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Abstract

This paper reports on the analysis of the spectral variation of
emotional speech. Spectral envelopes of time aligned speech
frames are compared between emotionally neutral and active ut-
terances. Statistics are computed over the resulting differential
spectral envelopes for each phoneme. Finally, these statistics
are classified using agglomerative hierarchical clustering and
a measure of dissimilarity between statistical distributions and
the resulting clusters are analysed. The results show that there
are systematic changes in spectral envelopes when going from
neutral to sad or happy speech, and those changes depend on
the valence of the emotional content (negative, positive) as well
as on the phonetic properties of the sounds such as voicing and
place of articulation.

Index Terms: emotional speech, hierarchical clustering, spec-
tral envelopes

1. Introduction
The communication of different emotions through voice takes
place in the speech signal by changes of many acoustic pa-
rameters. Prosody correlates such as pitch contours, pausing
structure, speech rate and intensity differences are among them
[1, 2]. Other significant speech correlates of emotions rely on
spectral analysis of speech, such as formants parameters [1],
spectral energy distribution [2], and spectral noise [1].

Parameters related to timbre, described e.g. by spectral en-
velopes, belong to the second class. These parameters are rele-
vant for voice conversion systems [3], and HMM-based speech
synthesiser [4], where timbre can be modified and modelled in
a statistical way on the basis of speech corpora. However, the
models employed in these systems are often complex and hard
to interpret.

The purpose of this paper is to analyse the variation of tim-
bre when passing from neutral speech to emotional speech with
opposite valence: happy and sad. The aim is not only to de-
scribe this variation for human speakers, but also to suggest
strategies to improve voice conversion and speech synthesis sys-
tems.

We consider a differential approach based on the differ-
ence of spectral envelopes between affective and neutral speech
segments, computed as mel-cepstral coefficients. This ap-
proach was already employed in the task of predicting emo-
tional prosody [5] and has the advantage of eliminating, or re-
ducing, the constant factors related to the speaker and channel
characteristics.
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Figure 1: Spectral envelopes and DFT of a pair of correspond-
ing frames (sad and neutral) and their difference (sad-neutral).
x-axis is in warped frequency scale. Thin lines represent the
short-term spectrum (DFT), while bold lines represent the mel-
cepstral spectral envelopes.

Another property of differential mel-cepstral analysis
comes from homomorphic system theory [6]. The Mel-cepstral
transformation, as any homomorphic transformation, converts a
convolution into a sum. The spectral envelope computed from
differential mel-cepstrum, therefore, represents the frequency
response of the filter needed to transform the neutral speech
timbre into the emotional one (see, e.g., Figure 1). This is a
further link between our analysis and studies on voice conver-
sion, which deal with voice timbre transformation.

In order to perform the analysis on a moderately large data
set, we make use of cluster analysis. In [7, 8] statistics were
computed for each phoneme in a large corpus with regional ac-
cent variation. Then hierarchical clustering was performed on
the statistical parameters rather than on the original data points,
reducing significantly the computational demands. A similar
method is used here based on the statistics of the differential
mel-cepstrum for emotional-neutral speech. The advantage of
hierarchical clustering, compared to partitional or density-based
clustering, is its inherent property of displaying relational fea-
tures at different levels of details. This fits the analysis scope of
this paper where we want to explore the data.
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The paper is organised as follows: Section 2 describes the
feature extraction procedure and the clustering methods. The
experimental settings and the results are described in Section 3.
Finally, Section 4 concludes the paper.

2. Method
2.1. Differential Mel-Cepstral Analysis

Spectral envelopes are estimated using mel-cepstral analysis [9,
10]; in this technique optimal mel-cepstral coefficients c̃(m)
are estimated from the short-time spectrum of speech signals,
minimising the spectral envelope representation error directly
in the perceptual-relevant mel-cepstral domain.

The spectral envelope S(ejω) is computed using M + 1
mel-cepstral coefficients c̃(m) as:

S(z) = exp
M∑

m=0

c̃(m)z̃−m
(1)

where z̃ is the warped z domain used to approximate the mel
frequency scale [9].

Our method is based on differential analysis of spectral en-
velopes between corresponding frames in two different expres-
sive speaking styles. This is achieved by aligning the material
in our parallel corpus by means of the Dynamic Time Warping
(DTW) algorithm [11]. In our implementation, both spectral
similarities (based on the mel-cepstral coefficients) and pho-
netic boundaries are considered in the alignment. Differences
in neutral-emotional pairs of corresponding mel-cepstral coef-
ficients constitute our feature vectors. An example of this is
shown in Figure 1.

