
Applying Iterative Flattening Search to the Job Shop Scheduling Problem with
Alternative Resources and Sequence Dependent Setup Times

Angelo Oddi 1 and Riccardo Rasconi 1 and Amedeo Cesta 1 and Stephen F. Smith 2

1 Institute of Cognitive Science and Technology, CNR, Rome, Italy
{angelo.oddi, riccardo.rasconi, amedeo.cesta}@istc.cnr.it

2 Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
sfs@cs.cmu.edu

Abstract

This paper tackles a complex version of the Job Shop Sched-
uling Problem (JSSP) that involves both the possibility to se-
lect alternative resources to activities and the presence of se-
quence dependent setup times. The proposed solving strategy
is a variant of the known Iterative Flattening Search (IFS)
metaheuristic. This work presents the following contribu-
tions: (1) a new constraint-based solving procedure produced
by means of enhancing a previous JSSP-solving version of
the same metaheuristic; (2) a new version of both the variable
and value ordering heuristics, based on temporal flexibility,
that capture the relevant features of the extended scheduling
problem (i.e., the flexibility in the assignment of resources
to activities, and the sequence dependent setup times); (3) a
new relaxation strategy based on the random selection of the
activities that are closer to the critical path of the solution,
as opposed to the original approach based on a fully random
relaxation. The performance of the proposed algorithm are
tested on a new benchmark set produced as an extension of an
existing well-known testset for the Flexible Job Shop Sched-
uling Problem by adding sequence dependent setup times to
each original testset’s instance, and the behavior of the old
and new relaxation strategies are compared.

Introduction
This paper describes an iterative improvement approach
to solve job-shop scheduling problems involving both se-
quence dependent setup-times and the possibility of select-
ing alternative routes among the available machines. Over
the last years there has been an increasing interest in solv-
ing scheduling problems involving both setup-times and
flexible shop environments (Allahverdi and Soroush 2008;
Allahverdi et al. 2008). This fact stems mainly from the ob-
servation that in various real-word industry or service en-
vironments there are tremendous savings when setup times
are explicitly considered in scheduling decisions. In addi-
tion, the possibility of selecting alternative routes among
the available machines is motivated by interest in develop-
ing Flexible Manufacturing Systems (FMS) (Sethi and Sethi
1990) able to use multiple machines to perform the same
operation on a job’s part, as well as to absorb large-scale
changes, such as in volume, capacity, or capability.

The proposed problem, called in the rest of the paper
Flexible Job Shop Scheduling Problem with Sequence De-
pendent Setup Times (SDST-FJSSP) is a generalization of

the classical Job Shop Scheduling Problem (JSSP) where
each activity requires a single machine and there are no
setup-times. This problem is more difficult than the clas-
sical JSSP (which is itself NP-hard), since it is not just
a sequencing problem; in addition to deciding how to se-
quence activities that require the same machine (involv-
ing sequence-dependent setup-times), it is also necessary to
choose a routing policy, i.e., deciding which machine will
process each activity. The objective remains that of mini-
mizing makespan.

Despite this problem is often met in real manufacturing
systems, not many papers consider both sequence depen-
dent setup-times in flexible job-shop environments. On the
other hand, a richer literature is available when setup-times
and flexible job-shop environments are considered sepa-
rately. In particular, on the side of setup-times a first refer-
ence work is (Brucker and Thiele 1996), which relies on an
earlier proposal presented in (Brucker, Jurisch, and Sievers
1994). More recent works are (Vela, Varela, and González
2009) and (González, Vela, and Varela 2009), which pro-
pose effective heuristic procedures based on genetic algo-
rithms and local search. In these works, the introduced lo-
cal search procedures extend an approach originally pro-
posed by (Nowicki and Smutnicki 2005) for the classical
job-shop scheduling problem to the setup times case. A
last noteworthy work is (Balas, Simonetti, and Vazacopou-
los 2008), which extends the well-known shifting bottleneck
procedure (Adams, Balas, and Zawack 1988) to the setup-
time case. Both (Balas, Simonetti, and Vazacopoulos 2008)
and (Vela, Varela, and González 2009) have produced refer-
ence results on a previously studied benchmark set of JSSP
with sequence dependent setup-times problems initially pro-
posed by (Brucker and Thiele 1996). About the Flexible Job
Shop Scheduling FJSSP an effective synthesis of the exist-
ing solving approaches is proposed in (Hmida et al. 2010).
The core set of procedures which generate the best results
include the genetic algorithm (GA) proposed in (Gao, Sun,
and Gen 2008), the tabu search (TS) approach of (Mastrolilli
and Gambardella 2000) and the discrepancy-based method,
called climbing depth-bound discrepancy search (CDDS),
defined in (Hmida et al. 2010). Among the papers dealing
with both sequence dependent setup times and flexible shop
environments there is the work (Rossi and Dini 2007), which
considers a shop type composed of pools of identical ma-

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37835529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

chines as well as two types of setup times: one modeling the
transportation times between different machines (sequence
dependent) and the other one modeling the required recon-
figuration times (not sequence dependent) on the machines.
The other work (Ruiz and Maroto 2006) considers a flow-
shop environment with multi-purpose machines, such that
each stage of a job can be processed by a set of unrelated
machines (the processing times of the jobs depend on the
machine they are assigned to). (Vallada and Ruiz 2011) con-
siders a problem similar to the previous one, where the jobs
are composed by a single step, but setup-times are both se-
quence and machine dependent. Finally, (Valls, Perez, and
Quintanilla 1998) considers a job-shop problem with paral-
lel identical machines, release times and due dates but se-
quence independent setup-times.

