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Abstract—How does bottom-up information affect the develop-
ment of top-down attentional control skills during the learning
of visuomotor tasks? Why is the eye fovea so small? Strong
evidence supports the idea that in humans foveation is mainly
guided by task-specific skills, but how these are learned is still
an important open problem. We designed and implemented
a simulated neural eye-arm coordination model to study the
development of attention control in a search-and-reach task
involving simple coloured stimuli. The model is endowed with
a hard-wired bottom-up attention saliency map and a top-down
attention component which acquires task-specific knowledge on
potential gaze targets and their spatial relations. This architecture
achieves high performance very fast. To explain this result, we
argue that: (a) the interaction between bottom-up and top-
down mechanisms supports the development of task-specific
attention control skills by allowing an efficient exploration of
potentially useful gaze targets; (b) bottom-up mechanisms boast
the exploitation of the initial limited task-specific knowledge by
actively selecting areas where it can be suitably applied; (c)
bottom-up processes shape objects representation, their value,
and their roles (these can change during learning, e.g. distractors
can become useful attentional cues); (d) increasing the size of the
fovea alleviates perceptual aliasing, but at the same time increases
input processing costs and the number of trials required to learn.
Overall, the results indicate that bottom-up attention mechanisms
can play a relevant role in attention control, especially during
the acquisition of new task-specific skills, but also during task
performance.

I. INTRODUCTION

Humans actively search task-relevant stimuli rather than
passively processing all sensory information [9], [30]. Accu-
mulating evidence indicates that top-down information rather
than bottom-up, non task-specific mechanisms, dominates real-
world image search processes, [6], [7], [15], [21]. Many recent
studies focus on how various sources of top-down information
are integrated [15]. Recent studies [20], [26] have explored
how the active character of vision and the use of task-specific
attention-control skills could affect the statistics of visual input
and the structure of receptive fields. However, less attention
has been devoted to the issue of how these skills are acquired,
and the role played by the bottom-up information, available
since the first exposition to a new task, during the acquisition
process.
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Numerous experiments, for example those using the con-
textual cueing paradigm, have shown that humans can de-
velop visual exploration behaviours. These include bottom-
up, stimuli-driven strategies and more sophisticated strategies
in which cues are selected and used as landmarks [2]. In
addition, human visual and motor strategies develop in a
highly coordinated way, as it is especially evident during
the learning of visuomotor tasks such as driving [13] or
controlling a joystick [22], in which it is required that both
visual and motor processes become coupled to the environment
dynamics.

Given the human ability to develop attention-control skill
for new tasks, one can ask how they are developed. The
problem of how to efficiently and autonomously acquire
an adequate top-down attention-control skill is also relevant
from computational and applicative viewpoints because of its
intrinsic difficulties.

A relevant aspect of the acquisition of novel skills is the
concomitant development of a representation of the task to
solve and of the attentional strategies to gather information
relative to the same task. In other words, if the agent is not
provided with a task representation (e.g., a target template
encoded by hand by the programmer), it has to learn, at the
same time, both to perform actions and to recognize what
is relevant for performing such actions. This is apparently a
chicken-and-egg problem, since before knowing what the task
is it is difficult to fully recognize what information could be
relevant, but at the same time without the ability to extract
useful information, a task can hardly be learned.

The problem of how acquiring task-specific attention-
control skills strategies is further complicated by the high
dimensionality of visual input, the partial observability of
the visual world, and the indirectness of their effects on
action execution. Finally, since task-specific attention-control
skills are often used to acquire the value of task-relevant
variables, they can be reused for performing the same skill in
novel situations without re-learning, provided that they embed
abstract task regularities1

In this paper we explore the hypothesis that a bottom-up
attention control mechanisms and the limited small size of

1Structure learning [27] and other transfer learning techniques [24] address
similar problems, but in most cases they cannot adapt to novel tasks without
some learning.
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the fovea play a relevant role during the learning of a novel
visuomotor task, and can substantially contribute to solve the
aforementioned problems.

To test this hypothesis we have implemented a neural archi-
tecture, which includes an arm controller and a gaze controller,
and tested it in a “search-and-reach” scenario (Figure 2). In
the experiment, the agent has to learn to find and touch, as
quickly as possible, a red target in scenes which include also
green salient elements having a fixed spatial relationship with
the target (cues) and blue elements which appear in random
positions (distractors). The system is based on a reinforcement
learning method [25], and is rewarded only after successfully
“touching” the target, not just for finding it with the eye.

