
CONTINUOUS PLANNING AND EXECUTION WITH TIMELINES

Amedeo Cesta1, Simone Fratini2, Andrea Orlandini1, and Riccardo Rasconi1

1CNR – Consiglio Nazionale delle Ricerche, ISTC, Rome, Italy – name.surname@istc.cnr.it
2ESOC-ESA – European Space Agency, Darmstadt, Germany – simone.fratini@esa.int

ABSTRACT

Planning systems need to be endowed with some addi-
tional features to cope effectively with execution: e.g.,
the ability to keep the plan database updated with re-
spect to the actual feedbacks provided by the controlled
system, to mention but one. In this paper, we identify
a set of noteworthy planning and execution open issues
relatively to the timeline-based planning approach. We
address those issues presenting a domain independent
deliberative system, implemented on top of the APSI-
TRF, the APSI Timeline-based Representation Frame-
work, extended with timeline dispatching and execution-
supervision capabilities so as to allow continuous plan-
ning and closed-loop re-planning activities. Some on-
going research directions are also briefly introduced.

Key words: Timeline-based Planning and Execution,
Model-based Control, Planning and Scheduling.

1. INTRODUCTION

Deep space and remote planetary exploration missions
are characterized by severely constrained communication
links, limited in communication window durations and
data transmission rates. Then, controlling remote space-
crafts for reliably conducting scientific and engineering
operations represents a challenging issue. This is not
only because fast reaction is sometimes needed, but also
because, without access to live data, decisions made re-
motely by human operators may be based on obsolete
information, which could be not suitable and even haz-
ardous to the system. Planning and execution systems
constitute a suitable solution, but the ability of dealing
with time uncertainty and to reason over metric time and
resources is required. Then, deliberation is intrinsic, but it
also requires monitoring and immediate reactive response
to evolving conditions that a remote system has to face.

The GOAC [5] project was an ESA initiative aimed at
defining a new generation of autonomous controllers to
support increasing levels of autonomy for exploration
space robotic tasks achievement. In particular, goals of
the GOAC architecture are to: generate on-board activ-
ity plans, monitor and dispatch activities during execu-
tion, and recover from off-nominal conditions. The pur-
sued GOAC solution has been designed as a principled
integration of different software solutions: (1) a timeline-
based deliberative layer implemented on top of the APSI

Timeline-based Representation Framework (APSI-TRF)
[11], (2) an executive layer based on T-REX [23] devised
at MBARI, and (3) a functional layer which integrates
the GenoM and BIP systems devised at LAAS and VER-
IMAG, respectively [4].

Within the GOAC architecture, a functional layer is
tightly integrated with a decisional layer, both of which
have a rich history with deployments in complex, real-
world environments. The decisional layer is usually con-
stituted by a hierarchy of deliberative reactors where
higher levels deal with long-term mission plans while
lower levels are increasingly reactive. The functional
layer is purely reactive with fast reaction times necessary
for failure recovery and low-level command dispatch-
ing. Additionally, a verification tool ensures a correct-
by-construction functional layer implementation, with re-
spect to properties such as deadlock-freedom.

In this work, we identify a set of noteworthy open is-
sues in planning and execution systems relatively to the
timeline-based planning approach: the dynamic manage-
ment of goals during planning and execution, the assess-
ment of the status of partially executed goals and the dy-
namic dispatching of commands. Then, we describe a
timeline-based, domain independent deliberative control
system, called the “APSI Deliberative Reactor”1, imple-
mented within the GOAC project and addressing the con-
sidered open issues. In particular, we present a proactive
control system entirely based on the ESA APSI-TRF tech-
nology. The APSI Deliberative Reactor is constituted by
(i) an execution module, to dispatch planned timelines,
to supervise their execution status and to entail contin-
uous planning and re-planning, (ii) a new timeline-based
planning module, called the “AP2 planner”, to model and
solve planning problems.