This paper focuses on a family of solving techniques re-
ferred to as Iterative Flattening Search (IFS). IFS was first
introduced in (Cesta, Oddi, and Smith 2000) as a scalable
procedure for solving multi-capacity scheduling problems.
IFS is an iterative improvement heuristic designed to mini-
mize schedule makespan. Given an initial solution, IFS iter-
atively applies two-steps: (1) a subset of solving decisions
are randomly retracted from a current solution (relaxation-
step); (2) a new solution is then incrementally recomputed
(flattening-step). Extensions to the original IFS procedure
were made in two subsequent works (Michel and Van Hen-
tenryck 2004; Godard, Laborie, and Nuitjen 2005) and more
recently (Oddi et al. 2010) have performed a systematic
study aimed at evaluating the effectiveness of single com-
ponent strategies within the same uniform software frame-
work. The IFS variant that we propose relies on a core
constraint-based search procedure as its solver. This proce-
dure is an extension of the SP-PCP procedure proposed in
(Oddi and Smith 1997). SP-PCP generates consistent order-
ings of activities requiring the same resource by imposing
precedence constraints on a temporally feasible solution, us-
ing variable and value ordering heuristics that discriminate
on the basis of temporal flexibility to guide the search. We
extend both the procedure and these heuristics to take into
account both sequence dependent setup-times and flexibility
in machine selection. To provide a basis for embedding this
core solver within an IFS optimization framework, we also
specify an original relaxation strategy based on the idea of
randomly breaking the execution orders of the activities on
the machines with a activity selection criteria based on their
proximity to the solution’s critical path.

The paper is organized as follows. The first two sec-
tions define the SDST-FJSSP problem and its CSP repre-
sentation. The main contribution of the work is given by
two further sections which respectively describes the core
constraint-based search procedure and the definition of the
IFS meta-heuristic. An experimental section describes the
performance of our algorithm on a set of benchmark prob-
lems and explains the most interesting results. Some conclu-
sions end the paper.

The Scheduling Problem
The SDST-FJSSP entails synchronizing the use of a set of
machines (or resources) R = {r1, . . . , rm} to perform a set

of n activities A = {a1, . . . , an} over time. The set of activ-
ities is partitioned into a set of nj jobs J = {J1, . . . , Jnj}.
The processing of a job Jk requires the execution of a strict
sequence of nk activities ai ∈ Jk and cannot be modified.
All jobs are released at time 0. Each activity ai requires the
exclusive use of a single resource ri for its entire duration
chosen among a set of available resources Ri ⊆ R. No pre-
emption is allowed. Each machine is available at time 0 and
can process more than one operation of a given job Jk (recir-
culation is allowed). The processing time pir of each activity
ai depends on the selected machine r ∈ Ri, such that ei −
si = pir, where the variables si and ei represent the start and
end time of ai. Moreover, for each resource r, the value strij
represents the setup time between two generic activities ai
and aj (aj is scheduled immediately after ai) requiring the
same resource r, such that ei+ strij ≤ sj . As is traditionally
assumed in the literature, the setup times strij satisfy the so-
called triangular inequality (see (Brucker and Thiele 1996;
Artigues and Feillet 2008)). The triangle inequality states
that, for any three activities ai, aj , ak requiring the same
resource, the inequality strij ≤ strik + strkj holds. A solu-
tion S = {(s1, r1), (s2, r2), . . . , (sn, rn)} is a set of pairs
(si, ri), where si is the assigned start-time of ai, ri is the
selected resource for ai and all the above constraints are sat-
isfied. Let Ck be the completion time for the job Jk, the
makespan is the value Cmax = max1≤k≤nj{Ck}. An opti-
mal solution S∗ is a solution S with the minimum value of
Cmax. The SDST-FJSSP is NP-hard since it is an extension
of the JSSP problem (Garey and Johnson 1979).

A CSP Representation
There are different ways to model the problem as a Con-
straint Satisfaction Problem (CSP) (Montanari 1974), we
use an approach similar to (Oddi and Smith 1997). In par-
ticular, we focus on assigning resources to activities, a dis-
tinguishing aspect of SDST-FJSSP and on establishing se-
quence dependent setup time constraints between pairs of
activities that require the same resource, so as to eliminate
all possible conflicts in the resource usage.

Let G(AG, J,X) be a graph where the set of vertices AG

contains all the activities of the problem together with two
dummy activities, a0 and an+1, respectively representing the
beginning (reference) and the end (horizon) of the schedule.
Each activity ai is labelled with the set of available resource
choices Ri. J is a set of directed edges (ai, aj) representing
the precedence constraints among the activities (job prece-
dences constraints) and are labelled with the set of process-
ing times pir (r ∈ Ri) of the edge’s source activity ai. The
set of undirected edges X represents the disjunctive con-
straints among the activities requiring the same resource r;
there is an edge for each pair of activities ai and aj requir-
ing the same resource r (Ri = Rj = {r}) and the related
label represents the set of possible ordering between ai and
aj : ai � aj or aj � ai. Hence, in CSP terms, there are
two sets of decision variables: (1) a variable xi is defined
for each activity ai to select one resource for its execution,
the domain of xi is the set of available resource Ri: (2) A
variable oijr is defined for each pair of activities ai and aj

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

16

requiring the same resource r (xi = xj = r), which can take
one of two values ai � aj or aj � ai. It is worth noting that
in considering either ordering we have to take into account
the presence of sequence dependent setup times, which must
be included when an activity ai is executed on the same re-
source before another activity aj . As we will see in the next
sections, the previous decisions for oijr can be represented
as the following two temporal constraints: ei + strij ≤ sj
(i.e. ai � aj) or ej + strji ≤ si (i.e. aj � ai).

