
APSI-BASED DELIBERATION IN GOAL ORIENTED AUTONOMOUS CONTROLLERS

Simone Fratini1, Amedeo Cesta1, Riccardo De Benedictis1, Andrea Orlandini1,2, and Riccardo Rasconi1

1CNR, Consiglio Nazionale delle Ricerche, ISTC, Rome, Italy – name.surname@istc.cnr.it
2CNR, Consiglio Nazionale delle Ricerche, ITIA, Milan, Italy – andrea.orlandini@itia.cnr.it

ABSTRACT

This paper describes a timeline-based, domain indepen-
dent deliberative layer, based on ESA APSI technol-
ogy, deployed in the context of the Goal Oriented Au-
tonomous Controller (GOAC) project. In particular the
paper describes a new controller composed by (1) a plan-
ning module that exploits the timeline-based approach
provided by the APSI-TRF and is able to model and solve
planning problems, (2) a module that dispatches planned
timelines, supervises their execution status and entails
continuous planning and re-planning. An example will
illustrate both modules at work.

Key words: Timeline-based Planning, Planning and Exe-
cution, Autonomy.

1. INTRODUCTION

The Goal Oriented Autonomous Controller (GOAC [2])
is an ESA initiative aimed at defining a new generation
of software autonomous controllers to support increasing
levels of autonomy for robotic task achievement. In par-
ticular, goal of the GOAC architecture is to: (1) generate
on-board plans, (2) dispatch activities for execution, and
(3) recover from off-nominal conditions.

The pursued GOAC solution has been designed as a prin-
cipled integration of different software solutions: (1) a
timeline-based deliberative layer powered by a planner
implemented on top of the APSI Timeline-based Repre-
sentation Framework (APSI-TRF) created by ISTC-CNR,
(2) a module, also based on APSI-TRF, to entail and su-
pervise execution of plans and schedules, (3) an executive
layer based on T-REX [6] devised at MBARI, and (4) a
functional layer which integrates the GenoM and BIP
systems devised at LAAS and VERIMAG, respectively
[1].

This work describes the CNR contribution in building
a timeline-based, domain independent deliberative layer
for the GOAC project. In particular we describe a con-
troller entirely based on the ESA APSI technology. The
controller is constituted by a new planning module that
exploits the timeline-based approach provided by the
APSI-TRF to model and solve problems, namely the
“GOAC-APSI planner”, as well as a module, namely the

“APSI Deliberative Reactor”1, to dispatch planned time-
lines, to supervise their execution status and to entail con-
tinuous planning and re-planning.

APSI
Domain-Independent

Controller

Controlled
System

User
Goals

Controls
(Controlled System

Planned Status)

Telemetry
(Controlled System

Real Status)

Controlled
System
Model

Controller
Model

Figure 1. General Schema.

The controller is devised to be domain independent, i.e.,
it takes in input a (timeline-based) model of the system
to be controlled, a (timeline-based) model of the specific
controller and a set of user goal to be (hopefully) achieved
by the controlled system (see Figure 1). The controller
plans for user goals, dispatches commands for the con-
trolled system (the status planned for the controlled sys-
tem in order to achieve the user goals) and supervises plan
execution by ingesting the telemetry of the controlled
system (the actual status of the controlled system). The
advantage of the controller being based on a domain in-
dependent planner entails both the capability of the con-
troller to plan for user goal and to dynamically react to
off-nominal conditions detected from the controlled sys-
tem telemetry, as well as a twofold flexibility: in being
used to control different systems (by substituting the con-
trolled system domain description) and in the capability
of achieving different classes of user goals for the same
system (by substituting the controller model).

It is worth point out that the approach is scalable. In fact,
the controlled system can be in turn another deliberative
reactor and a hierarchical structure can be implemented
to refine high levels goals into more detailed low level
plans. Controls coming from the higher level reactors are
in this case goals for the lower level reactors, and teleme-
try from lower levels reactors are plan achievement infor-
mation for higher levels reactors. In the case of the GOAC
project, the executive levels based on the T-REX architec-
ture uses the reactors in such a hierarchical configuration
(see [2] for more details).

