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ABSTRACT

This paper presents the KnowledgE ENgineering
(KEEN) design support system in which Validation and
Verification (V& V) methods are used to strengthen on-
ground development of software for plan-based auton-
omy. In particular, the paper describes a collection of
verification methods, based on Timed Game Automata
(TGA), deployed for the design and development of
timeline-based Planning and Scheduling (P&S) appli-
cations within the APSI-TRF framework. The KEENs
V&V functionalities are illustrated describing software
development to synthesize plans for a planetary rover.

Key words: Validation and Verification, Design Support
System, Timeline-based Planning.

1. INTRODUCTION

Mission operations support tools using robust Planning
and Scheduling (P&S) applications have achieved in-
creasing success during the last decades [24, 23, 17, 13,
5, 6, 12]. It is worth noting how all of them use a domain
modeling and reasoning engine based on the concept of
timelines (see for example [15]). Being space missions
very demanding in terms of costs, the validation of the
outcome of any involved sub-activity represents a key is-
sue. In particular, the issue of Verification and Validation
(V&V) is of great importance to enhance the reliability
and maintainability of supporting tools [21]. Particularly
relevant is the possibility of having tools that manipulate
the planning results demonstrate V&V properties by us-
ing orthogonal technology.

The synthesis of knowledge engineering environments
in which constraint programming and V&V techniques
may concur in creating enhanced software development
environment for P&S is discussed in [9]. The present
work describes a prototype of a software environment
along that idea. The KnowledgE ENgineering (KEEN)
design support system is described in which V&V meth-
ods are used to support the development of P&S appli-
cations. The KEEN system is built around the APSI-
Timeline Representation Framework (APSI-TRF) [11]: a
timeline-based support to model domain that is coupled
with a planner to synthesize solution for a planning prob-
lem.

I'The Advanced Planning and Scheduling Initiative (APSI) has been

The KEEN system is composed of different V&V mod-
ules implementing design support functionalities. In par-
ticular, a TGA Encoding module is deputed to implement
a translation from P&S specification to TGA. The encod-
ing method is the same presented in [7], sharing the same
formal results presented in [8, 10]. Then, relying on that
encoding and results, the KEEN system is endowed with:
a Domain Validation module, to support the model build-
ing activity providing a tool to assess models quality; a
Planner Validation module, to assess the P&S solver with
respect to system requirements; a Plan Execution Vali-
dation module, to check whether the proposed solution
plans are suitable for actual execution or not. In order
to implement the modules functionalities, the verification
tasks are performed by means of UPPAAL-TIGA [1], a
toolbox for the specification, simulation, and verification
of real-time games. In this paper, we show how various
modules can be obtained by exploiting verification tasks
performed by means of UPPAAL-TIGA and the details
of its use to support a planetary rover mission operations.
The KEEN system represents a general tool to support
timeline-based planning.

The paper is organized as follows: we first introduce
the robotic domain and the associated planning prob-
lem sketched as a timeline-based planning and execution
problem. Then, we describe our verification method for
flexible timeline-based plans presenting the KEEN de-
sign support system. The KEEN’s V&V functionalities
are then illustrated describing the design and develop-
ment of a planetary rover controller endowed with a P&S
system. Some conclusions end the paper.

2. PLAN BASED ROBOT CONTROL

This work takes as reference a plan-based autonomous
system organized in a generic three layered control archi-
tecture [16] that combines a physical layer, a functional
layer, and a deliberative layer. The functional layer pro-
vides an abstraction of the physical system wrapping the
controllers for the robotic devices (e.g., PTU, Camera,
navigation, etc.). A generic deliberative layer is com-
posed by a planning and scheduling module and a execu-
tive system. The generic connection among the modules
can be sketched as in Figure 1. The planning and schedul-
ing module is responsible for mission and task planning:

an ESA project from 2006 to 2009. The Timeline Representation
Framework has been developed within APSI by the CNR-ISTC group.
The KEEN environment is developed outside ESA programs.



given a set of mission goals it generates temporal plans of
actions to be delivered to the executive system. The ex-
ecutive system is responsible for plan monitoring, com-
mand dispatching and fault detection.