The APSI Deliberative Reactor is devised to be domain
independent, i.e., providing a suitable timeline-based de-
scription model of the system to be controlled and a set
of temporal goals to be achieved, it fully implements all
the functionalities required to plan for goals, to dispatch
planned values to the controlled system and to supervise
plan execution ingesting the telemetry of the controlled
system. One of the main advantage of being domain in-
dependent entails both the capability of the deliberative
reactor to plan for user goals and to dynamically react to

1The term Reactor is a legacy from T-REX. It is worth also saying
that the initial motivation of our work is to design a smooth integra-
tion with the T-REX executive that in its original implementation uses
a different timeline-based planner.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PUblication MAnagement

https://core.ac.uk/display/37835437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

off-nominal conditions detected from the controlled sys-
tem telemetry, as well as a twofold flexibility: in being
used to control different systems (by substituting the con-
trolled system domain description) and in the capability
of achieving different classes of user goals for the same
system (by substituting the controller model).

Additionally, it is worth point out that such approach al-
lows to implement the controller system as a hierarchi-
cal composition of a set of deliberative reactors to refine
high levels goals into more detailed low level plans. In
this case, the higher level reactors generate goals for the
lower level reactors as well as telemetry from lower lev-
els reactors represents plan achievement information for
higher levels reactors. In the GOAC project, the executive
layer, based on the T-REX architecture, uses such a hierar-
chical configuration of reactors (see [5] for more details).

The paper is structured as follows: Section 2 discusses
the related works while in Section 3, a set of planning
and execution open issues are discussed. Then, in Sec-
tion 4, the APSI Deliberative Reactor is presented as well
as its capabilities are discussed. Section 5 presents the de-
ployment of the APSI-TRF in the GOAC scenario. Finally,
Section 6 briefly presents current research efforts aiming
at further extending the APSI-TRF and its capabilities.

2. RELATED WORKS

The dominant approach for building control agent sys-
tems utilizes a three-layered architecture [14]. Most of
the traditional autonomous control architectures follow
this approach, and they mostly differ in the choice of
which layer dominates over the others.Some of the most
relevant works on three-layered control concerns: IPEM
[2], CPEF [20], the LAAS Architecture [1] (exploiting
the IxTeT-eXeC [18]), the Remote Agent Experiment
[16] and ASE [12]. Each layer (i.e., Functional, Execu-
tive and Planning/Scheduling), generally requires differ-
ent reasoning technologies and representations, and their
overall integration is usually difficult to achieve and test.
Indeed, many of these systems utilize very different tech-
niques for specifying each layer in the architecture, which
results in an unnecessary duplication of both efforts and
information. As a further example, the fact that the plan-
ning cycle is often monolithic makes scalability a great
concern indeed; with these approaches, obtaining fast re-
action times when necessary is often impractical.

More recent approaches, such as CLARAty [21], try to
overcome some of the these drawbacks using an archi-
tecture with two layers: a functional layer and a deci-
sion layer. The decision layer integrates planning and
execution through a tightly-coupled database that syn-
chronizes planning and execution data from two differ-
ent representations: one from CASPER [17] (planning)
and the other from TDL [24] (execution). Another two-
layer architecture is the model-based approach pursued
by Williams [25]. This framework consists of a Reac-
tive Model-Based Programming Language (RMPL) and
an executive (Titan). RMPL is a rich language which pro-
vides a framework for constraint-based modeling, as well
as a suite of reactive programming constructs. RMPL ab-
stracts the state of the functional level so the programmer

can reason in terms of state variables not directly corre-
sponding to observable or controllable states. Anyway,
it is not clear in this approach how the underlying cost
of diagnosis/planning can be controlled. Finally, in [15],
the automatic controller synthesis has been addressed ex-
ploiting reactive planning in order to implement intelli-
gent control in hard real-time. In particular, CIRCA in-
corporates model-checking into the control architecture,
does abstraction-based controller synthesis, and extends
the modeling capabilities for hierarchical control.