1The term Reactor is a legacy from T-REX [6]. It is worth saying that
the initial motivation of our work is to design a smooth integration with
the T-REX executive that in its original implementation uses a different
timeline-based planner.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37835534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. THE APSI SOFTWARE PLATFORM AND THE
GOAC-APSI PLANNER

Design and implementation of advanced Planning and
Scheduling software for space applications is an activ-
ity involving a certain amount of developing effort and
risk. For instance, the software may fail to meet opera-
tional requirements (performance issues), and/or may fail
to capture all the essential aspects of the problem (mod-
eling issues). The ESA Advanced Planning and Schedul-
ing Initiative aims at the design and deployment of a
software platform, called APSI Timeline Representation
Framework, shortly APSI-TRF, for supporting planning
and scheduling space applications design. The aim of the
framework is to provide help to developers to cope with
both software deployment efforts and modeling risks.
The APSI-TRF simplifies the design and developing effort
by providing a library of basic planning and scheduling
domain independent solvers, and robustifies the interac-
tion among the specific solvers implemented on top of the
framework by providing a uniform representation of the
solution database and defining a common inter-module
cooperation and coordination interface. Modeling risks
are reduced because the use of a framework that standard-
izes and simplifies the process of application deployment
fosters a rapid prototyping cycle, which directly helps the
users to take into account their own feedback during the
application design.

The philosophy underlying the APSI-TRF is inspired by
classical Control Theory, in that the problem is modeled
by identifying a set of relevant features whose temporal
evolutions need to be controlled to obtain a desired be-
havior. In the APSI-TRF such relevant features are called
components and are the primitive entities for knowledge
modeling. They represent logical or physical subsystems
whose properties may vary in time; therefore, control de-
cisions can be taken on components to define their evolu-
tion.

The APSI-TRF allows representing a number of planning
and scheduling concepts in the form of timelines. The
current APSI-TRF release provides two types of compo-
nents which allow quite an amount of modeling power.
Specifically, planning problems are modeled using com-
ponents known as multi-valued state variables [5], cou-
pled with resource components like those commonly used
in constraint-based schedulers [3]. Besides problem solv-
ing capabilities, the APSI-TRF also provides a domain
definition language (called DDL.3) to specify both the
components and the relevant physical constraints that in-
fluence their possible temporal evolutions (e.g., possi-
ble state transitions over time of a component, synchro-
nization/coordination constraints among different com-
ponents, maximum capacity of resources, etc.), as well
as a problem definition language (called PDL) to specify
planning and scheduling problems. Section 4 shows an
example of modeling with timelines.

The overall architecture of the interactions between the
APSI-TRF, the GOAC-APSI planner and the GOAC Delib-
erative Reactor is shown in figure 2. The architecture is
made of three main modules: (1) The APSI-TRF module
is the P&S solution maintenance database. In this mod-
ule the current solution is represented and maintained in

the form of a network of constraints among planning and
scheduling decisions. Modules built on top of the frame-
work interact with the database by posting decisions and
constraints and by querying for temporal and parameter
information maintained in the database; (2) The GOAC-
APSI planner, that interacts with the APSI-TRF to solve
planning problems. The planner is used (in a master/slave
configuration) by the deliberative reactor that provides
problems and collect solutions (plans compliant with a
domain description represented in DDL.3 language); (3)
The APSI deliberative reactor, that interacts with the
APSI-TRF to supervise the execution of the plans. The
reactor is in charge of three tasks: enforcing the synchro-
nization of the solution database with observations in in-
put, providing plans for user goals and dispatching com-
mands accordingly with its internal status. The reactor is
described in Section 3.

APSI
Deliberative

Reactor

Decisions
Constraints

Time & Parameter
Information

GOAC-APSI
Planner

APSI-TRF
APSI Timeline Representation Framework

(Solution Maintenanance Database)

Planning Problem

Plan

Observations Goals

Synchronization
Signal

Domain
Description

C
om

m
an

ds

Figure 2. Architecture.