Functional Layer

Navigation PTU ——
s Communication

~Osenvatigns
Physical Layer
Cameras

PTU Controller

Figure 1. A control architecture for a robotic platform

An Example of Robotic Domain. In the paper we use
a real running example taken from the current GOAC
project [4] integrated demo.” The experimental setting
includes a planetary rover equipped with a pan-tilt unit
(PTU), two stereo cameras (mounted on top of the PTU)
and a communication facility. The rover is able to au-
tonomously navigate the environment, move the PTU,
take pictures and communicate images to a remote or-
biter. A safe PTU position is assumed to be with pan
and #ilr values as (0,0). Finally, during the mission, the
orbiter may be not visible for some periods. Thus, the
robotic platform can communicate only when the orbiter
is visible.

The mission goal is a list of required pictures to be taken
in different locations with an associated PTU configura-
tions. A possible mission actions sequence is the follow-
ing: navigate to one of the requested locations, move the
PTU pointing at the requested direction, take a picture,
then, communicate the taken picture to the orbiter during
the next available visibility window, put back the PTU in
the safe position and, finally, move to the following re-
quested location. Once all the locations have been visited
and all the pictures have been communicated, the mission
is considered successfully completed.

The rover must operate following some operative rules
in order to maintain safe configurations and do not affect
actions execution effectiveness. Namely, the following
conditions must hold during the overall mission:

— (C1): While the robot is moving the PTU has to be in
the safe position;

2Thanks to Felix Ingrand and Lavindra De Silva from LAAS-CNRS
for the time spent to explain us the details of their robotic platform.

— (C2): The robotic platform can take a picture only
if the robot is still in one of the requested location
while the PTU is pointing at the related direction;

— (C3): Once a picture has been taken, the rover has to
communicate the picture to the base station;

— (C4): While communicating, the rover has to be still;

— (C5): While communicating, the orbiter has to be vis-
ible.

In real domains like this, it is not possible to determine
the actual execution duration of each task in advance.
Thus, termination commands of each robot task are to
be considered as uncontrollable to the executive system.
That is, since the termination time of each task is not
fixed, task duration may vary within a temporal interval
[1b, ub] (I is the minimum duration while ub is the max-
imum).

3. TIMELINE-BASED PLANNING AND EXECU-
TION

Timeline-based planning is an approach to temporal plan-
ning which has been applied to the solution of several
space planning problems — e.g., [23, 17, 25, 13, 6, 12].
This approach pursues the general idea that P&S for con-
trolling complex physical systems consist in the synthesis
of a set of desired temporal behaviors for system features
that vary over time.

State variables and timelines. The features to be con-
trolled in a domain can be modeled as a set of temporal
functions whose values over a time horizon have to be
planned for. Such functions are synthesized during prob-
lem solving by posting planning decisions that specify
the values taken by temporal functions over time inter-
vals. The evolution of a single temporal feature over a
time horizon is called the timeline of that feature, i.e., a
scheduled set of planning decisions.

The time varying features are called multi-valued state
variables as in [23]. As in classical control theory, the
evolution of controlled features are described by some
causal laws which determine legal temporal occurrences
of planned decisions. Such causal laws are specified for
the state variables in a domain specification which de-
scribes the operational constraints in a given domain. In
this context, the task of a planner is to find a sequence
of decisions that brings timelines into a final desired set
always satisfying the domain specification.

We assume that the temporal features we want to repre-
sent as state variables have a finite set of possible values
assumed over temporal intervals. The temporal evolu-
tions are sequences of operational states — i.e., stepwise
constant functions of time. Operational constraints spec-
ify which value transitions are allowed, the duration of
each valued interval (i.e., how long a given operational
status can be maintained) and synchronization constraints
between different state variables.