To support the search for a consistent assignment to the set
of decision variables xi and oijr, for any SDST-FJSSP we
define the directed graph Gd(V,E), called distance graph,
which is an extended version of the graph G(AG, J,X). The
set of nodes V represents time points, where tp0 is the ori-
gin time point (the reference point of the problem), while
for each activity ai, si and ei represent its start and end
time points respectively. The set of edges E represents all
the imposed temporal constraints, i.e., precedences and du-
rations. In particular, for each activity ai we impose the in-
terval duration constraint ei − si ∈ [pmin

i , pmax
i], such that

pmin
i (pmax

i) is the minimum (maximum) processing time
according to the set of available resources Ri. Given two
time points tpi and tpj , all the constraints have the form
a ≤ tpj − tpi ≤ b, and for each constraint specified in
the SDST-FJSSP instance there are two weighted edges in
the graph Gd(V,E); the first one is directed from tpi to tpj
with weight b and the second one is directed from tpj to tpi
with weight −a. The graph Gd(V,E) corresponds to a Sim-
ple Temporal Problem (STP) and its consistency can be effi-
ciently determined via shortest path computations; the prob-
lem is consistent if and only if no closed paths with nega-
tive length (or negative cycles) are contained in the graph
Gd (Dechter, Meiri, and Pearl 1991). Thus, a search for a
solution to a SDST-FJSSP instance can proceed by repeat-
edly adding new precedence constraints into Gd(V,E) and
recomputing shortest path lengths to confirm that Gd(V,E)
remains consistent.

A solution S is given as a affine graph GS(AG, J,XS),
such that each undirected edge (ai, aj) in X is replaced
with a directed edge representing one of the possible or-
derings between ai and aj : ai � aj or aj � ai. In
general the directed graph GS represents a set of tem-
poral solutions (S1, S2, . . . , Sn) that is, a set of assign-
ments to the activities’ start-times which are consistent
with the set of imposed constraints XS . Let d(tpi, tpj)
(d(tpj , tpi)) designate the shortest path length in graph
Gd(V,E) from node tpi to node tpj (from node tpj to
node tpi); then, the constraint −d(tpj , tpi) ≤ tpj − tpi ≤
d(tpi, tpj) is demonstrated to hold (Dechter, Meiri, and
Pearl 1991). Hence, the interval [lbi, ubi] of time values
associated with a given time variable tpi respect to the
reference point tp0 is computed on the graph Gd as the
interval [−d(tpi, tp0), d(tp0, tpi)]. In particular, given a
STP, the following two sets of value assignments Slb =
{−d(tp1, tp0),−d(tp2, tp0), . . . , −d(tpn, tp0)} and Sub =
{d(tp0, tp1), d(tp0, tp2), . . . , d(tp0, tpn)} to the STP vari-
ables tpi represent the so-called earliest-time solution and
latest-time solution, respectively.

Basic Constraint-based Search
The proposed procedure for solving instances of SDST-
FJSSP integrates a Precedence Constraint Posting (PCP)
one-shot search for generating sample solutions and an It-
erative Flattening meta-heuristic that pursues optimization.
The one-shot step, similarly to the SP-PCP scheduling pro-
cedure (Shortest Path-based Precedence Constraint Posting)
proposed in (Oddi and Smith 1997), utilizes shortest path
information in Gd(V,E) to guide the search process. Short-
est path information is used in a twofold fashion to enhance
the search process: to propagate problem constraints and to
define variable and value ordering heuristics.

Propagation Rules
The first way to exploit shortest path information is by in-
troducing conditions to remove infeasible values from the
domains of the decision variables xi, representing the as-
signment of resources to activities. Namely, for each activ-
ity ai we relax the disjunctive duration constraint into the
interval constraint ei − si ∈ [pmin

i , pmax
i], such that pmin

i
(pmax

i) is the minimum (maximum) processing time accord-
ing to the set of available resources Ri (Ri is the domain of
the decision variable xi). As the search proceeds, as soon
as the interval of distance between the start-time and the
end-time of ai [−d(si, ei), d(ei, si)] is updated, the duration
pir �∈ [−d(si, ei), d(ei, si)] is removed from the domain of
xi and a new interval [pmin

i , pmax
i] is recomputed accord-

ingly. In case of the domain of the decision variable xi be-
comes empty, the search reaches a failure state.

The second way to exploit shortest path is by introduc-
ing new Dominance Conditions (which adapt those pre-
sented in (Oddi and Smith 1997) to the setup times case),
through which problem constraints are propagated and
mandatory decisions for promoting early pruning of alterna-
tives are identified. The following concepts of slack(ei, sj)
and co-slack(ei, sj) (complementary slack) play a central
role in the definition of such new dominance conditions.
Given two activities ai, aj and the related interval of dis-
tances [−d(sj , ei), d(ei, sj)]

1 and [−d(si, ej), d(ej , si)]
2

on the graph Gd, they are defined as follows:

• slack(ei, sj) = d(ei, sj)− strij is the difference between
the maximal distance d(ei, sj) and the setup time strij .
Hence, it provides a measure of the degree of sequenc-
ing flexibility between ai and aj

3 taking into account the
setup time constraint ei + strij ≤ sj . If slack(ei, sj) < 0,
then the ordering ai � aj is not feasible.

• co-slack(ei, sj) = −d(sj , ei)− strij is the difference be-
tween the minimum possible distance between ai and aj ,
−d(si, ej), and the setup time strij ; if co-slack(ei, sj) ≥
0, then there is no need to separate ai and aj , as the setup
time constraint ei + strij ≤ sj is already satisfied.