The GOAC-APSI planner is an enhancement/adaptation
for GOAC purposes of the OMPS planner (Open Multi-
Component Planner & Scheduler [4]) implemented on
top of the APSI-TRF. The OMPS planner generates time
flexible plans: a set of timelines where the transitions be-
tween the values are not fixed by the planner but tempo-
rally related with a set of constraints. Each transition has
a minimum and a maximum planned time (in between
of which the transition is legal and compliant with the
model) as well as temporal relations with other transi-
tions on the same timeline and on other timelines. These
planned relations must be achieved to guarantee the va-
lidity of the plan. Any transition out of planned bounds
or violating the relations is not valid and a plan execution
failure must be taken into account.

The enhancement of the GOAC-APSI planner with respect
to the original OMPS planner aim at enabling continuous
planning in a dynamically evolving solution database. In
fact, in GOAC, the solution database is concurrently (and
continuously) modified by the reactor to synchronize the
status of the database with the status of the real world, and
by the planner to plan the (foreseen) status of the world
in the future.

The adaptation consists in two main features: the capabil-
ity to plan within a bounded time window and the possi-
bility of being not blocking for the reactor. The first fea-
ture is used by the reactor to maintain the stability of the
part of the plan currently in execution, while the second
feature is necessary because the current implementation

of the APSI-TRF does not allow multi-thread concurrent
access to the solution database. The GOAC-APSI plan-
ner implements a solving process as a sequence of short
reasoning bursts (a few milliseconds each), so that it can
be interrupted with no side effects on the portion of the
timelines in execution (should synchronization problems
occur that suddenly require the planner for more urgent
duties). These reasoning steps allow to use the planner
without interrupting concurrent reactor operations (see
the reactor description for more details).

������� ��� 	 �

� � 	 �

� ��� 	 � � � �
� � � � � 	��� ��� � ���� � � � � � � � �! � � " # � " �

��� ��� � ���� � � � � � � � �! � � " # � " �

$ � � % & � ���� � � � � � � � �! � � " # � " �
$ � � % & � ���� � � � � � � � �! � � " # � " � '�() *�+ , -�./�0�1 2 (- 0)

'�() *�+ , -�./�0�1 2 (- 0)
3 450 - 6�, (798: 0�0�;9< +�-�=
3 450 - 6�, (798: 0�0�;9< +�-�=

TC

TM

>@?�A9B C DFE9G
P l a n E x e c u t i o n

Current PlanCurrent Plan
H I J�K�K L MH I J�K�K L M N L J O P Q�MN L J O P Q�M

Problem

Model

Figure 3. APSI-TRF use in GOAC.

The overall use of the APSI-TRF in the GOAC project
is shown in Figure 3. The APSI-TRF provides: (1) lan-
guages for specifying domains and problems, (2) a uni-
fied plan and schedule representation database, and (3)
two domain independent problem solvers: a planner and a
reactor. Once connected with an infrastructure that allows
to dispatch telecommands to the controlled system and
ingest back telemetries (role plaid by T-REX in GOAC),
the APSI-TRF plays the role of a timeline-based controller
for the physical system.

3. THE APSI DELIBERATIVE REACTOR

The APSI deliberative reactor is the module responsible
for supervising the plan generation and execution. The
reactor implements a sense-plan-act cycle: (1) sensing,
to enforce the synchronization of the believed status of
the world (represented in the solution database) with the
real status of the world (received as a series of observa-
tions); (2) planning, to collect user goals and synthesize
action sequences that reach those goals consistently with
the previous observations, and (3) acting, by dispatching
commands accordingly with the reactor’s internal status.
The sense-plan-act cycle is synchronized with the real
world by means of a synchronization pulse that triggers
the cycle (see figure 2).

The APSI deliberative reactor design is grounded on two
basic principles inherited from the philosophy of the T-
REX executive architecture: (1) the scope of deliberation
and execution are temporally partitioned; (2) the time-
lines that constitute the domain are functionally parti-
tioned into internal and external.