IDEA [19] was the first agent control architecture utiliz-
ing a collection of controllers, each interleaving planning
and execution in a common framework. Main drawbacks
of IDEA are the lack of: (1) a clear conflict-resolving
policy between controllers, and of (2) an efficient (e.g.,
non-exponential) planning algorithm for integrating the
controller’s current state. In order to make the approach
effective in practical cases, an efficient state synchro-
nization algorithm for partitioned structures is fundamen-
tal. The Teleo-Reactive Executive (T-REX) [23] was de-
signed to overcome these restrictions using a collection of
controllers (reactors) implemented as different instances
of the EUROPA2 planner [13]. The novelty of T-REX re-
lies in its capability to enforce a systematic infrastructure
to define the interactions between the reactors. Then, pro-
viding a formal framework for both state-synchronization
and plan-dispatching critical primitives, T-REX ensures a
correct behavior of the agent and makes the approach ef-
ficient and scalable in practice.

3. PLANNING AND EXECUTION ISSUES

Generally speaking, a planning and execution system
should embrace the philosophy that plans are dynamic,
open-ended artifacts that must evolve in response to an
ever-changing environment. In particular, plans and ac-
tivities are to be updated in response to new information
and requirements to ensure that they remain viable and
relevant [20]. In this regard, a planning and execution
system should perform several tasks in order to guarantee
not only that a safe and correct plan can solve the given
planning problem, but that the system is able also to actu-
ally execute the plan as well as monitoring its execution.

The T-REX system allows to (i) enforce the synchro-
nization of the current solution plan database with ob-
servations dynamically gathered from the actual system,
(ii) dynamically generate plans for user goals and (iii)
dispatch commands accordingly with its internal status.
Nevertheless, some aspects are still far to be addressed.
Namely, the following issues are still open:

Dynamic management of goals. As the planning and
execution system should enable continuous (re)planning
in a dynamically evolving situation, the system should be
able to manage the dynamic flow of incoming goals. In
fact, additional goals can be sent to the control system
while executing already generated plans. Then, the sys-
tem should be able to dynamically manage goals in an
effective way enforcing the agent capability of fulfilling
all the goals as well as ensuring the overall plan stability.
Moreover, once an inconsistency is detected, the system

should be able to build a new safe initial state and then
ask the planner to provide a new plan for the original user
goals (if still reachable). Then, an assessment is required
in order to decide which goals are to be maintained and
which goals are to be discharged.

Assessing goals execution status before recalling.
Strictly related to the above aspect, another important
point concerns the system capability of recalling the
(pending) commands not yet executed. Indeed, evaluat-
ing whether a goal is still pending is not a trivial issue.
In fact, it is not easy to assess which is the status of a
dispatched command. That is, can be recalled a goal that
is actually in execution? Can be recalled a goal that is
related with some sub-goals that have been already exe-
cuted? Thus, the system should be able to decide which
is the actual execution status of a goal in order to take the
more proper decision on goal recall.

Dynamic timelines execution. Once a planner has gen-
erated a temporal plan, it is up to the executive system
to decide, at run-time, how and when to execute each
planned activity preserving both plan consistency and
controllability. Such a capability is even more crucial
when the generated plan is temporally flexible being a
flexible temporal plan partially specified. Such a plan
captures an envelope of potential behaviors to be instan-
tiated during the execution taking into account tempo-
ral/causal constraints and controllable/uncontrollable ac-
tivities and events.

4. PLANNING AND EXECUTION WITH THE
APSI FRAMEWORK

Design and implementation of advanced Planning and
Scheduling software for space applications is an expen-
sive activity involving a certain amount of developing ef-
fort and risk. For instance, the software may fail to meet
operational requirements (performance issues), and/or
may fail to capture all the essential aspects of the problem
(modeling issues).