1Between the end-time ei of ai and the start-time sj of aj
2Between the end-time ej of aj and the start-time si of ai
3Intuitively, the higher is the degree of sequencing flexibility,

the larger is the set of feasible assignments to the start-times of ai

and aj

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

17

For any pair of activities ai and aj that can compete for
the same resource r (Ri∩Rj �= ∅), given the corresponding
durations pir and pjr, the Dominance Conditions, describ-
ing the four main possible cases of conflict, are defined as
follows:
1. slack(ei, sj)< 0∧slack(ej , si)<0
2. slack(ei, sj)<0 ∧slack(ej , si)≥0∧co-slack(ej , si)<0
3. slack(ei, sj)≥0∧slack(ej , si) < 0∧co-slack(ei, sj)<0
4. slack(ei, sj)≥0 ∧slack(ej , si)≥0

Condition 1 represents an unresolvable conflict. There is
no way to order ai and aj taking into account the setup times
strij and strji, without inducing a negative cycle in the graph
Gd(V,E). When Condition 1 is verified there are four dif-
ferent interesting sub-cases generated on the basis of the car-
dinality of the domain sets Ri and Rj .
a. |Ri| = |Rj | = 1: the search has reached a failure state;
b. |Ri| = 1 ∧ |Rj | > 1: the resource requirement r can be

removed from Rj ;
c. |Ri| > 1 ∧ |Rj | = 1: the resource requirement r can be

removed from Ri;
d. |Ri| > 1 ∧ |Rj | > 1: the activities ai and aj cannot use

the same resource r.
Conditions 2, and 3, alternatively, distinguish uniquely

resolvable conflicts, i.e., there is only one feasible order-
ing of ai and aj when both the activities require r, and
the decision of which constraint to post is thus uncondi-
tional. In the particular case where |Ri| = |Rj | = 1 the
decision aj � ai is mandatory; if Condition 2 is verified,
only aj � ai leaves Gd(V,E) consistent. It is worth not-
ing that the presence of the condition co-slack(ej , si) < 0
entails that the minimal distance between the end time ej
and the start time si is shorter than the minimal required
setup time strji; hence, we still need to impose the con-
straint ej + strji ≤ si. In other words, the co-slack con-
dition avoids the imposition of unnecessary precedence con-
straints for trivially solved conflicts. Condition 3 works sim-
ilarly, and entails that only the ai � aj ordering is feasible.
In case there is at least one activity with more than one re-
source option (|Ri| > 1 ∨ |Rj | > 1), it is still possible
to choose different resource assignments for ai and aj , and
avoid posting a precedence constraint. Condition 3 works
similarly, and entails that only the ai � aj ordering is feasi-
ble when |Ri| = |Rj | = 1.

Condition 4 designates a class of resolvable conflicts with
more search options; in this case when |Ri| = |Rj | = 1
both orderings of ai and aj remain feasible, and it is there-
fore necessary to perform a search decision. When there is
at least one activity ai or aj with more than one resource op-
tion (|Ri| > 1 ∨ |Rj | > 1), then there is also the possibility
of choosing different resource assignment to ai and aj , and
avoid to post a precedence constraint.

Heuristic Analysis
Shortest path information in Gd can also be exploited to de-
fine variable and value ordering heuristics for the decision
variables xi and oijr in all cases where no mandatory de-
cisions are deduced from the propagation phase. The idea

is to evaluate both types of decision variables (xi and oijr)
and select the one (independently of type) with the minimum
heuristic evaluation. The selection of the variables is based
on the most constrained first (MCF) principle and the se-
lection of values follows the least constraining value (LCV)
heuristic.

Ordering decision variables. We start to analyze the case
of selecting an ordering decision variables oijr, under the
hypothesis that both the activity ai and aj use the same
resource r ∈ Ri ∩ Rj . As stated above, in this context
slack(ei, sj) and slack(ej , si) provide measures of the de-
gree of sequencing flexibility between ai and aj . More pre-
cisely, given a variable oijr, related to the pair (ai, aj), its
heuristic evaluation

V arEval(ai, aj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min{ slack(ei,sj)√
S

,
slack(ej ,si)√

S
} :

if slack(ei, sj)≥0∧slack(ej , si)≥0
slack(ej , si) :

if slack(ei, sj)<0∧slack(ej , si)≥0
slack(ei, sj) :

if slack(ei, sj)≥0 ∧slack(ej , si)<0

where S =
min{slack(ei,sj),slack(ej ,si)}
max{slack(ei,sj),slack(ej ,si)}

4. The variable or-
dering heuristic attempts to focus first on the most con-
strained conflict (ai, aj), that is, on the conflict with the least
amount of temporal flexibility (i.e., the conflict that is closest
to previous Condition 1.a).

As opposed to variable ordering, the value ordering
heuristic attempts to resolve the selected conflict (ai, aj)
by simply choosing the activity pair sequencing that retains
the highest amount of temporal flexibility (least constrained
value). Specifically, ai � aj is selected if slack(ei, sj) >
slack(ej , si) and aj � ai is selected otherwise.

Resource decision variables. Decision variables xi are
also selected according to the MCF principle. Initially, all
the pairs of activities (ai, aj), such that (|Ri| > 1 ∨
|Rj | > 1 and Ri ∩ Rj �= ∅)) undergo a double-key sort-
ing, where the primary key is a heuristic evaluation based
on resource flexibility and computed as Fij = 2(|Ri| +
|Rj |) − |Ri ∩ Rj |, while the secondary key is the known
V arEval(ai, aj) heuristic, based on temporal flexibility5.
Then, we select the pair (a∗i , a

∗
j) with the lowest value of

the pair 〈Fij , V arEval(ai, aj)〉, where V arEval(ai, aj) is
computed for each possible resource r ∈ Ri ∩ Rj . Finally,
between x∗

i and x∗
j we select the variable whose domain of

values has the lowest cardinality.
Value ordering on the decision variables xi is also ac-

complished by using temporal flexibility measures. If Ri

4The
√
S bias is introduced to take into account cases where

a first conflict with the overall min{slack(ei, sj), slack(ej , si)}
has a very large max{slack(ei, sj), slack(ej , si)}, and a second
conflict has two shortest path values just slightly larger than this
overall minimum. In such situations, it is not clear which conflict
has the least temporal flexibility.