To study how the learning process can be affected by both
the active vision capabilities of the agent and the low level
features of the visual scene, we analyzed the developmental
trajectory of the system, and the impact of the acquired
knowledge on performance during learning. The results in-
dicate that the agent initially learns to move the eye away
from highly salient cues, then learns the value of targets, and
finally modifies the reaction to cues so as to consider them as
landmarks that guide exploration.

II. THE MODEL

This section overviews the architecture and explains the
functioning of its components. The architecture (Figure 1) in-
tegrates two components: a bottom-up and top-down attention
component, and an arm control component. These components
are all based on three common bio-inspired computational
principles: (a) population codes (here 2D neural maps) to
represent sensorimotor information [18], [19]; (b) dynamic
neural-field networks to integrate information and select ac-
tions through biased competition mechanisms [3], [8]; (c) a
progressive development of skills (cf. [17]).

The setup used to test the model is a simulated version
of a real system presented in [16]. The setup is composed
of a down-looking camera set above a robotic arm. The arm
working plane is a screen where the stimuli appear. The input
image is used by a periphery map that implements bottom-
up attention based on stimuli luminosity. The central part
of the input image (fovea) is the input of a reinforcement-
learning actor-critic component that learns to predict the
spatial position of the rewarded arm targets with respect to
the foveated cues, on the basis of the colour of the latter (top-
down attention). A potential action map (PAM) accumulates
activation, encoding the information on potentially interesting
places to look next, on the basis of the seen stimuli. A
saliency map integrates information from the periphery map
and the PAM by summing their activation. The activation of
the saliency map is then used to select the next eye movement
on the basis of a neural competition. In particular, each fixation
point, encoded in a eye posture map, suggests a potential arm
target to an arm posture map where a neural competition takes
place: when the eye fixates a location for enough time (3
time steps on average) a neuron cluster of the arm posture
map reaches a threshold and triggers the action encoded by
it. If the object reached with this action is the arm target, the
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Fig. 1. Eye-arm control architecture.

system gets rewarded, otherwise it gets slightly punished (as
a metaphor of energy consumption).

A. Attention Control Components

a) Periphery Map (Bottom-Up Attention): The input im-
age is a 240 × 320 pixel RGB image. From this a 30 × 40
gray periphery map pm is extracted: first the input image is
divided into 30 × 40 blocks of 8 × 8 pixels each, then the
RGB color values of the pixels of each block are averaged to
obtain a gray value. As objects (uniformly coloured squares)
are shown on a black background, the simple gray image is
enough to reveal their presence: a more sophisticated bottom-
up saliency (e.g. as that of [11]) is not needed for the work
purposes.

b) Actor-Critic Component (Top-Down Attention): The
fovea is composed by a 2 × 2 RGB pixel image (encoded
in vector f ) extracted from the centre of the input image.
The fovea image is fed into two feedforward neural networks
forming a reinforcement-learning actor-critic architecture [25].
The critic is a network with a linear output unit vt which
learns to evaluate the current state on the basis of the expected
future discounted rewards. The system gets a reward rt after
the execution of a reaching action, and this, together with vt, is
used to compute the surprise signal st [25] used to update both
the critic weights (vector wc) and the actor weights (matrix
Wa). The actor is a network whose output layer is a vote map
of 60× 80 sigmoid neurons (with activation ranging within (-
1, +1) and denoted with vector vm) which signal to the PAM
the possible positions of rewarded targets with respect to the
currently foveated visual cue (γ = 0.9; T is the transpose
operator):

vt = wcT f st = (rt + γ vt)− vt−1 (1)
vm = g [Waf ] g[x] = 1/(1 + e−x) (2)

The critic is trained on the basis of st, used as error signal, and
the input f [25]. The actor is trained with a Hebb rule involving



the activation of the saliency map (vector smt) encoding the
last eye displacement (see below), and the input f , with the
purpose of increasing or decreasing the probability of doing
the same saccadic movement again on the basis of the surprise
signal st [16] (ηc = 10−7, ηa = 10−5, • is the entrywise
product operator):

wc
t+1 = wc

t + ηc st ft (3)

Wa
t+1 = Wa

t + ηa st smt • (vmt • (1− vmt)) fT
t (4)

c) Potential Action Map (Top-Down Attention Memory):
The PAM is formed by 60× 80 leaky neurons (vector pam)
and accumulates evidence, furnished by the vote map vm via
topological connections, on the possible positions of rewarded
targets. Importantly, during each saccade the map activation
is shifted in the direction opposite to the eye motion to
maintain eye-centred representations (as it might happen in
real organisms, see [5]). The PAM is reset each time the input
image changes (also this might happen in real organisms [12]).