With the aim of improving the process of tool design and
deployment, taking advantage of state of the art planning
and scheduling technology, an ESA initiative, spanning
[2007-2009], led to the development of a software plat-
form, called the APSI Timeline Representation Frame-
work, shortly APSI-TRF. The aim of the framework is
to support developers and engineers to cope with both
software deployment efforts and modeling risks men-
tioned above. The APSI-TRF simplifies the design and
developing effort by providing a library of timeline-based
planning and scheduling domain independent solvers and
enhancing the robustness of the interactions among the
specific solvers implemented on top of the framework
by providing a uniform representation of the solution
database. Modeling risks are reduced because the use of a
framework that standardizes and simplifies the process of
application deployment fosters a rapid prototyping cycle,
which directly helps the users to take into account their
own feedback during the application design and because
common Domain and Problem definition languages are
available and reusable with all the applications deployed
within the framework.

In order to implement an effective planning and execution
system as well as to cope with the open issues discussed
in the previous section, a new intelligent components has
been defined by means of two different modules designed
and implemented on top of the APSI-TRF: a planner to
generate flexible plans, namely the AP2 planner, and a
module to entail and supervise the execution of planned
timelines, namely the APSI Deliberative Reactor. The ar-
chitecture of the interactions between these modules is
shown in figure 1.

Decisions
Constraints

Time & Parameter
Information

Planning
 Problem

Plan Incoming
Observations

Synchronization
Signal

Model
Description

APSI-TRF
APSI Timeline Representation Framework

(Solution Maintenanance Database)

AP2

Planner

APSI Deliberative

Reactor

Outgoing
Goals

Incoming
Goals

Outgoing
Observations

Figure 1. Architecture.

In this architecture, the APSI-TRF plays the role of the
solution maintenance database, the AP2 planner is the
main solver in charge of producing timelines to achieve
goals and the deliberative reactor, that interacts with the
APSI-TRF to supervise the execution of the plans. The re-
actor is in charge of three main tasks: enforcing the syn-
chronization of the solution database with observations
in input, using the planner for planning and re-planning
and dispatching commands accordingly with its internal
status. The planner is invoked by the deliberative reac-
tor that provides problems, either to achieve user goals
(planning) or to fix the plan in execution in case of need
(replanning), and collect solutions to dispatch. In order
to address the issues presented in Section 3, the Deliber-
ative reactor is endowed with four ad-hoc policies: (i) a
Goal Planning Policy, to dynamically manage goals; (ii) a
Goal Achievement Policy, to assess the status of pending
goals according to their actual execution status; (iii a Goal
Replanning Policy, to decide which goals are to be main-
tained for the replanning phase; (iv) a Goal Dispatching
Policy, to execute plans ensuring plan consistency and
controllability.

The AP2 generates time flexible plans as a set of timelines
where the transitions between values are not fixed but
temporally related with a set of constraints. Each transi-
tion as well as temporal relations with other timelines are
defined with lower and upper bound for the planned time.
These planned relations must be achieved to guarantee
the validity of the plan. Any transition out of planned
bounds or violating the relations is not valid and a plan
execution failure must be taken into account. Timelines
and constraints are stored in the solution database which
is, must be taken into account, a dynamically evolving
database because concurrently with the planner the reac-
tor modifies the database during execution to synchronize
the status of the database with the status of the real world
(this process is detailed below).

In this configuration, the planning process take place

within a bounded time window and must be not blocking
for other modules that interact with the solution database
(like the reactor). Planning in a bounded window is
needed to maintain the stability of the part of the plan cur-
rently in execution while the planner’s solving process is
implemented as a sequence of very short reasoning bursts
(a few milliseconds each), so that it can be interrupted
with no side effects on the portion of the timelines in exe-
cution (should synchronization problems occur that sud-
denly require the planner for more urgent duties). This
setting allows the use of the planner without interrupting
concurrent reactor operations.