5The resource flexibility Fij increases with the size of the do-
mains Ri and Rj , and decreases with the size of the set Ri ∩ Rj ,
which is correlated to the possibility of creating resource conflicts.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

18

PCP(Problem, Cmax)
1. S ← InitSolution(Problem, Cmax)
2. loop
3. Propagate(S)
4. if UnresolvableConflict(S)
5. then return(nil)
6. else
7. if UniquelyResolvableDecisions(S)
8. then PostUnconditionalConstraints(S)
9. else begin
10. C ←ChooseDecisionVariable(S)
11. if (C = nil)
12. then return(S)
13. else begin
14. vc ← ChooseValueConstraint(S, C)
15. PostConstraint(S, vc)
16. end
17. end
18. end-loop
19. return(S)

Figure 1: The PCP one-shot algorithm

is the domain of the selected decision variable xi, then for
each resource r ∈ Ri, we consider the set of activities
Ar already assigned to resource r and calculate the value
Fmin(r) = minak∈Ar{V arEval(ai, ak)}. Then, for each
resource r we evaluate the flexibility associated with the
most critical pair (ai, ak), under the hypothesis that the re-
source r is assigned to ai. The resource r∗ ∈ Ri which max-
imizes the value Fmin(r), and therefore allows ai to retain
maximal flexibility, is selected.

The PCP Algorithm
Figure 1 gives the basic overall PCP solution procedure,
which starts from an empty solution (Step 1) where the
graphs Gd is initialized according to Section . Also, the pro-
cedure accepts a never-exceed value (Cmax) of the objec-
tive function of interest, used to impose an initial global
makespan to all the jobs. The PCP algorithm shown in Fi-
gure 1 analyses the decision variables xi and oijr, and re-
spectively decides their values in terms of imposing a du-
ration constraint on a selected activity or a setup time con-
straint (i.e., ai � aj or aj � ai, see Section). In broad
terms, the procedure in Figure 1 interleaves the applica-
tion of Dominance Conditions (Steps 4 and 7) with variable
and value ordering (Steps 10 and 14 respectively) and up-
dating of the solution graph Gd (Steps 8 and 15) to con-
duct a single pass through the search tree. At each cy-
cle, a propagation step is performed (Step 3) by the func-
tion Propagate(S), which propagates the effects of post-
ing a new solving decision (i.e., a setup time constraint)
in the graph Gd. In particular, Propagate(S) updates
the shortest path distances on the graph Gd. A solution S
is found when the PCP algorithm finds a feasible assign-
ment of resources ri ∈ Ri to activities ai (i = 1 . . . n})
and when none of the four dominance conditions is veri-
fied on S. In fact, when none of the four Dominance Con-
ditions is verified (and the PCP procedure exits with suc-
cess), for each resource r, the set of activities Ar assigned

IFS(S,MaxFail, γ)
begin
1. Sbest ← S
2. counter ← 0
3. while (counter ≤ MaxFail) do
4. RELAX(S, γ)
5. S ←PCP(S,Cmax(Sbest))
6. if Cmax(S) < Cmax(Sbest) then
7. Sbest ← S
8. counter ← 0
9. else
10. counter ← counter + 1
11. return (Sbest)
end

Figure 2: The IFS schema

to r represents a total execution order. In addition, as the
graph Gd represents a consistent Simple Temporal Problem
(see Section), one possible solution of the problem is the
earliest-time solution, such that S = {(−d(s1, tp0), r1), (-
d(s2, tp0), r2), . . . , (−d(sn, tp0), rn)}.

The Optimization Metaheuristic
Figure 2 introduces the generic IFS procedure. The algo-
rithm basically alternates relaxation and flattening steps until
a better solution is found or a maximal number of iterations
is executed. The procedure takes three parameters as input:
(1) an initial solution S; (2) a positive integer MaxFail,
which specifies the maximum number of consecutive non
makespan-improving moves that the algorithm will tolerate
before terminating; (3) a parameter γ explained in . After
the initialization (Steps 1-2), a solution is repeatedly modi-
fied within the while loop (Steps 3-10) by applying the RE-
LAX procedure (as explained in the following section), and
the PCP procedure shown in Figure 1 used as flattening step.
At each iteration, the RELAX step reintroduces the possibil-
ity of resource contention, and the PCP step is called again
to restore resource feasibility. In the case a better makespan
solution is found (Step 6), the new solution is saved in Sbest

and the counter is reset to 0. If no improvement is found
within MaxFail moves, the algorithm terminates and re-
turns the best solution found.

Relaxation Procedure
The first part of the IFS cycle is the relaxation step, wherein
a feasible schedule is relaxed into a possibly resource infea-
sible, but precedence feasible, schedule by retracting some
number of scheduling decisions. Here we use a strategy sim-
ilar to the one in (Godard, Laborie, and Nuitjen 2005) and
called chain-based relaxation. Given the graph representa-
tion described above, each scheduling decision is either a
setup time constraint between a pair of activities that are
competing for the same resource capacity and/or a resource
assignment to one activity. The strategy starts from a solu-
tion S and randomly breaks some total orders (or chains)
imposed on the subset of activities requiring the same re-
source r. The relaxation strategy requires an input solution
as a graph GS(A, J,XS) which is a modification of the orig-
inal precedence graph G that represents the input scheduling

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

19

problem. GS contains a set of additional general precedence
constraints XS which can be seen as a set of chains. Each
chain imposes a total order on a subset of problem activities
requiring the same resource.