The temporal separation between the scope of the delib-
eration and the scope of the execution aims at provid-
ing sufficient time for the planning phase before the pro-
duced plan execution so as to avoid any overlap between
the timeline segments being planned and those under ex-
ecution, guaranteeing the stability of the controller. This
principle implies the definition of a latency λ and a de-
liberation scope π for the reactor. Latency and delibera-
tion scope separate the portion of the timeline subject to
planning with the portion of the timeline subject to ex-
ecution. During execution, a planning process starting

at a given time t, is guaranteed to modify the timelines
only between t + λ and t + λ + π, therefore maintaining
timeline stability between t and t + λ. λ can be con-
sidered an empirical evaluation of the maximum allotted
time for planning for a goal, while π can be considered
an empirical evaluation of the temporal scope of a plan.
Hence the importance of accurately choosing the values
of λ and π depending on (1) the presumed performances
of the planner in use, (2) the complexity of the domain
theory describing the system to be controlled, and (3) the
difficulty of the goals to be dynamically achieved during
the execution to control the system.

The functional distinction between internal and external
timelines aims at distinguishing between the timelines
that describe the controller internal status and the time-
lines that describe the status of the system that has to
be controlled (basically the distinction between the con-
troller model and the controlled system model in Figure
1). This distinction is important, as the internal status of
the controller can be decided by the reactor (i.e., it will
surely be reached as expected), while the status of the
controlled system can only be planned for by the reactor
but there is no guarantee that it will be actually reached.

The reactor receives the current status of the controlled
system through a series of telemetry values (i.e., actual
values of external timelines, a.k.a. observations), and at-
tempts to synchronize its own view of these timelines in
the plan database (believed status of the controlled sys-
tem) with the observed timeline values. Interleaved with
this activity, the reactor plans2 for the desired status of
the controlled system required to achieve user goals, and
dispatches this status by means of controls, i.e., required
values for external timelines. The actual achievement of
these values is supervised by means of the synchroniza-
tion process described below.

Three main modules are in charge of the reactor func-
tions (see Figure 5): a core, that supervises the pro-
cess, an observer, that synchronizes incoming observa-
tions and a dispatcher, that dispatches outcoming com-
mands. A fourth module, a planner, is needed to plan for
user goals3.

Figure 4. User Goal Life Cycle.

The core module coordinates the other modules while
2According to the limitations imposed by the λ and π values
3In the GOAC project the planner in use is the GOAC-APSI planner

described in Section 2, but this module can in principle use any APSI-
based solver

Goal
Manager

CoreObserver Dispatcher

Plan
Analyzer

Planner

Conflict
Analyzer

Goal
Planning
Policy
(GPP)

Incoming
Goals

Next
Goals

Goal
Dispatching

Policy
(GDP)

Plan

Outcoming
Goals & Obs

Goals
To Plan Plan

Plan Achievement
Policy
(GAP)

Plan

Achievement Conditions

Observations

Conflict Issues

Goal Replanning
Policy
(GRP)

Conflict
Issues

+ Plans in Exec

Replanning
Goals

Stabilization
Goals

(G1)

(G2)

(S2),(G3)

(G5)

(S4),(G7)

(S1),(G4),(G6)

(S3)