The reactor module is based on the the principle that the
timelines that constitute the domain are functionally par-
titioned into internal and external. The functional dis-
tinction between internal and external timelines aims at
distinguishing between the timelines that describe the
controller internal status and the timelines that describe
the status of the system that has to be controlled (basically
the distinction between the controller model and the con-
trolled system model). This distinction is important, as
the internal status of the controller can be decided by the
planner (i.e., it will surely be reached as expected), while
the status of the controlled system can only be planned
for by the reactor but there is no guarantee that it will be
actually reached.

Resembling the main T-REX algorithm, the reactor im-
plements a control loop based on the following activities:
(i) receiving the current status of the controlled system
through a series of telemetry values (i.e., actual values
of external timelines, a.k.a. observations); (ii) attempt-
ing to synchronize its own view of these timelines in the
plan database (believed status of the controlled system)
with the observed timeline values; interleaved with this
activity; (iii) the reactor plans for the desired status of the
controlled system required to achieve user goals; (iv) dis-
patches this status by means of goals to be achieved
for external timelines (under the control of other reac-
tors/planners). The actual achievement of these values is
supervised by means of the synchronization process.

Three main modules are in charge of the reactor functions
(see Figure 2): a core module supervises the process,
an observer module synchronizes incoming observations
and a dispatcher module dispatches outgoing goals. A
fourth module, i.e., the AP2 planner, is needed to per-
form planning for user goals 2.

The core module coordinates the other modules while
managing planning processes and synchronization pro-
cedures. The core module implements the user goal life
cycle shown in Figure 3.

With reference to the labels in Figure 2, the goal life
cycle is implemented according to the following steps:
(G1) incoming user goals are collected and buffered into
a goal manager module (the goal is BUFFERED); a “Goal
Planning Policy” (GPP) implemented in the goal man-
ager module controls the progression of the goal from the
status BUFFERED to the status IN PLANNING. The actual
implemented GPP allows either a first-come-first-served

2In the GOAC project the used planner AP2, but this module can in
principle use any APSI-based solver.

!"#$%

&#'#()*

+"*),-.)*/)* 01.2#345)*

6$#'

7'#$89)*

6$#'')*

+"':$143

7'#$89)*

Figure 2. Reactor Architecture

approach, or an early start time schedule approach or a
user-specified policy (G2) the goals selected by the GPP
to be planned next are passed on to the planner. Once
the time allotted for planning has expired, the transi-
tion from IN PLANNING to PLANNED is triggered. (G3)
Once planned, the produced plan is passed on to the Dis-
patcher module. A “Goal Dispatching Policy” (GDP)
implemented by the dispatcher controls the progression
of the goal from PLANNED to DISPATCHED. Two poli-
cies are implemented: the first one dispatches all goals
as earliest as possible (basically as soon as the plan is
available), the other one dispatches goals as latest as pos-
sible (when the time frame for the goal is approaching).
The first approach gives to other reactors more time to
plan for goals, but is more heavy in case of failures be-
cause goals have to be recalled, while the latter approach
is more risky because goals are visible to other reactors
only close to their time frame but in case of failures they
do not need to be recalled. Once selected to be dispatched
by the GDP, the goal is sent to the controlled system.
(G4) the goals come in execution as soon as any of the
values that constitute the plan gets in execution. The Ob-
server module, in charge of supervising the execution of
the reactor timelines, triggers the transition from DIS-
PATCHED to IN EXECUTION. (G5) once in execution, a
“Goal Achievement Policy” (GAP) controls the progres-
sion from IN EXECUTION to EXECUTED. A plan ana-
lyzer module implements the GAP. The module analyzes
the plan and produces a set of goal achievement condi-
tions that the core uses to assess the correct execution of
the plan. Currently there are two goal achievement condi-
tions implemented: “at start” (the goal is achieved when
the selected value appears on the timelines) and “at com-
pletion” (the goal is executed when the selected value dis-

Figure 3. User Goal Life Cycle.