More formally, a state variable is defined by a tuple
(V,T,D) where: (a) V = {v1,...,v,} is a finite set of
values; (b) T : V — 2V is the value transition function;



(©) D :V — N x Nis the value duration function, i.e. a
function that specifies the allowed duration of values in V
(as an interval [Ib, ub]). (b) and (c) specify the operational
constraints on the values in (a).

Timeline specification for the robotic domain. To ob-
tain a timeline-based specification of our robotic domain,
we consider a set of state variables to represent time vary-
ing features for the temporal occurrence of navigation,
PTU, camera, and communication operations as well as
communication opportunities. In this regard, we con-
sider five different state variables, i.e., RobotBase, Pla-
tine, Camera, Communication and Orbiter Visibility. In
Figure 2, we detail the values that can be assumed by
these state variables, their durations and the allowed value
transitions in accordance with the mission requirements
and the robotic physics. Notice that dotted arrows repre-
sent uncontrollable transitions.
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Figure 2. Value transitions for state variables describing the
robotic platform activities and the orbiter visibility events (Tem-
poral durations are stated in seconds)

The robotic platform can be in a certain position (A#(x,y))
or moving to a certain destination (GoingTo(x,y)). The
PTU can assume a PointingAt(pan,tilt) value if pointing
a certain direction, while, when moving, it assumes a
MovingTo(pan,tilt) value. The camera can take a pic-
ture of a given object in a position (x,y) with the PTU
requested in (pan, tilt) and store it as a file in the on-
board memory (TakingPicture(file-id, x, y, pan, tilt)) or
be in an idle state (Camldle()). Similarly, the communi-
cation facility can be operative and dumping a given file
(Communicating(file-id)) or be in an idle status (Comml-
dle()). Finally, the Orbiter Visibility state variable main-
tains the visibility of the orbiter and its allowed values,
i.e., Visible and Not-Visible, representing external con-
straints for the planning problem. In particular, these
values represent contingent communication opportunities
for the rover.

Synchronizations for the robotic domain. In
timeline-based planning, operational constraints in the
domain are described by means of Synchronizations.
Indeed, synchronizations specifies temporal and causal
constraints among values taken over different timelines
(i.e., patterns of legal occurrences of operational states
across different timelines).

The Figure 3 exemplifies the use of synchronizations in
our case study domain. The following synchronizations
are represented in the figure: the PointingAt(0,0)? value
must occur during a GoingTo(x,y) value (C1); the Af(x,y)
and PointingAt(pan,tilt) values must occur during a Tak-
ingPicture(pic,x,y,pan,tilt) value (C2); the Communicat-
ing(pic) must occur after a TakingPicture(pic,x,y,pan,tilt)
(C3); the At(x,y) value must occur during a Communicat-
ing(file) (C4); the Visible value must occur during a Com-
municating(file) (C5). (C1) and (C4) represent safety
conditions: when moving or communicating the rover
must be in a safe configuration (PTU unit in (0,0) when
moving or not moving when communicating). (C2) and
(C5) represent temporal synchronizations among differ-
ent activities (to take a picture the rover must be in the
proper place and configuration in the right time (C2) and
dumps must occur when the orbiter is visible (C5)). (C3)
describes a pure cause-effect relationships between two
activities: pictures must be dumped once stored.
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Figure 3. An example of timeline-based plan with synchroniza-
tions in our case study domain.

In addition to those synchronization constraints, the time-
lines must respect transition constraints among values
and durations for each value specified in the domain (see
again Figure 2).

Timeline-based planning. In timeline-based planning,
goals are expressed as desiderata of timeline values in
temporal intervals and the task of the planner is to build
a set of timelines describing valid sequences of values
that achieve such desiderata. Hence, a plan is a set of
timelines, that is a sequence of state variable values, a set
of ordered transition points between the values and a set
of distance constraints between transition points. When
the transition points are bounded by the planning process
(lower and upper bounds are given for them) instead of
being exactly specified, as it happens in case of a least
commitment solving approach for instance, we refer to
timelines as time flexible and to plans resulting from a set
of flexible timelines as flexible plans.