Figure 5. Reactor Architecture

managing planning processes and synchronization pro-
cedures. The core module implements the user goal life
cycle shown in Figure 4. With reference to the labels
in Figure 5, the goal life cycle is implemented accord-
ing to the following steps: (G1) incoming user goals are
collected and buffered into a goal manager module (the
goal is BUFFERED); a “Goal Planning Policy” (GPP) im-
plemented in the goal manager module controls the pro-
gression of the goal from the status BUFFERED to the sta-
tus IN PLANNING. (G2) the goals selected by the GPP
to be planned next are passed on to the planner. Once
the time allotted for planning has expired, the transi-
tion from IN PLANNING to PLANNED is triggered. (G3)
Once planned, the produced plan is passed on to the Dis-
patcher module. A “Goal Dispatching Policy” (GDP) im-
plemented by the dispatcher controls the progression of
the goal from PLANNED to DISPATCHED. Once selected
to be dispatched by the GDP, the goal is sent to the con-
trolled system. (G4) the goals come in execution as soon
as any of the values that constitute the plan gets in exe-
cution. The Observer module, in charge of supervising
the execution of the reactor timelines, triggers the transi-
tion from DISPATCHED to IN EXECUTION. (G5) once in
execution, a “Goal Achievement Policy” (GAP) controls
the progression from IN EXECUTION to EXECUTED. A
plan analyzer module implements the GAP. The module
analyzes the plan and produces a set of goal achievement
conditions that the core uses to assess the correct execu-
tion of the plan. (G6) The Observer module, while syn-
chronizing timelines, can force the transition of the goal
from the status IN EXECUTION to ABORTED as soon as
any synchronization problem arises (an incorrect execu-
tion of any of the values of the plan is detected). In such
case, (G7) a “Goal Re-Planning Policy” (GRP) controls
the possible transition of the goal status from ABORTED
to IN PLANNING again. A conflict analyzer modules im-
plements the GRP. The GRP evaluates the situation on
the basis of a set of conflict issues generated by the Ob-

server module, and can decide if and when to re-plan for
the goal. When the goal is BUFFERED, IN PLANNING,
PLANNED and DISPATCHED, it can be recalled (by the
user) forcing a transition into a ABORTED status. The
current implementation of the reactor does not allow to
recall a goal once the plan for that goal is in execution.

The goal life cycle management process is interleaved
with the timeline synchronization process. Again with
reference to the labels in figure 5, the following steps
constitute the reactor synchronization procedure: (S1) in-
coming observations that describe the actual status of the
controlled system are passed on to the Observer module.
(S2) if no synchronization problem arises, the observed
status of the controlled system is compatible with the cur-
rent plan database; the plan database is updated and the
out coming controls are produced. (S3) if a synchroniza-
tion problem arises, the current status of both the con-
troller and controlled system is re-calculated, and a list
of conflict issues is generated for the Conflict Analyzer.
(S4) On the basis of the implemented GRP, the module
provides the core with a set of goals to re-plan for (start-
ing from the re-calculated status). The GRP can decide to
either (a) re-plan from the goal former in execution or any
other goal still pending, or (b) plan for a set of pre-defined
“stabilization goals”, a sort of standard “safe” status that
the controller will try to reach before attempting to plan
for new goals or re-plan for the aborted goals. Conflicts
are detected by the observer module when (1) an incom-
ing observation puts an unexpected value on a timeline
forcing an invalid state transition (the controlled system
is taking an unexpected status), (2) an incoming observa-
tion forces a transition on a state that cannot be changed
(the controlled system truncates an operation before the
planned time) or (3) when there is no incoming observa-
tion but the current status cannot be maintained (the con-
trolled system is not blocking an operation at the planned
time).

The reactor is designed to be modular and easily exten-
sible with respect to the implemented policies. This fea-
tures makes the behavior of the reactor easily customiz-
able for different domains. In fact, especially for what
the goal goal planning and re-planning policy (GPP and
GRP) are concerned, it is very difficult to design scenario
independent policies that are general and efficient at the
same time. Moreover the policies can change also for dif-
ferent runs of the same scenario, to achieve different user
needs. Hence a design choice of bet on modularity more
than implementing embedded policies. The next section
shows an illustrative scenario with an example of prob-
lem dependent policies.

4. AN ILLUSTRATIVE SCENARIO

This section describes an experiment done at LAAS in
the context of the GOAC project. The goal of the experi-
ment was to control a rover to take a set of pictures, store
them on board and dump the pictures when a given com-
munication channel was available. The target platform
was DALA, a mature platform that has been successfully
used for several years. DALA robot is one of the LAAS
robotic platforms that can be used for autonomous explo-
ration type of experiments. DALA is an iRobot ATRV
robot that provides a large number of sensors and ef-
fectors. Nevertheless, it can use vision based naviga-
tion (such as the one used on Spirit and Opportunity),
as well as indoor navigation based on a Sick laser range
finder. The experiment has been performed using the T-
REX-based executive layer and a functional layer for con-
necting to the DALA rover (which integrates the GenoM
and BIP systems).