d) Saliency Map: The 60×80 saliency map (encoded in
vector sm) selects saccade movements on the basis of the sum
of the topological input signals pm and pam. The saccade
movement is selected by first identifying the unit with the
maximum activation and then by activating the map with a
Gaussian population code centred on it (the Gaussian function
has a width σ = 1). The eye movement is the average of
the winning neurons’ preferred eye displacement (∆x, ∆y).
This selection mechanism, based on the maximum function,
is a computationally fast approximation of a biased dynamic
competition process (e.g., cf. [8]).

e) Biology: Empirical evidence indicates that the cortical
area of the frontal eye field (FEF) exhibits properties similar to
those of the saliency map integrating bottom-up and top-down
information to drive overt and covert attention [28]. Another
possible location for this integration is the posterior parietal
cortex [29]. Bottom-up (pre-attentive) saliency processes take
place in parallel in relation to various aspects of the retina
image such as color, orientation, and motion, and the resulting
information is integrated at higher levels such as the FEF
and the parietal cortex. These processes are performed with
increasing abstraction in the retina, the lateral geniculate nu-
cleus, the visual cortex, and the extrastriate visual cortex. The
top-down influence on attention control mainly originates from
prefrontal cortex based on the subject’s goals and motivations
and the environment context. One type of top-down influence
reaching FEF neurons is related to the spatial relationship
between objects, which humans can acquire unconsciously,
as shown in experiments on contextual cueing [2]. This kind
of knowledge might be encoded in the hippocampal system.
Neurobiologial data on how and where saliency maps can
be implemented in the brain can be found in [4], [23], [29].
The trial-and-error learning processes performed by the model
might correspond to the processes taking place in the portions
of the basal ganglia dedicated to eyes control (striatum and
substantia nigra pars reticulata [10]).

B. Arm Control Components
This section presents the main aspects of the arm control

components. Only the broad features of these components are

presented here as they are less relevant for the focus of this
research (see [17] for more details).

f) Eye Posture Map: This 30× 40 neuron map encodes
the current eye posture as a Gaussian population code emp
(σ = 0.3).

g) Arm Posture Map: This 40 × 40 map (vector apm)
represents the output layer of a neural network pre-trained with
a Kohonen algorithm and encodes arm postures in the 2D map
space. A neural biased competition [8] takes place in the map
(similarly to what happens in real organisms [3]) in order to
select a target for reaching actions when any neuron achieves
a certain threshold.

h) Arm Posture Readout Layer: This layer includes four
sigmoid neurons (vector aprl) that encode the desired arm
joint angles issued to the arm simulated servos. The map is
activated by the arm posture map through connection weights
encoded in the matrix Waprl.

i) Training: The arm components were trained before the
experiments illustrated in Section 1. Pre-training is divided in
three learning phases using motor babbling (i.e, random move-
ments of the arm), in which the system: (a) performs a vector
quantization of postures within the arm posture map on the
basis of a Kohonen algorithm; (b) learns the inverse kinematic
mapping (Wapm) between the gaze directions corresponding
to the seen hand (epm) and the corresponding arm posture
(apm) with a delta rule; (c) trains the arm posture readout
map (Waprl) with a delta rule.

III. EXPERIMENTAL SETUP

The environment (Figure 2) is a 6 × 5 grid with “objects”
(coloured squares) on some of its vertexes. The objects are:
2 to 5 green cues having 100% luminosity and forming a
(randomly placed) vertical line; 1 red target having 80%
luminosity and placed on the left of the cue line; 2 to 5 blue
distractors having 80% luminosity and randomly placed in the
remaining grid vertexes (so the are not spatially related to the
target).

Fig. 2. Examples of environments used in the experiment.

IV. RESULTS

A. Analysis of performance and behaviour

Figure 3 shows the average reward received by the robot
for every reaching action during learning. After only 20
trials the performance increases rapidly to 0.5, and at 60 it
reaches a near-optimal steady state. Figure 4 shows how the
average number of saccades per reaching action evolves during
learning. Initially 16 saccades are executed per trial. After
15 trials their number rises to a maximum of 26 (in corre-
spondence to the maximum learning progress in reaching),



Fig. 3. Evolution of average reward per training trials. For each marked
number of trials, data were collected by running the system for 1000 trials
(during which learning was stopped) and then by averaging the resulting
performance.

Fig. 4. Evolution of average saccade number per training trials. For each
marked number of trials, data were collected by running the system for 1000
trials (during which learning was stopped) and then by averaging the resulting
saccade per trial.

and then progressively decreases. Considering that the agent
takes three or four time steps to trigger a reaching action,
the results indicate that the agent is able to find the target
in about three saccades. The agent achieves this performance
by acquiring and using knowledge about spatial relationships
between objects. In particular it usually first foveates a cue
(thanks to its high luminosity), and then an object on the
left of the cue line. If this objects is the target, the system
foveates it few times until the arm reaching action directed to
it is triggered, whereas if it is a distractor the system directly
foveates another object at the left of the cue line and this is
usually the target (see [16] for more details).