2.2. Clustering

Similarly to [8], the cluster analysis is performed in two steps.
Firstly, the statistics of the differential mel-cepstral coefficients
are collected for each phoneme. These include means μi and
covariance matrices Σi.

In the second step, iterative hierarchical clustering [12] is
performed based on the Bhattacharyya distance [13]. The lat-
ter is a measure of dissimilarity between distribution i and j,
defined as:

d(i, j) =
1

8
(μi−μj)

T Σ̄
−1

(μi−μj)+
1

2
ln

|Σ̄|√
|Σi||Σj |

(2)

where Σ̄ =
Σi+Σj

2
, | · | is the determinant function and T is

the transpose.
As a measure of how well the resulting dendrogram de-

scribed the original distance matrix d(i, j) we use the Cophe-
netic correlation coefficient [14] defined as:

coph =

∑
i<j(d(i, j)− d)(t(i, j)− t)√[∑

i<j(d(i, j)− d)2
] [∑

i<j(t(i, j)− t)2
] (3)

where d is the average of the distances d(i, j), t(i, j) is the
distance in the dendrogram at which object i and j first meet,
and t is the average of the t(i, j)s. The closer coph is to 1, the
better the dendrogram represents the original distances d(i, j).

We also use a measure of dissimilarity between alternative
partitions of the data based on the variation of information [15]
defined as:

VI(X;Y ) = H(X) +H(Y )− 2I(X,Y ) (4)

where X and Y are two partitions of the data, H(·) is the en-
tropy and I(·, ·) the mutual information. The probabilities used
to compute entropy and mutual information are estimated from
the frequencies of each symbol in each of the partitions X and
Y . The measure is, therefore, independent on the arbitrary as-
signments of cluster labels, and can be used even if X and Y
contain different numbers of clusters. VI has the properties of
a metric, and is, therefore, 0 if and only if the partition X and
Y are equivalent.

3. Experiments
3.1. Speech Data

We recorded speech data spoken by an Italian male speaker. In
order to collect the parallel corpora, the speaker was instructed
to read the same text set with neutral speaking style and two
different emotions.

Concerning the neutral style, the speaker was asked to use
a standard reading style, without any interpretation, focus or
emphasis. In the case of emotional data, he was free to read the
same scripts by simulating the two emotions considered in the
experiment. The textual corpus is composed of 200 sentences,
(generally 10-15 words each), extracted from a large newspaper
corpus.

Recording sessions were held in a silent environment, with
good digital acquisition equipment, producing linear PCM files
at 44.1 kHz sampling rate. The signals were then down sampled
at 16 kHz for the analysis.

A rule based automatic grapheme-to-phoneme processor
was used in order to obtain the phonetic transcriptions of the
scripts. We have then applied forced alignment [16] to detect
the phonetic boundaries in the corresponding waveforms.

3.2. Analysis

Mel-cepstral coefficients of order 26 are computed with the
SPTK toolkit [17], using 40 ms analysis windows and an hop
size of 10 ms. The differential coefficients are calculated from
pairs of frames in the neutral-sad and neutral-happy conditions,
aligned by our DTW algorithm, and using the forced aligned
phonetic boundaries as extra information.

In order to obtain enough samples for each phoneme, gem-
inates are merged with their corresponding consonants. Then
statistics are computed as described in Section 2.2 leaving out
the first mel-cepstral coefficient c̃(0). This is done in order to
perform an intensity normalisation between sentences and to
concentrate the analysis only on the spectral shape of the enve-
lope, without taking into account prosodic intensity variations.

Because the number of samples for some phonemes is
scarce, only diagonal covariance matrices are considered, in or-
der to guarantee robust estimation of the parameters. This ap-
proximation is justified by the properties of cepstral analysis
that tends to minimise correlation. We also performed some
tests with full covariance matrices, confirming this observa-
tions.

3.3. Results

Figure 2 (left) shows the dendrograms for the neutral-sad and
neutral-happy conditions. The Cophenetic correlation coeffi-
cient is 0.78 for the neutral-sad dendrogram, and 0.76 neutral-
happy dendrogram, indicating that the clustering is a fairly good
representation of the pairwise distances. At the bottom of the
dendrograms, each phoneme, shown in X-SAMPA labels [18],
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Figure 2: Left: dendrogram for neutral-sad (top) and neutral-happy (bottom). Right: Variation of information for pairs of partitions of
order 1 to 32 extracted from the neutral-sad and neutral-happy dendrograms respectively.

constitutes a single cluster. Moving upward, clusters are iter-
atively merged until all phonemes belong to one single group.
Considering the trees from the top, in both cases, the partition
of order 2 separates mainly voiced and unvoiced phonemes (an
informal inspection showed that /dZ/ and /z/ are sometimes un-
voiced in the corpus). The next split, in both cases, the phoneme
/z/ forms it’s own cluster.

