2003) and thecorrespondent data from the model.

This family of learning rules can be used within spiking neuron models given thatuprev andupost

values correspond to the currents at the level of the presynaptic cleft (uprev) and at the level of the
postsynaptic dendrite. Furthermore it can be used within population firing-rate models, given that
units have an onset-dependent activation with habituation. This kind of activation can be achieved by
computing the unit activation with the following system of leaky integrators (see fig. A.2.1):

guarantees that the weights do not increase indefinitely since they will decrease every time the activation of the sending or
receiving neurons is lower than usual (pre- and post- synaptic rules, respectively), or the differences between the mean and
the present activations of the two neurons are of different sign (co-variation rule). Though not as powerful as other learning
rules, all those variations of the Hebb rule are interestingbecause they can be viewed in the framework of differential hebb,
being within the framework of the Taylor expansion (A.7).
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A) B) C)
Figure A.4: examples of modelling STDP data with the use of the learning rule A.10, choosing suitable values of the

coefficients. On the top, data from three studies on different cells from different cerebral regions are shown. On the bottom

the corresponding data taken from simulations (see text forreferences)

Figure A.5: The onset-dependent activation described by A.11 is shown in black. The green line defines the input signal.

τ ṗint = −pint + I

τ ṗout = −pout + [−pint + I]+ (A.11)

This is the way in which differential Hebbian learning is modeled within the amygdala component
in all models described in the thesis.



Appendix B

Acronyms

)
Table B.1 presents all the acronyms used in the paper.

Amg Amygdala
BLA Basolateral amygdaloid complex

LA Lateral amygdaloid nucleus
Ld Lateral dorsal amygdaloid nucleus

Lda Lateral dorsal amygdaloid nucleus, anterior
part

Ldp Lateral dorsal amygdaloid nucleus, posterior
part

Lvm Lateral ventromedial amygdaloid nucleus
Lvl Lateral ventrolateral amygdaloid nucleus

BL Basolateral amygdaloid nucleus
B Basal amygdaloid nucleus
AB Accessory basal amygdaloid nucleus

CEA Central extended amygdala
CeA Central amygdaloid nucleus

CLC Central amygdaloid nucleus, laterl capsular
suddivision

CL Central lateral amygdaloid nucleus
CM Central medial amygdaloid nucleus

BNST Bed Nucleus of the stria terminalis
MEA Medial extended amygdala

MeA Medial amygdaloid nucleus
Mv Medial amygdaloid nucleus, ventral part
Md Medial amygdaloid nucleus, dorsal part

ITC Intercalated nuclei

BG Basal ganglia
STR Striatum

DLS Dorsolateral striatum
DMS Dorsomedial striatum
NAcc Nucleus accumbens

NAccC Nucleus accumbens core
NAccS Nucleus accumbens shell

PAL Pallidum
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DP Dorsal pallidum
GPi Globus pallidus, internal segment

VP Ventral pallidum

CB Cerebellum

DI Disgranular insular cortex
DIv Disgranular insular cortex, visceral part
DIg Disgranular insular cortex, gustatory part

En Endopiriform nucleus

Hyp Hypothalamus
LH Lateral hypothalamus
PO Preoptic nucleus of hypothalamus
VMH Ventromedial hypothalamus
PVN Paraventricular nucleus of hypothalamus

Hip Hippocpampus
S Subiculum

MB Midbrain
VTA Ventral tegmental area
PAG Periaqueductal gray
SNpc Substantia nigra, pars compacta
MEV Midbrain trigeminal nucleus
PPT Pedunculopontine tegmental nucleus
DR Dorsal raphe

My Medulla
NST Nucleus of the solitary tract
AMB Nucleus ambiguus
DMX Dorsal motor nucleus of the vagus nerve

MC Motor cortex

OB Olfactory bulb

P Pons
PB Parabrachial nucleus
LDT Laterodorsal tegmental nucleus
LC Locus coeruleus
NRPC Nucleus reticularis pontis caudalis

PaRh Parietal rhinal cortex

PC Piriform cortex

PFC Prefrontal cortex
AC Anterior cingulate cortex
vmPFC Ventromedial prefrontal cortex

PL Prelimbic cortex
IL Infralimbic cortex

OFC Orbitofrontal cortex

PMC Premotor cortex
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PRC Perirhinal cortex

SI Substantia innominata

Te Temporal cortex
Te2 Temporal cortex, Area 2
Te3 Temporal cortex, Area 3

Th Thalamus
LG Lateral geniculate nucleus
MG Medial geniculate nucleus
ILN Infralaminar nucleus
VPMpc Ventral posteromedial nucleus, parvicellular

part

Table B.1: Acronyms used throughout the paper to refer to the
anatomical brain areas of interest.
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