B. Analysis of the learning dynamics

Figure 5 shows the evolution of the expected value for each
foveated object produced by the critic during learning. The
graph shows that the cue expected value becomes negative
after few trials. After about 5 trials, also the target and
distractor assume a negative value. When the importance of
the target is discovered (trial 15), its value increases rapidly.
Successively, the value of the cue starts to increase again.
Finally, also the value of the distractor increases. This indicates
that the learning dynamics are strongly affected by the saliency

Fig. 5. Evolution of the critic estimated evaluation during learning for the
target, cues, and the distractors.

Fig. 6. Evolution of conditional probability of foveating a kind of object
given the previous foveated object. T = target, C = cue, D = distractor, t
is the time index. As an example, P (o(t + 1) = T |o(t + 1) = C) is the
probability of observing T at time t + 1 given the observation of C at time
t.

of the objects that are present in the environment, in particular
that the cues (having a higher visual saliency due to their
high luminosity) are learned before the distractors (lower
luminosity). It also shows that the target has a very high
expected value as its foveation preludes to its arm reaching
and hence the reward attainment and that cues have a value
higher than distractors due to their spatial relations with the
target.

Figure 6 illustrates the evolution of the conditional prob-
ability of foveating a kind of object given a certain type of
previously foveated object. The graph shows that the system
first develops the skill of avoiding to stay on cues (gray dashed
line, first 10 trials). Then, it quickly develops the skill of
staying on the target (bold dashed line, first 20 trials). Then,
it acquires the skill of moving from the cues to the target
(dotted line, first 100 trials). And finally, it learns to move from
the distractors to the target (gray line, until 200 trials). This
developmental pattern explains the peak of saccades (after 20
trials) shown in figure 4. This pick separates two phases: first,
the system learns to inhibit the most salient objects (cues)
so as to be capable of exploring the rest of the scene (in
this perspective, it learns to treat the cues as “distractors”
to be avoided), and later it learns to exploit such cues as



Fig. 8. Comparison of changes of: (a) performance; (b) saccade number;
(c) vote map activations when the system foveates the target; (d) vote map
activations when the system foveates the cue. The vote map activation is the
average activation of the map units, taken with absolute value. The changes
were computed as the difference between the values of two succeeding steps.
The data were normalised in (-1, +1) by computing the maximum values
reached in 1000 trials (the graphs reports only the initial learning phase).

landmarks to find the target. These dynamics indicate that the
learning process has distinct phases whose order is affected
by the saliency of objects, the relevance of their information
content for accomplishing the task, and the knowledge and
skills acquired by the system until a certain moment.

C. Evolution of internal representations

Figure 7 shows the evolution of the vote map during
learning and how object representations are learned. This
evolution confirms the analysis of the developmental phases
illustrated above. The agent initially learns to inhibit the cues
(see Figure 7a); in this time interval, the target map does not
change in a relevant way (Figure 7f). Successively (after trial
20), the vote map activation for the target quickly achieves its
steady level (Figure 7h-j). At this point the vote map activation
for the cues slowly develops its capacity to guide the eye
towards positions at the left of the cue line where the system
might find the target. After enough trials the cues become
the main landmarks to guide the eye to the target. Figure 8
shows the average change of the vote map activation (caused
by the perception of the cue or the distractor) during learning
and compares it with the improvements of performance and
number of saccades. The change of the votes for the target take
place mainly between trial 20 and trial 40. The knowledge
of the agent from trial 15 to 20 changes only in terms of
the acquisition of a small bias to move away from the cues
(Figure 7b), the related tendency to non-revisit such cues (as
the PAM maintains a memory of them), and a small bias
to stay on the target (Figure 7g). The bottom-up saliency
leads to boost the value of this knowledge as it guides the
system to explore regions of the environment where there
are potentially relevant objects (vs. “empty” less interesting
regions) and to systematically apply such knowledge to them.
As a consequence, although minor this change of knowledge
causes a relevant change in performance. Indeed, although the
system has still little knowledge on the spatial relationship
between the cues and the target, it manages to achieve the

Fig. 9. Change of the learning performance with an increasing fovea size.
Y-axis reports the total number of saccades necessary for an agent to acquire
a stable exploration behaviour ( average length of 7 saccades). X-axis reports
the size in pixels of one side of the square fovea (2,4,8,16,32,48,64,96). Note
that a fovea sized 96x96 pixels can allow perceiving 3x3 close objects at the
same time. The data are the average of 5 runs executed for each different
fovea size. All other results reported in the paper refer to a fovea size of 2x2
pixels.

target in about 50% of trials. This dynamics prelude to learning
more sophisticated exploration strategies based on the spatial
relations existing between the objects.