The process of solution extraction from a plan is the pro-
cess of computing (if exists) a valid and completely spec-
ified set of timelines from a given set of time-flexible
timelines. A solution is valid with respect to the associ-
ated domain theory if every synchronization is satisfied.

3(pan,tilt) = (0,0) is assumed as the reference/safe position for the
PTU



Plan execution. During plan execution, the plan is un-
der the responsibility to the executive system (recall Fig-
ure 1) that forces value transitions over timeline dispatch-
ing commands to the functional layers while continu-
ously accepting observations and, thus, monitoring the
plan execution. A well known problem with execution
is that not all the value transitions are under responsibil-
ity of the executive but event exists that are under con-
trol of nature. As a consequence, an executive cannot
completely predict the behavior of the controlled phys-
ical system because the duration of certain processes or
the timing of exogenous events is outside of its control. In
such cases, the values for the state variables that are un-
der the executive scope should be chosen so that they do
not constrain uncontrollable events. This is the control-
lability problem defined, for example, in [26] where con-
tingent and executable processes are distinguished. The
contingent processes are not controllable, hence with un-
certain durations, while the executable processes are fully
under the control of the executive system. Controllability
issues underlying a plan representation have been formal-
ized and investigated for the Simple Temporal Networks
with Uncertainty (STNU) representation in [26] where
basic formal notions are given for dynamic controllabil-
ity (see also [22]). In [7], the controllability problem has
been extended for the timeline-based framework. The dy-
namic controllability is a quite important property that
guarantees robust execution against temporal uncertainty
and not fully controllable systems.

4. TIMED GAME AUTOMATA AND REACHA-
BILITY GAME

A TGA [20] is an automaton equipped with clocks that
grow continuously in time while the automaton is in any
of its locations. The values of the clocks may interfere
with the transitions by appearing in guards, which are the
enabling conditions of the transitions. Thus, a transition
may take place, for example, only if some clock value
has passed a certain threshold. Transitions may as well
reset clocks. Moreover, state invariants may be defined
constraining the temporal behaviors. Finally, a set of ac-
tions is considered to label transitions. Actions can be
either controllable or uncontrollable. This defines a two
player games with on one side the controller (mastering
the controllable transitions) and on the other side the en-
vironment (mastering the uncontrollable transitions). A
TGA state is identified by the location of the TGA and
the valuation of the clocks (i.e., a value assignment for
each clock). An admissible state is a state respecting all
the invariants. A TGA can either let time progress or do
a discrete transition and reach a new location. A run of
a TGA is a finite or infinite sequence of alternating time
and discrete transitions. A network of TGA (n'TGA) is a
finite set of TGA evolving in parallel with a CCS style
semantics for parallelism. Namely, at any time, only one
TGA in the network can change location, unless a syn-
chronization on labels takes place. In the latter case, the
two automata synchronizing on the same label move to-
gether. Note that time does not elapse during synchro-
nizations.

Given a TGA A and three symbolic state configurations
Init, Safe, and Goal, the reachability control problem [3]
or reachability game RG (A, Init, Safe, Goal) consists in
finding a strategy f such that A starting from Init and su-
pervised by f generates a winning run that stays in Safe
and enforces Goal. A strategy is a partial mapping f from

the set of runs of A starting from /nit to the set of control-
lable actions plus the special action A (a special symbol
that denotes ’do nothing and just wait”). For each state
s in a finite run of A, the strategy f may say (i) no way
to win (f(s) is undefined), (ii) do nothing, just wait (f(s)
= \), or (iii) execute the discrete, controllable transition
labeled by [ ( f(s) = [). The restricted behavior of a
TGA A controlled with some strategy f is defined by the
notion of outcome. The outcome of a strategy f in A is
defined as the subset of all the possible runs of A that can
be generated executing the uncontrollable actions or the
controllable actions provided by the strategy f. A strat-
egy f is a winning strategy if all runs in the outcome of
f reach the goal configuration while enforcing the safe
configuration.