The first step was to model the system to be controlled:
the rover. The DALA rover is equipped with a pan-tilt
unit, two stereo cameras (mounted on top of the pan-tilt
unit) and a communication facility. The rover is able to
autonomously navigate the environment, move the pan-
tilt, take pictures and communicate images to a remote
orbiter. Hence we consider, for this experiment, as inter-
esting sub-systems to model the DALA rover: a mobility
system MS, a pan-tilt unit PTU, a camera CAM and a com-
munication system COMM.4

We consider in the model the rover able to move between
two points in space given their coordinates 〈x, y〉, taking
into account that the rover may get stuck in between two
points. Hence the mobility system can be modeled as
a state variable taking the following values: AT(?x, ?y)
when the rover is standing in 〈x, y〉, GOTO(?x, ?y) when
the rover is moving toward 〈x, y〉 and STUCKAT(?x, ?y)
when the rover is stuck in 〈x, y〉. We assume that a
transition GOTO(?x, ?y) → AT(?x, ?y) denotes a suc-
cessful move to 〈x, y〉, while a transition GOTO(?x, ?y)
→ STUCKAT(?x′, ?y′), with ?x 6=?x′ or ?y 6=?y′ de-
notes an unsuccessful move to 〈x, y〉 with the rover stuck
in 〈x′, y′〉 while moving. A transition AT(?x, ?y) →
GOTO(?x′, ?y′) denotes the rover starting to move from
a point 〈x, y〉 to a point 〈x′, y′〉.

4We are indebted to Felix Ingrand and Lavindra De Silva from
LAAS-CNRS for the time spent to explain us the details of their robotic
platform.

The rover pan-tilt unit can be pointing a given angle
〈α, β〉 or can be moving from two angles. Hence the
unit can be modeled with a state variable taking the fol-
lowing values: POINTINGAT(?pan, ?tilt) when the unit
is is pointing an angle 〈α =?pan, β =?tilt〉 and MOV-
INGTO(?pan, ?tilt) when the unit is moving toward an
angle 〈α =?pan, β =?tilt〉.

The rover camera can take pictures with the pan-tilt unit
(in the current position of the rover) and store the pic-
ture on an on-board memory with a given file id. Hence
the camera can be modeled with a state variable taking
the following values: CAMIDLE(), when the camera is
not taking pictures and TAKEPIC(?file id) when the unit
is taking a picture that will be stored in a file with id =
?file id.

The communication system can dump a file with a given
id. Hence it can be modeled with a state variable tak-
ing the following values: COMMIDLE(), the idle status,
and DUMP(?file id) when the unit is dumping a picture
stored in a file with id = ?file id.

There are some constraints that have to be satisfied in or-
der to correctly use the rover. The first one (C1) is that
when the rover is taking a picture, it must be stable at a
given location. The second (C2) is that when the rover is
moving, the pan-tilt unit must be in a “rest” position (i.e.,
at angle 〈0, 0〉). We model these requirements stating the
following constraints:

CAM.TAKEPIC(?file id) DURING MS.AT(?x, ?y) (C1)
MS.GOTO(?x, ?y) DURING PTU.POINTINGAT(0, 0) (C2)

The second step was to model the controller to operate
the DALA rover. Interesting user goals were: (1) to take
a picture in a given position 〈x, y〉 with the pan-tilt unit
in 〈α, β〉, storing it with a given file id and dump it when
the orbiter is visible for some periods and (2) to drive the
rover in a given position 〈x, y〉. Hence we modeled the
controller using two timelines: a mission timeline MT and
a visibility dump window timeline VW.

The mission timeline will take the values TAKEPIC-
TURE(?x, ?y, ?pan, ?tilt, ?file id), to model the goal of
taking a picture in 〈?x, ?y〉, with the pan-tilt unit point-
ing to 〈?pan, ?tilt〉, store the picture in a file with the
id ?file id and dump it as soon as possible, the value
GOTO(?x, ?y) to model the goal of just moving the rover
to 〈?x, ?y〉 and IDLE() (an idle status).