D. Role of the fovea size in learning performance

Figure 9 shows how the number of saccades necessary
to learn the task increases with the size of the fovea (the
maximum size allows the system to see 3x3 close objects).
A possible explanation is that a small fovea can get rid of the
context more easily; this is achieved since a small fovea stores
only local information, which is however sufficient to achieve
good performance when information is selected actively and
a wrong saccade execution has low cost. Adding information
dos not change performance significantly while at the same
time slows learning.

V. DISCUSSION

The simple experiment reported here shows how, during
learning, bottom-up information favors the acquisition of top-
down attentional control skills. In the first experiences of
the task, bottom-up mechanisms prevent the system from
exploring useless parts of the environment (e.g. where there
are no objects), and drive the eye to most salient regions
of space where potentially relevant objects might be found.
As pointed out in [14], this leads the system to “produce
a dynamic coupling with the environment that allows the
structuring of input, and produces statistical regularities” that
are progressively assimilated into the top-down components
in different phases of development, so rendering exploration
increasingly efficient.

The experiment shows in particular that, during learning,
the bottom-up saliency of objects provides the basis for dis-
covering and defining their role. Initially most salient objects,
explored most frequently, tend to be encoded as obstacles



(a) 15 (b) 20 (c) 40 (d) 60 (e) 1000

(f) 15 (g) 20 (h) 40 (i) 60 (j) 1000

Fig. 7. Evolution of the vote map activation during learning when the system foveates a cue (a-e) or the target (f-j). White and black dots indicate the
activation of neurons activated respectively above or below zero (the size of the dots indicates the distance of the activation from this value). Numbers indicate
the trial during learning.

or distractors to be avoided if the system is not capable of
exploiting their spatial relations with the target (or, in general,
if these relations do not exist). Successively, the system
discovers the objects which are most relevant for the task
(targets) and learns to focus attention on them and to obtain
reward by reaching them. Finally, objects that were previously
avoided can change their role and become landmarks used for
finding the target if they have useful spatial relationships with
the target.

Once the system has acquired the top-down attention skills,
these skills continue to rely on the bottom-up mechanisms
to correctly function. For example, the different luminosity
of objects is exploited to organise exploration. Moreover, the
acquired top-down skills are systematically applied to several
different objects explored on the basis of their bottom-up
saliency. In this respect, even when top-down attention-control
skills are partially formed, bottom-up mechanisms can boost
their utility by providing guidance on where to apply them.

The limited dimension of the fovea help this process, too,
because it reduces the input size of the adaptive mechanism,
which then requires less learning examples to acquire the
initial skills. Indeed, although a bigger fovea alleviates the
perceptual aliasing problem, its higher demands in terms
of computational requirements and learning time make it
unfavorable. Taken together, the results show that bottom-up
mechanisms and the fovea structure can have a great influence
on the development of top-down attention-control skills in
adaptive active vision systems.

One of the main critique that can be raised to this work
is that it relies entirely on the assumption that a totally
task independent bottom-up mechanism exists. Although most
studies, reviewed in the introduction, support the idea of a
predominance of top-down and task-specific control of atten-
tion, it should be noted that without prior knowledge of the
task an agent needs a “baseline” exploration policy such as the
one described here (or, alternatively, a predefined set of priors
relative to the structure of the problem [27]). In this respect,

however, this study indicates that not only the baseline policy
governs attentional control when top-down control is missing,
but it also supports its acquisition by focusing exploration
on salient visual stimuli whose role is initially unknown, and
can even support top-down attentional skills once they have
formed.

The current limitations of the architecture are that it uses
a simplified bottom-up mechanism, addresses only one kind
of top-down knowledge (i.e., knowledge of spatial relations
among objects, see [15]), and is based on an inflexible cou-
pling between attention and arm-action control (but consider
that this strong assumption is quite in line with the attention
for action principle [1], [16]). In addition, the experimental
setup used to test the model was based on rather simplified
and static input images. These elements pose some limits on
the generality of the presented results, but at the same time
they permitted to study the problem of task-specific attention-
control learning without having to tackle the difficulties in-
volved with the use of a general purpose visual system and
this greatly helped to analyse the results. We plan to overcome
these limitations in future work, and to be able to perform a
systematic comparison of the model behaviour with the one
reported in studies on human attention learning.
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