5. THE KEEN ENVIRONMENT AND ITS USE

Validation and Verification techniques may represent a
complementary technology, with respect to P&S, and
can be used to obtain richer software development en-
vironments able to synthesize a new generation of ro-
bust problem-solving applications [9]. In fact, develop-
ing a P&S application requires several design phases and
V&V support tools can alleviate the work of knowledge
engineers deputed to build such applications. In partic-
ular we are here considering the perspective of a ground
segment mission environment within which plans for a
remote device are prepared and tested before upload. In
particular we are envisaging the use in a robotic mission
as the one sketched in section 2. After quite an amount of
work in developing specific applications for ESA (e.g.,
[5, 2, 6]) and in creating the APSI-TRF infrastructure
for P&S [11] in more recent work we have dedicated
attention to knowledge engineering supports for differ-
ent users and in particular on the issue of validating the
work of a planner developed within such an infrastruc-
ture. Our starting point has been to re-creating within the
APSI-TRF structured style of implementation a general
purpose timeline planner like OMPS [15]. The use of the
APSI-TRF is shown in the central block of Figure 4: the
Component-Based Modeling Engine made available by
the TRF coupled with a search engine (called generically
Problem Solver in the figure) developed on purpose cre-
ates a complete planner able to synthesize timeline-based
solutions for planning problems. Additional flexibility is
offered by two input languages (the Domain Description
Language and Domain Description Language) that offer
flexibility to the use of the tool. Finally, a Plan Execution
block has been considered. This is based on a Dispatch
Service to send control commands to the controlled sys-
tem (the robot) and an Execution Feedback module that
allows to receive the telemetry from actual plan execution
on physical system. A possible instance of the Plan Exe-
cution layer is the one described in [14] but we can eas-
ily taylor such block for different ground segment needs.
Around this core tool we have built additional engineer-
ing services based on our recent work on V&V issues.

In what follows, we present a prototype of the Knowl-
edgE ENgineering (KEEN) design support system which
is composed of different V&V modules implementing
different design support functionalities (see Figure 4).

A TGA Encoding module is deputed to implement a
translation from P&S specification to TGA. The encod-
ing method is the same presented in [7] allowing to share
the same formal results presented in [8, 10]. The other
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Figure 4. The KnowledgE ENgineering (KEEN) Design Support System.

modules rely on that encoding. A Domain Validation
module is to support the model building activity provid-
ing a tool to assess the quality of the P&S models. A
Planner Validation module is deputed to assess the P&S
solver with respect to system requirements. In this regard,
two sub-modules are needed: Plan Verification to verify
the correctness of solution plans and Plan Validation to
evaluate their goodness. Then, a Plan Execution Valida-
tion module is to check whether proposed solution plans
are suitable for actual execution or not. To implement the
modules functionalities, verification tasks are performed
by means of UPPAAL-TIGA [1]. This tool extends UP-
PAAL [19] providing a toolbox for the specification, sim-
ulation, and verification of real-time games. As a result,
UPPAAL-TIGA is the core engine of the KEEN design
support system. In the following, each module is de-
scribed providing also a formal account of the approach.

TGA Encoding. As discussed in Section 4, TGA are
particularly suitable for modeling real-time systems and
controllability problems, considering uncontrollable ac-
tivities as adversary moves within a game between the
controller and the environment. The KEEN TGA encod-
ing module translates flexible timeline-based plans, state
variables and domain theory descriptions into set of TGA
(nTGA) as in [7]. To this end, the following translations
are needed.