appear from the timelines). Whether a given value model
something that is considered achieved at start (like a goal
“At(x,y)” for instance to move the platform in (x,y) that
can be considered achieved as soon as the value appears)
or at completion (like a goal “TakePicture” for instance
that can be considered achieved only when the process
is finished and the timeline change value) is a piece of
knowledge that only the modeler knows, hence they are
specified in the domain model via tags and used by the
reactor to correctly assess when a given goal can be con-
sidered achieved. (G6) The Observer module, while syn-
chronizing timelines, can force the transition of the goal
from the status IN EXECUTION to ABORTED as soon as
any synchronization problem arises (an incorrect execu-
tion of any of the values of the plan is detected). In such
case, (G7) a “Goal Re-Planning Policy” (GRP) controls
the possible transition of the goal status from ABORTED
to IN PLANNING again. A conflict analyzer modules im-
plements the GRP. The GRP evaluates the situation on the
basis of a set of conflict issues generated by the Observer
module, and can decide if and when to re-plan for the
goal. Currently there are the following general policies
implemented: re-schedule (the goal(s) currently in execu-
tion when the failure occurs are re-scheduled in input as
newly posted goal(s)), re-plan (the goal(s) are re-planned
immediately no matter of other goals eventually in the
buffer), skip (the goal(s) are discarded) or user-oriented.
In the latter case the user can specify which goals have to
be passed to the planner in order of to react to the failure.
When the goal is BUFFERED, IN PLANNING, PLANNED
and DISPATCHED, it can be recalled forcing a transition
into a ABORTED status. The current implementation of
the reactor does not allow to recall a goal once the plan
for that goal is in execution.

The goal life cycle management process is interleaved
with the timeline synchronization process. Again with
reference to the labels in figure 2, the following steps
constitute the reactor synchronization procedure: (S1) in-
coming observations that describe the actual status of the
controlled system are passed on to the Observer module.
(S2) if no synchronization problem arises, the observed
status of the controlled system is compatible with the cur-
rent plan database; the plan database is updated and the
out going controls are produced. (S3) if a synchroniza-
tion problem arises, the current status of both the con-
troller and controlled system is re-calculated, and a list
of conflict issues is generated for the Conflict Analyzer.
(S4) On the basis of the implemented GRP, the module
provides the core with a set of goals to re-plan for (start-
ing from the re-calculated status). Conflicts are detected
by the observer module when (1) an incoming observa-
tion puts an unexpected value on a timeline forcing an
invalid state transition (the controlled system is taking an
unexpected status), (2) an incoming observation forces
a transition on a state that cannot be changed (the con-
trolled system truncates an operation before the planned
time) or (3) when there is no incoming observation but
the current status cannot be maintained (the controlled
system is not blocking an operation at the planned time).

The reactor is designed to be modular and easily exten-
sible with respect to the implemented policies. This fea-
tures makes the behavior of the reactor easily customiz-
able for different domains. In fact, especially for what

the goal planning and re-planning policy (GPP and GRP)
are concerned, it is very difficult to design scenario inde-
pendent policies that are general and efficient at the same
time. Moreover the policies can change also for differ-
ent runs of the same scenario, to achieve different user
needs. Hence a design choice of bet on modularity more
than in implementing fancy embedded policies. The next
section shows an illustrative scenario with an example of
problem dependent policies.

5. AN ILLUSTRATIVE SCENARIO

This section describes an illustrative scenario related to
the GOAC project. First, we describe the DALA plat-
form 3, i.e., the real robotic platform deployed within the
GOAC project. Then, we exploit this scenario in order to
show a possible configuration of the control system.

5.1. The Robotic Platform

DALA is one of the LAAS-CNRS robotic platforms that
can be used for autonomous exploration type of exper-
iments. In particular, it is an iRobot ATRV robot that
provides a large number of sensors and effectors. It can
use vision based navigation (such as the one used by the
Mars Exploration Rovers Spirit and Opportunity), as well
as indoor navigation based on a Sick laser range finder. In
particular, the purpose of the scenario is basically to sim-
ulate as close to a Mars or Lunar rover as possible.