The chain-based relaxation proceeds in two steps. Firstly,
a subset of activities ai is randomly selected from the input
solution S, according to some criteria that will be explained
below. The selection process is generally driven by a param-
eter γ ∈ (0, 1) that indicates the probability that each activ-
ity has to be selected (γ is called the relaxing factor). For
each selected activity, the resource assignment is removed
and the original set of available options Ri is re-estabilished.
Secondly, a procedure similar to CHAINING – used in (Po-
licella et al. 2007) – is applied to the set of unselected ac-
tivities. This operation is in its turn accomplished in three
steps: (1) all previously posted setup time constraints XS

are removed from the solution S; (2) the unselected activi-
ties are sorted by increasing earliest start times of the input
solution S; (3) for each resource r and for each unselected
activity ai assigned to r (according to the increasing order of
start times), ai’s predecessor p = pred(ai, r) is considered
and the setup time constraint related to the sequence p � ai
is posted (the dummy activity a0 is the first activity of all
the chains). This last step is iterated until all the activities
are linked by the correct setup time constraints. Note that
this set of unselected activities still represents a feasible so-
lution to a scheduling sub-problem, which is represented as
a graph GS in which the randomly selected activities float
outside the solution and thus re-create conflict in resource
usage.

As anticipated above, we implemented two different
mechanisms to perform the random activity selection pro-
cess, respectively called Random and a Slack-based.

Random selection According to the random selection ap-
proach, at each solving cycle of the IFS algorithm in Fi-
gure 2, a subset of activities ai is randomly selected from
the input solution S, with each activity having an uniformly
distributed selection probability equal to γ. It is of great im-
portance to underscore that according to this approach, the
activities to be relaxed are randomly picked up from the so-
lution S with the same probability which, as we will see
shortly, entails a relaxation characterized by a greater dis-
ruption on S, compared to the following selection approach.

Slack-based selection As opposed to the random selec-
tion, at each iteration the slack-based selection approach re-
stricts the pool of the relaxable activities to the subset con-
taining those activities that are closer to the critical path con-
dition (critical path set). As known, an activity ai belongs to
the critical path (i.e., meets the critical path condition) when,
given ai’s end time ei and its feasibility interval [lbi, ubi], the
condition lbi = ubi holds. For each activity ai, the smaller
the difference ubi − lbi (informally called slack) computed
on ei, the closer is ai to the critical path condition. At each
IFS iteration the critical path set is built so as to contain any
activity ai with a probability directly proportional to the γ
parameter and inversely proportional to ai’s slack. For ob-

vious reasons, the slack-based relaxation entails a smaller
disruption on the solution S, as it operates on a smaller set
of activities; the activities characterized by a great slack will
have a minimum probability to be selected. As explained in
the following section, this difference has important conse-
quences on the experimental behaviour.

Experimental Analysis
The empirical evaluation has been carried out on a SDST-
FJSSP benchmark set synthesized on purpose out of the
first 20 instances of the edata subset of the FJSSP HU-
data testbed from (Hurink, Jurisch, and Thole 1994), and
will therefore be referred to as SDST-HUdata. Each one
of the SDST-HUdata instances has been created by adding
to the original HUdata instance one Setup-Time matrix
str(nJ × nJ) for each present machine r, where nJ is
the number of present jobs. The same Setup-Time ma-
trix was added for each machine of all the benchmark in-
stances. Each value stri,j in the Setup-Time matrix mod-
els the setup time necessary to reconfigure the r-th ma-
chine to switch from job i to job j. Note that machine re-
configuration times are sequence dependent: setting up a
machine to process a product of type j after processing
a product of type i can generally take a different amount
of time than setting up the same machine for the oppo-
site transition. The elements stri,j of the Setup-Time ma-
trix satisfy the triangle inequality (Brucker and Thiele 1996;
Artigues and Feillet 2008), that is, for each three activi-
ties ai, aj , ak requiring the same machine, the inequality
strij ≤ strik + strkj holds. The 20 instances taken from HU-
data (namely, the instances la01-la20) are divided in four
groups of five (nJ × nA) instances each, where nJ is the
number of jobs and nA is the number of activities per job for
each instance. More precisely, group la01-la05 is (10 × 5),
group la06-la10 is (15×5), group la11-la15 is (20×5), and
group la16-la20 is (10×10). In all instances, the processing
times on machines assignable to the same activity are iden-
tical, as in the original HUdata set. The algorithm used for
these experiments has been implemented in Java and run on
a AMD Phenom II X4 Quad 3.5 Ghz under Linux Ubuntu
10.4.1.

Results. Table 1 and Table 2 show the obtained results run-
ning our algorithm on the SDST-HUdata set using the Ran-
dom or Slack-based procedure in the IFS relaxation step, re-
spectively. Both tables are composed of 10 columns and 23
rows (one row per problem instance plus three data wrap-
up rows). The best column lists the shortest makespans
obtained in the experiments for each instance; underlined
values represent the best values obtained from both tables
(global bests). The columns labeled γ = 0.2 to γ = 0.9 (see
Section) contain the results obtained running the IFS proce-
dure with a different value for the relaxing factor γ. For each
problem instance (i.e., for each row) the values in bold indi-
cate the best makespan found among all the tested γ values
(γ runs).