First, a flexible timeline-based plan P is mapped into a
nTGA Plan. Each timeline is encoded as a sequence
of locations (one for each timed interval), while guards
and invariants are defined according to lower and up-
per bounds of flexible timed intervals. In Figure 5, the
UPPAAL-TIGA model of a possible flexible plan for the
robotic case study is depicted. Notice that straight and
dotted arrows have been used to represent, respectively,
controllable and uncontrollable transitions.
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Figure 5. A TGA model representing a flexible plan for the
robotic domain

Then, the related set of state variables SV is mapped into
a nTGA StateVar. Basically, a one-to-one mapping from
state variables descriptions to TGA is performed. As an
example, the UPPAAL-TIGA specification for the Robot-
Base state variable is given in Figure 6. In this encoding,
the flexible plan view of the world is represented by par-
titioning possible value transitions into controllable and
uncontrollable ones. This is necessary to model the ac-
tual context in which the plan should be executed. For
instance, the Orbiter Visibility state variable is consid-
ered as completely uncontrollable. Finally, an Observer
automaton is introduced in order to check for value con-
straints violations as well as synchronizations violations.
In particular, two locations are considered: an Error lo-
cation, to state that constraint/synchronization has been
violated and a Nominal (OK) location, to state that the
plan behavior is correct. In Figure 7, an excerpt of the
TGA monitor specification is provided. In this kind of
approach, as usual, the Observer is defined as fully un-
controllable.

The nTGA P L composed by the set of automata State Var



process RobotBase () |
state GoingTo {clockRobotBase <= 30}, At;
init At;
trans
GoingTo -u-> At {guard clockRobotBase >= 10;
sync pulse_RobotBase_At?; assign clockRobotBase := 0,
RobotBaseGoingTo := false, RobotBaseAt := true; },
At -> GoingTo {guard clockRobotBase >= 1;

sync pulse_RobotBase_GoingTo?; assign clockRobotBase := 0,
RobotBaseGoingTo := true, RobotBaseAt := false; };

Figure 6. TGA specification for the “RobotBase” state vari-
able

process monitor() { state OK,ERR;
init OK;

trans

OK -u-> ERR {guard (stepRobotBase == 0) and not (RobotBaseAt);},
OK -u-> ERR {guard (stepRobotBase == 1) and not (RobotBaseGoingTo);},
OK -u-> ERR {guard (stepRobotBase == 2) and not (RobotBaseAt);},

// == DT --

OK -u-> ERR {guard
and

OK -u-> ERR {guard
and

clockRobotBase > 0) and (clockPlatine > 0)
RobotBaseGoingTo) and not (PlatinePointingAt);},
clockCamera > 0) and (clockRobotBase > 0)
CameraTakingPicture) and not (RobotBaseAt); In

(
(
(
(

ERR -u-> ERR { };

Figure 7. The “Observer” TGA specification

U Plan U {Apps} models flexible plan, state variables
and domain theory descriptions. In [8], the following has
been demonstrated:

Theorem 1 The nTGA PL describes all and only the be-
haviors implemented by the flexible plan P.

Thus, the KEEN TGA Encoding module provides a
proper description of P&S specifications in terms of
TGA. Such encoding is exploited by the other KEEN
modules to implement their functionalities.

Domain Validation. In a similar way to [18], the TGA
encoding can be exploited in order to validate planning
domains with respect to, e.g., undesired behaviors, safety
properties, etc. In fact, domain validation is the process
of assessing domain models. In this regard, the KEEN
Domain Validation module is to support knowledge en-
gineers in the process of eliciting, refining and correct-
ing the domain model w.r.t. safety- and system-critical
requirements. To implement such a functionality, the
nTGA Dom = StateVar U {Aops} can be considered. In
fact, the following can be obtained as a result of Theorem
1:

Proposition 1 The set of TGA Dom = StateVar
U {Aows} represents all and only the possible behaviors
described by the associated planning domain.

Thus, given a system property [, suitably represented by
a CTL formula ¢, verifying ¢ in Dom corresponds to val-
idate the planning domain with respect to the same prop-
erty F'. That is, it is possible to check the correctness of
the domain asking UPPAAL-TIGA to verify the formal
property ¢ over the nTGA Dom.