Further splits are different in the two trees, although some
similarities can be seen. For example, there is a clear cluster
including /m/ and /n/ in both trees. Another cluster that appears
clearly in both trees includes all the stressed and unstressed back
vowels (/”O ”o ”u o u/).

In order to quantify the degree of similarity between the two
dendrograms, Figure 2 (right) shows the variation of informa-
tion (VI) for each level. As expected, VI is zero for the first,
second, third and last level because the partitions of order 1, 2,
3 and 32 are identical. The values of VI in between are smaller
than 0.25. To give an idea of the scale, VI is bounded by log n
where n is the number of elements to cluster, and the bound is
reached when we compare the partition of order 1 with the one
of order n. In our case n = 32 and log n ≈ 1.5.

In Figure 3, spectral envelopes represent the means of the
differential mel-cepstral coefficients for each phoneme, corre-
sponding to the frequency response of the neutral-to-emotional
conversion filter.

We can notice from Figure 3 (top), that all the envelopes
in the neutral-sad case present a strong amplification in low-
frequency band (< 200 Hz), while, on the contrary, an attenua-
tion can be found on the same frequencies range in the neutral-
happy case as is shown in Figure 3 (bottom). This phenomenon
is in agreement with the results in studies on spectral energy

distribution in emotional speech, e.g. [2].

For voiced phonemes this behaviour can be partially ex-
plained by the shift in pitch going from neutral to emotional
speech. There is usually a decrease in pitch from neutral to sad
and a rise from neutral to happy. The corresponding shift in
first harmonic affects the estimation of the spectral envelope at
lower frequencies (see Figure 1).

The envelopes in Figure 3 are displayed with two differ-
ent colours indicating the clusters obtained by cutting the cor-
responding dendrograms at the second order partition. As we
have already noticed, this partition separates voiced and un-
voiced phonemes in both cases. In the neutral-sad case voiced
phonemes have stronger amplification for frequencies less than
4 kHz with respect to unvoiced ones. Similarly in the neutral-
happy case a greater attenuation for frequencies less than 4 kHz
is found for voiced phonemes with respect to unvoiced ones. In
both cases, for frequencies above 4 kHz, there is no longer a
clear separation between envelopes belonging to the two clus-
ters. Interestingly, this frequency value corresponds to the value
suggested as reference value for the maximum voiced frequency
[19].

This observation suggests the hypothesis that, above the
maximum voiced frequency, the differential neutral-emotional
envelopes of voiced or unvoiced frames have the same be-
haviour.

4. Conclusions
In this paper we have shown how spectral envelopes, computed
using the mel-cepstrum, vary when we consider speech with dif-
ferent emotional content. The differential mel-cepstrum (DMC)
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Figure 3: Spectral envelopes representing the mean of the dif-
ferential mel-cepstral coefficients for each phoneme. x-axis is in
warped frequency scale. Two colours are used to show the clus-
ters obtained from the partition of order 2 in the corresponding
dendrogram. Top: neutral-sad case. Bottom: neutral-happy
case.

between neutral and affective speech proved to be a meaningful
basis for the analysis. These features also have the advantage
of describing a filter that can be applied to the neutral speech to
obtain the affective speech, if we are interested in voice modifi-
cation.

Clustering the distributions of the data, rather than the orig-
inal data points, proved to be a powerful method to analyse and
summarise large amounts of data. The resulting partitions of
the DMC statistics for different phonemes can be interpreted in
terms of phonetic features. In particular, voicing seems to play
a fundamental role in the way spectral envelopes vary across
emotional intentions. Back vowels also seem to share similar
modifications in the spectral envelopes.

Looking more in details at the average spectral envelopes,
we conclude that while up to 4 kHz voiced and unvoiced en-
velopes have distinct behaviours, above this frequency there is
no longer a clear separation between them. In addition, the be-
haviour of the low frequencies band (< 200 Hz) is the main
discriminating factor between neutral-sad and neutral-happy en-
velope modifications. We suspect this may not be directly as-

sociated with vocal timbre but with pitch variations. Although
this fact should be further investigated, our results suggest nor-
malising the spectral envelopes with pitch both for analysis and
synthesis (voice conversion) tasks.

Finally, it is important to note that emotional expression is
speaker dependent and, thus, although the analysis method is
applicable regardless the speaker, the generality of the results
shown here should be confirmed on a number of other subjects.
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