The visibility window timeline models the temporal win-
dows where the communication channel is available. For
the sake of simplicity, we model a binary state variable
with only two values: AVAILABLE() and NOTAVAIL-
ABLE().

The goal TAKEPICTURE(?x, ?y, ?pan, ?tilt, ?file id)
can be achieved by the rover by: (a) taking a picture
with id = ?file id, with the rover in 〈?x, ?y〉 and the
pan-tilt unit pointing to 〈?pan, ?tilt〉 and (b) dumping
the picture. To take a picture on a given position and
pan-tilt unit orientation, can be achieved by (a.1) mov-
ing the rover to 〈?x, ?y〉, (a.2) moving the pan tilt unit to
〈?pan, ?tilt〉 (a.3) taking a picture with the camera with
an id = ?file id. To dump a picture with a given id can
be achieved by (b.1) dumping the picture when the dump

Figure 6. A Time Flexible Plan

window is available. Hence we add to the model the fol-
lowing synchronization:

MT.TAKEPICTURE(?x, ?y, ?pan, ?tilt, ?file id)
CONTAINS

〈 CAM.TAKEPIC(?file id) BEFORE COMM.DUMP(?file id),
CAM.TAKEPIC(?file id) DURING MS.AT(?x, ?y),

CAM.TAKEPIC(?file id) DURING PTU.POINTINGAT(?pan, ?tilt),
COMM.DUMP(?file id) DURING VW.AVAILABLE() 〉

The goal GOTO(?x, ?y) can be achieved by driving the
rover to 〈?x, ?y〉. Hence we need to add to the model just
the following synchronization:

MT.GOTO(?x, ?y) MEETS MS.AT(?x, ?y)

Figure 6 shows an example of a plan to take a pic-
tures and to go back to the rest position. We have
two user goals in the Mission Timeline MT: TAKEPIC-
TURE(2, 3,−35,−45,′′ pic1′′) and GOTO(0, 0). The ini-
tial values of the timelines are provided to the controller
for internal timelines (MT and VW), while the initial val-
ues of external timelines (that describes the initial status
of the rover) are ingested as observation after the first syn-
chronization pulse. We have an idle status for the mission
timeline and a complete description of the visibility win-
dows for what internal timelines are concerned. The rover
takes the status with camera and communication in idle,
position in 〈0, 0〉 and pan-tilt unit in 〈0, 0〉.

The plan for the two goals is shown in Figure 6,where we
have also an example of the temporal flexibility property
introduced in Section 2. With reference to the labels, we
have the MT.TAKEPICTURE(2, 3,−35,−45,′′ pic1′′)
goal containing CAM.TAKEPIC(′′pic1′′) and
COMM.DUMP(′′pic1′′) (the two constraints la-
beled with (1)), with CAM.TAKEPIC(′′pic1′′) be-
fore COMM.DUMP(′′pic1′′) (the constraint labeled
with (5)), while CAM.TAKEPIC(′′pic1′′) is placed
during MS.AT(2, 3) (constraints (4)) and during
PTU.POINTINGAT(−35,−45) (constraints (3)). The
dump operation is placed during the visibility window
(constraints (6)). All the commands that move the rover
are placed when the pan tilt unit is in the default position

(constraints (8) and (9)). This comes from the model of
the DALA rover. Finally, the goal GOTO(0, 0) meets a
status MS.AT(0, 0) that achieves the goal (constraint (7)).

The transitions between the different planned timeline
values are temporally related but not fixed by the plan-
ner. The relations labeled in the figure must be achieved
to guarantee the validity of the plan. Any transition out
of planned bounds or violating the relations is not valid
and a failure is detected by the reactor.

A violation is detected also if the controlled system takes
an unexpected status, like STUCKAT(?x, ?y) in the case
of this illustrative scenario. At this point, the goal in
execution (let’s suppose the unexpected event happening
while executing a plan to take a picture) will be consid-
ered discarded by the reactor, the current status of the
plan database is updated to be compliant with the status
of the controlled system and the goal re-planning policy
selects the new goal to plan for. The policy implemented
for this scenario considers the position where the rover is
stuck and re-schedule the goals on the basis of the dis-
tance where the rover is stuck. This is an example of a
very simple goal re-planning policy related to the spe-
cific scenario. Different more sophisticated policies can
be implemented and easily added to reactor in order to
achieve a more realistic behavior.