Among the most relevant properties to be checked, the
violation of mutual exclusion of timeline’s allowed val-

ues is very important. In fact, such test is useful for de-
tecting an incomplete specification of synchronizations
in the planning domain theory. For instance, if success-
fully checked, the property (E< RobotBase.GoingTo and
Communication.Communicating), which reads there ex-
ists a trace where at some point in time the rover is mov-
ing while communicating, represents a flaw in the do-
main. That is, the (C4) domain constraints might be vi-
olated. Of course, the planning model defined in Sec-
tion 3 does not satisfy such a property (i.e., the domain
is correct) but, in general, if this kind of test succeeds,
then knowledge engineers might have defined wrong or
incomplete synchronizations in the planning domain.

The reachability test is another important check. That is,
the reachability of each allowed value in the domain is
checked starting from one specific initial state or from
each possible initial state. As an example, the Com-
munication value should be reachable after a Taking-
Picture. This corresponds to check the following for-
mula: AO Camera.TakingPicture and E& Communica-
tion.Communicating. Performing this test allows to ver-
ify whether the model guarantees that is always possible
to communicate after a picture has been taken. In gen-
eral, finding that a certain value is unreachable may sug-
gest that inconsistent specifications are contained in the
planning domain.

Planner validation. In order to validate the planner, we
are interested in checking that the planning engine works
properly. In this sense, the planner design activity should
be supported by providing effective methods to validate
the solver and the generated solutions. One aspect of its
correctness is the capability of generating a correct plan
whenever there is one. In addition, also the quality of
generated plans should be checked.

For this purpose, two important submodules are required:
Plan Verification, which systematically analyzes the so-
lutions proposed by the planner itself, and Plan Vali-
dation, which allows to assess the plan quality. Er-
rors or negative features possibly found in the generated
plans could help knowledge engineers to revise the model
(back to the domain validation step), the heuristics, or the
solver. Furthermore, plan V&V is also to analyze the
produced plans with respect to execution controllability
issue. As for the domain validation module, the KEEN
Plan Verification and Plan Validation modules have been
implemented through the same verification method pre-
sented above. In fact, considering a Reachability Game
RG(PL, Init, Safe, Goal) where Init represents the set of
the initial locations of each automaton in P L, Safe is the
Observer’s OK location, and Goal is the set of goal loca-
tions, one for each automaton in Plan, the following has
been demonstrated ([8]):

Theorem 2 Given RG(PL, Init, Safe, Goal) defined
considering Init, Safe and Goal as above, winning the
game implies plan validity for P.

Plan verification. To implement the Plan Verification
module, the RG(PL, Init, Safe, Goal) defined above can
be solved by means of UPPAAL-TIGA. Then, to solve
the reachability game, we ask UPPAAL-TIGA to check
the CTL formula ® = A [ Safe U Goal] in PL. In fact,



this formula states that along all the possible evolutions,
‘PL remains in Safe states until Goal states are reached.
Thus, if the solver verifies the above property, then the
flexible temporal plan is valid. Whenever the flexible
plan is not verified, UPPAAL-TIGA produces an execu-
tion strategy showing one temporal evolution that leads
to a fault. Such a strategy can be analyzed in order to
check for plan weaknesses or for the presence of flaws in
the planning model.

In order to show the feasibility of the application of such
a method to the robotic case study introduced in Section
2, we show the verification method performance present-
ing and discussing some experimental results collected
by verifying the flexible plans generated in different ex-
ecution contexts obtained varying both plan horizon and
temporal flexibility settings. In particular, we consider
the following settings:

— Flexibility. For each activity (i.e., GoingTo, Mov-
ingTo, TakingPicture, Communicating), we set a
fixed minimal duration, but we allow temporal flex-
ibility on the activity termination. More precisely,
the end of each activity has a tolerance ranging from
10 up to 20 seconds. For instance, considering 15
seconds of temporal flexibility for the termination
of the TakingPicture activity allows durations within
[10,25] seconds. Such interval represents a temporal
uncertainty introduced in the system.