For each γ run, the last three rows of both tables show re-
spectively (up-bottom): (1) the number B of best solutions

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

20

Table 1: Results with random selection procedure

inst. best γ
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

la01 726 772 731 728 726 729 726 729 740
la02 749 785 785 749 749 749 749 749 768
la03 652 677 658 658 658 652 652 658 675
la04 673 673 673 673 689 689 680 680 690
la05 603 613 613 603 605 605 606 607 632
la06 950 965 950 954 954 971 997 995 1020
la07 916 946 916 925 919 947 950 987 1000
la08 954 973 961 964 954 963 958 1000 1001
la09 1002 1039 1002 1039 1020 1042 1020 1045 1068
la10 977 1017 977 1022 977 1027 1008 1042 1048
la11 1265 1265 1312 1285 1282 1345 1332 1372 1368
la12 1088 1088 1114 1130 1167 1165 1199 1209 1198
la13 1255 1255 1255 1255 1300 1280 1300 1316 1315
la14 1292 1292 1315 1344 1346 1362 1351 1345 1372
la15 1298 1298 1302 1338 1355 1352 1367 1388 1429
la16 1012 1028 1012 1012 1012 1012 1012 1012 1023
la17 864 881 885 885 864 888 864 864 902
la18 985 1021 1007 1029 999 985 985 985 985
la19 956 1006 992 975 956 956 978 959 981
la20 997 1008 1010 997 997 997 997 997 999
B (N) 12 6(1) 7(5) 6(4) 8(5) 6(5) 7(5) 5(3) 1(1)
Av.C. 20149 17579 14767 11215 10950 9530 7782 7588
Av.MRE 19.34 18.29 18.66 18.37 19.42 19.43 20.60 22.44

found locally (i.e., within the current table) and, underlined
within round brackets, the number N of best solutions found
globally (i.e., between both tables); (2) the average number
of utilized solving cycles (Av.C.), and (3) the average mean
relative error (Av.MRE)6 with respect to the lower bounds
of the original HUdata set (i.e., without setup times), re-
ported in (Mastrolilli and Gambardella 2000). For all runs, a
maximum CPU time limit was set to 800 seconds.

Table 2: Results with slack-based selection procedure

inst. best γ
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

la01 726 739 736 726 726 726 726 726 726
la02 749 785 749 749 749 749 749 749 749
la03 652 658 658 658 658 658 652 658 658
la04 673 686 686 686 673 686 680 673 680
la05 603 613 603 613 605 603 604 603 605
la06 960 963 963 971 960 963 962 970 970
la07 925 941 966 941 925 931 946 972 1000
la08 948 983 963 948 964 993 967 994 973
la09 1002 1020 1020 1002 1002 1040 1069 1052 1042
la10 985 993 991 1007 1022 1022 1017 985 1024
la11 1256 1256 1257 1295 1295 1308 1318 1324 1332
la12 1082 1082 1097 1098 1159 1152 1188 1163 1207
la13 1215 1222 1240 1240 1223 1215 1311 1301 1311
la14 1285 1308 1285 1285 1311 1295 1335 1372 1345
la15 1291 1333 1291 1330 1302 1311 1383 1389 1412
la16 1007 1012 1012 1012 1007 1012 1012 1012 1012
la17 858 889 868 893 895 888 858 859 872
la18 985 1019 1025 1021 1007 985 985 985 985
la19 956 1006 976 987 984 956 980 956 959
la20 997 997 1033 997 997 997 1003 997 997
B (N) 17 3(3) 4(4) 5(5) 8(6) 7(7) 5(5) 8(7) 4(4)
Av.C. 21273 18068 15503 13007 10643 10653 8639 8575
Av.MRE 18.67 18.09 18.26 18.19 18.14 19.58 19.44 20.16

One significant result that the tables show is the differ-
ence in the average of utilized solving cycles (Av.C. row) be-
tween the random and the slack-based relaxation procedure.

6The individual MRE of each solution is computed as follows:
MRE = 100 × (Cmax − LB)/LB, where Cmax is the solution
makespan and LB is the instance’s lower bound

In fact, it can be observed that on average the slack-based
approach uses more solving cycles in the same allotted time
than its random counterpart (i.e., the slack-based relaxation
heuristic is faster in the solving process). This is explained
by observing that the slack-based relaxation heuristic en-
tails a less severe disruption of the current solution at each
solving cycle compared to the random heuristic, as the for-
mer generally relaxes a lower number of activities (given the
same γ value). The lower the disruption level of the current
solution in the relaxation step, the easier it is to re-gain so-
lution feasibility in the flattening step. In addition of this ef-
ficiency issue, the slack-based relaxation approach also pro-
vides the extra effectiveness deriving from operating in the
vicinity of the critical path of the solution, as demonstrated
in (Cesta, Oddi, and Smith 2000).

The good performance exhibited by the slack-based
heuristic can be also observed by inspecting the B(N) rows
in both tables. Clearly, the slack-based approach finds a
higher number of best solutions (17 against 12), which is
confirmed by comparing the number of locally found bests
(B) with the global ones (N), for each γ value, and for both
heuristics.

Another interesting aspect can be found analyzing the
γ values range where the best performances are obtained
(Av.MRE row). Inspecting the Av.MRE values, the fol-
lowing can in fact be stated: (1) the slack-based heuristic
finds solutions of higher quality w.r.t. the random heuristic
over the complete γ variability range; (2) in the random case,
the best results are obtained in the [0.3, 0.5] γ range, while
in the slack-based case the best γ range is wider ([0.3, 0.6]).