5. CONCLUSIONS

This paper describes a timeline-based, domain indepen-
dent deliberative layer based on ESA APSI technol-
ogy built for the Goal Oriented Autonomous Controller
(GOAC) project.

The controller is designed to be domain independent, i.e.,
it takes in input a (timeline-based) model of the system
to be controlled, a (timeline-based) model of the specific
controller and a set of user goal to be (hopefully) achieved

by the controlled system. The controller uses a planner to
plans for user goals, dispatches commands for the con-
trolled system (the status planned for the controlled sys-
tem in order to achieve the user goals) and supervises plan
execution by reasoning on the telemetry of the controlled
system (the actual status of the controlled system).

The proposed controller is constituted by:

– a new planning module, referred to as the “GOAC-
APSI planner” that exploits the timeline-based ap-
proach provided by the APSI-TRF to model and solve
timeline-based planning problems. The GOAC-APSI
planner generates time flexible plans: a set of time-
lines where the transitions between the values are
not fixed by the planner but temporally related with
a set of constraints. The flexibility of the produced
plans and the capability of re-planning entail the
suitability of the system in controlling physical sys-
tems, once coupled with an executive layer that takes
care of properly dispatching the plan and supervise
its execution.

– a module, called the “APSI Deliberative Reactor”,
that implements the sense-plan-act cycle as well as
the goal life-cycle management. The module dis-
patches planned timelines and supervises their exe-
cution status to enforce continuous synchronization
with the status of the controlled system and to allow
planning and re-planning.

The advantage of the controller being based on a do-
main independent planner entails both the capability of
the controller to plan for goal and to dynamically react to
off-nominal conditions detected from the controlled sys-
tem telemetry, as well as a twofold flexibility: in being
used to control different systems (by substituting the con-
trolled system domain description) and in the capability
of achieving different classes of user goals for the same
system (by substituting the controller model).

Acknowledgment. Authors are partially supported by
the European Space Agency (ESA) under the GOAC
project (TRP/T313/006MM). We gratefully thanks our
colleagues in the GOAC project for the fruitful discus-
sions. Orlandini is currently supported by a grant within
“Accordo di Programma Quadro CNR-Regione Lombar-
dia: Progetto 3”.

REFERENCES

1. S. Bensalem, L. de Silva, M. Gallien, F. Ingrand,
and R. Yan. “Rock Solid” Software: A Verifiable
and Correct-by-Construction Controller for Rover and
Spacecraft Functional Levels. In i-SAIRAS-10. Proc. of
the 10th Int. Symp. on Artificial Intelligence, Robotics
and Automation in Space, 2010.

2. A. Ceballos, S. Bensalem, A. Cesta, L. de Silva,
S. Fratini, F. Ingrand, J. Ocón, A. Orlandini, F. Py,

K. Rajan, R. Rasconi, and M. van Winnendael. A Goal-
Oriented Autonomous Controller for space explo-
ration. In Proceedings of the ASTRA 2011, 11th Sym-
posium on Advanced Space Technologies in Robotics
and Automation, 2011.

3. A. Cesta, A. Oddi, and S. F. Smith. A Constraint-
based method for Project Scheduling with Time Win-
dows. Journal of Heuristics, 8(1):109–136, January
2002.

4. S. Fratini, F. Pecora, and A. Cesta. Unifying Planning
and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences, 18(2):231–
271, 2008.

5. N. Muscettola. HSTS: Integrating Planning and
Scheduling. In Zweben, M. and Fox, M.S., editor, In-
telligent Scheduling. Morgan Kauffmann, 1994.

6. F. Py, K. Rajan, and C. McGann. A systematic agent
framework for situated autonomous systems. In AA-
MAS, pages 583–590, 2010.