— Horizon. We consider flexible plans with a horizon
length ranging from 1 to 20 picture requested (i.e.,
from 2 minutes up to about 1 hour).
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Figure 8. Verification tool performances varying tempo-
ral flexibility and planning horizon

As a result, verification time is linear in the size of the
plan horizon, while increasing temporal flexibility does
not affect the overall performance (see Figure 8).

Plan validation. It is worth reminding that while ad-
dressing real applications, besides synchronization con-
straints we may need also to take into account other con-
straints which cannot be naturally represented as tempo-
ral synchronizations among specific activities. Neverthe-
less, these constraints, that we call relaxed constraints,
define a kind of desiderata on the global behavior of
the generated plan. These requirements are not explic-
itly represented in the planning model as structural con-
straints, but rather treated as meta-level requirements to
be enforced by the planner heuristics and optimization
methods. Then, to implement the Plan Validation mod-
ule, it is possible to apply the same verification process as

in plan verification, verifying not only the plan correct-
ness, but also other domain-dependent constraints, i.e.,
the relaxed constraints. In general, the additional prop-
erties to be checked carry a low additional overhead to
the verification process. Thus, the verification tool per-
formances are not affected.

In the robotic case study, we are able to successfully
check that no unnecessary tasks have been planned. For
instance, a communication task should be considered
only if a picture is taken. Also, unnecessary robot naviga-
tion can be considered. In fact, the plan should not con-
sider GoingTo(x,y) task unless that a picture is required
for such a location. In general, the execution of such
tasks may affect the overall mission performance. Thus,
this kind of validation results to us as a really important
step in assessing the plan quality, that is, the planner ef-
fectiveness.

Plan execution validation. In general, plan validation
does not guarantee the robustness of plan execution, in-
deed, a valid plan can be brittle at execution time due
to environment conditions that cannot be modeled in ad-
vance (e.g., disturbances). The KEEN system can also be
deployed for plan execution validation.

Figure 9. A plan execution simulated by UPPAAL-TIGA

In particular, the KEEN Plan Execution Validation mod-
ule allows to simulate plan executions through UPPAAL-
TIGA ingesting both controllable and uncontrollable
events. Indeed, the UPPAAL-TIGA Simulator allows to
simulate the TGA model based on concrete trace that a
user can choose or that can be randomly generated. In
this respect, the Simulator is able to support users to se-
lect transitions to fire and, then, at what time they will
be fired. Figure 9 shows the UPPAAL-TIGA simulator
graphical elements.

The UPPAAL-TIGA simulator is extremely useful at de-
bug time to understand why a winning condition cannot
be met, i.e., why a flexible plan fails in reaching a de-
sired goal. Moreover, if a flexible plan cannot be success-
fully verified, UPPAAL-TIGA allows also to simulate the
run of a dual strategy allowing to test intuitive strategies
or to discover tactics used by the environment to defeat
the controller. In other words, it is possible to get ev-
idences of unforeseen behaviors or unexpected events.
After a flexible plan has been verified by UPPAAL-
TIGA through the verification method discussed above,
the Simulator can also be used to show the dynamically



controllable strategy guaranteeing goals reachability and
avoiding synchronization violations. That is, it is also
possible to validate the execution strategy of the plan.

6. CONCLUSIONS

As described in several recent papers, e.g., [9], we have
the goal of investigating the common ground between
P&S and V&V. In particular the possible methodological
integration is seen as beneficial to create a new generation
of knowledge engineering environments.

This paper introduces our current software environment
for supporting the development of plan-based robotic
control software. In particular, we have shown how
generic V&V tools and specific research results on the
verification of timeline-based plans can be contextualized
to create a larger environment to support on-ground plan-
ning and execution for a robotic mission.
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