Conclusions
In this paper we have proposed the use of Iterative Flat-
tening Search (IFS) as a means of effectively solving the
SDST-FJSSP. The proposed algorithm uses as its core solv-
ing procedure an extended version of the SP-PCP procedure
presented in (Oddi and Smith 1997) which introduces a new
set of dominance conditions tailored to capture the SDST-
FJSSP’s features (i.e., alternative activity-resource assign-
ments plus sequence dependent setup times), as well as a
new relaxation strategy. The performance of the procedure
has been tested on a modified version of a known FJSSP
benchmark set (i.e., the Hurink edata), integrated with a se-
ries of sequence dependent setup time constraints. The new
relaxation strategy has been compared against a fully ran-
dom version, demonstrating a noteworthy improvement in
performance. To the best of our knowledge, no similar works
exist on the same problem version to allow direct compari-
son with different approaches. The benchmark used in this
analysis will be made available on the net so as to facilitate
experiment reproducibility and encourage research compe-
tition.

Acknowledgments
CNR authors are partially supported by EU under the
ULISSE project (Contract FP7.218815), and MIUR under
the PRIN project 20089M932N (funds 2008).

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

21

References
Adams, J.; Balas, E.; and Zawack, D. 1988. The shifting
bottleneck procedure for job shop scheduling. Management
Science 34(3):391–401.
Allahverdi, A., and Soroush, H. 2008. The significance
of reducing setup times/setup costs. European Journal of
Operational Research 187(3):978–984.
Allahverdi, A.; Ng, C.; Cheng, T.; and Kovalyov, M. 2008. A
survey of scheduling problems with setup times or costs. Eu-
ropean Journal of Operational Research 187(3):985–1032.
Artigues, C., and Feillet, D. 2008. A branch and bound
method for the job-shop problem with sequence-dependent
setup times. Annals OR 159(1):135–159.
Balas, E.; Simonetti, N.; and Vazacopoulos, A. 2008. Job
shop scheduling with setup times, deadlines and precedence
constraints. Journal of Scheduling 11(4):253–262.
Brucker, P., and Thiele, O. 1996. A branch & bound
method for the general-shop problem with sequence depen-
dent setup-times. OR Spectrum 18(3):145–161.
Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics 49(1-3):107–127.
Cesta, A.; Oddi, A.; and Smith, S. F. 2000. Iterative Flatten-
ing: A Scalable Method for Solving Multi-Capacity Sched-
uling Problems. In AAAI/IAAI. 17th National Conference on
Artificial Intelligence, 742–747.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.
Gao, J.; Sun, L.; and Gen, M. 2008. A hybrid genetic
and variable neighborhood descent algorithm for flexible job
shop scheduling problems. Computers & Operations Re-
search 35:2892–2907.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Godard, D.; Laborie, P.; and Nuitjen, W. 2005. Random-
ized Large Neighborhood Search for Cumulative Schedul-
ing. In ICAPS-05. Proceedings of the 15th International
Conference on Automated Planning & Scheduling, 81–89.
González, M. A.; Vela, C. R.; and Varela, R. 2009. A Tabu
Search Algorithm to Minimize Lateness in Scheduling Prob-
lems with Setup Times. In Proceedings of the CAEPIA-TTIA
2009 13th Conference of the Spanish Association on Artifi-
cial Intelligence.
Hmida, A. B.; Haouari, M.; Huguet, M.-J.; and Lopez, P.
2010. Discrepancy search for the flexible job shop schedul-
ing problem. Computers & Operations Research 37:2192–
2201.
Hurink, J.; Jurisch, B.; and Thole, M. 1994. Tabu search
for the job-shop scheduling problem with multi-purpose ma-
chines. OR Spectrum 15(4):205–215.
Mastrolilli, M., and Gambardella, L. M. 2000. Effective
neighbourhood functions for the flexible job shop problem.
Journal of Scheduling 3:3–20.

Michel, L., and Van Hentenryck, P. 2004. Iterative Re-
laxations for Iterative Flattening in Cumulative Scheduling.
In ICAPS-04. Proceedings of the 14th International Confer-
ence on Automated Planning & Scheduling, 200–208.
Montanari, U. 1974. Networks of Constraints: Fundamental
Properties and Applications to Picture Processing. Informa-
tion Sciences 7:95–132.
Nowicki, E., and Smutnicki, C. 2005. An advanced tabu
search algorithm for the job shop problem. Journal of Sched-
uling 8(2):145–159.
Oddi, A., and Smith, S. 1997. Stochastic Procedures for
Generating Feasible Schedules. In Proceedings 14th Na-
tional Conference on AI (AAAI-97), 308–314.
Oddi, A.; Cesta, A.; Policella, N.; and Smith, S. F. 2010. It-
erative flattening search for resource constrained scheduling.
J. Intelligent Manufacturing 21(1):17–30.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2007. From
Precedence Constraint Posting to Partial Order Schedules.
AI Communications 20(3):163–180.
Rossi, A., and Dini, G. 2007. Flexible job-shop schedul-
ing with routing flexibility and separable setup times using
ant colony optimisation method. Robotics and Computer-
Integrated Manufacturing 23(5):503–516.
Ruiz, R., and Maroto, C. 2006. A genetic algorithm for
hybrid flowshops with sequence dependent setup times and
machine eligibility. European Journal of Operational Re-
search 169(3):781 – 800.
Sethi, A. K., and Sethi, S. P. 1990. Flexibility in manufac-
turing: A survey. International Journal of Flexible Manu-
facturing Systems 2:289–328. 10.1007/BF00186471.
Vallada, E., and Ruiz, R. 2011. A genetic algorithm for
the unrelated parallel machine scheduling problem with se-
quence dependent setup times. European Journal of Opera-
tional Research 211(3):612 – 622.
Valls, V.; Perez, M. A.; and Quintanilla, M. S. 1998. A tabu
search approach to machine scheduling. European Journal
of Operational Research 106(2-3):277 – 300.
Vela, C. R.; Varela, R.; and González, M. A. 2009. Lo-
cal search and genetic algorithm for the job shop scheduling
problem with sequence dependent setup times. Journal of
Heuristics.

COPLAS 2011: ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

22