DALA can be considered as a fair representative for a
planetary rover equipped with a Pan-Tilt Unit (PTU), two
stereo cameras (mounted on top of the PTU), a panoramic
camera and a communication facility. The rover is able to
autonomously navigate the environment, move the PTU,
take high-resolution pictures and communicate images to
a Remote Orbiter. Moreover, the rover is also able to
monitor the environment with a panoramic camera for
possibly interesting scientific features. Finally, during the
mission, the Orbiter may be not visible for some periods.
Thus, the robotic platform can communicate only when
the Orbiter is visible.

It has a mission to take high-resolution pictures of dif-
ferent locations with an associated PTU configuration,
which have been requested by scientists. Then, a possible
mission action sequence is the following: navigate (using
a navigation mode compatible with the type of terrain) to
one of the requested locations, move the PTU pointing
at the requested direction, take a picture, then, commu-
nicate the image to the orbiter during the next available
visibility window, put back the PTU in the safe position
and, finally, move to the following requested location.
While navigating, the rover may be requested to check
for unforeseen interesting scientific features. Then, when
such a feature is detected, the robot takes an opportunis-
tic science picture and send this information to the orbiter.
Once all the locations have been visited and all the pic-

3Thanks to Felix Ingrand and Lavindra De Silva from LAAS-CNRS
for the time spent to explain us the details of their robotic platform.

tures have been communicated, the mission is considered
successfully completed. See [5] for more details.

5.2. Control System Configuration

Following [23], a control system configuration has been
designed considering an analogy in human control for the
mentioned rover, then, implementing a suitable control
system as the composition of a set of deliberative reac-
tors. In this regard, some different personnel acting spe-
cific roles can be considered as involved in control tasks:

• A Mission Manager controls the general mission
plan via high-level goals such as where to go and
which areas to inspect looking for interesting ob-
jects.

• A Science Engineer has the control over the scien-
tific needs providing detailed plans for both scien-
tific pictures and environment monitoring activities.

• A Platform Engineer satisfies the rover configura-
tion requests controlling the mobility system and the
PTU while respecting operational constraints as well
as commanding the rover for a successful mission
completion.

• Finally, a Command Dispatcher receives and exe-
cutes the commands requested in order to activate
the functional level behaviors.

Thus, each reactor has a specific functional role over dif-
ferent temporal scopes during the mission. For instance,
while the Platform may need to react immediately to a
potential navigation problem, the Mission Manager re-
actor may need time to deliberate in order to alter mis-
sion objectives in the light of new information. Indeed,
the reactors represent sense-plan-act loops with their own
scopes and view of the world, while interacting with each
other in order to achieve the global mission objectives. In
particular, the Mission Manager’s temporal scope is the
entire mission and potentially it can take minutes to de-
liberate. The Command Dispatcher on the other hand in-
terfaces to the DALA functional layer and needs to have
minimal latency with no deliberation. Finally, the Sci-
ence and Platform reactors have temporal scopes in be-
tween.

More in detail, the Mission Manager reactor is designed
to provide plans for user requested goals, i.e., requests
for (i) scientific pictures in desired locations, (ii) reach-
ing a certain position and (iii) monitoring a certain area.
Then, the timelines planned by the Mission Managers are
dispatched for execution to the Science reactor, in order
to perform scientific photo or to monitor a certain area.
In particular, once a photo has been taken, a communi-
cation request is produced for the command dispatcher.
On the other hand, the request of reaching particular lo-
cations is directly dispatched to the Platform reactor. The
Science reactor is designed to encode take picture and
monitoring requests, in synchronizations of robot move-
ments while looking for additional science opportunities
(possibly triggered by the monitoring task). The Science

reactor is to ask the Platform to reach a particular config-
uration (location and PTU configuration) in order to take
a requested picture as well as implementing specific low-
level goals for the Command Dispatcher to shoot photos
and perform science monitoring. The Platform reactor
is designed to provide navigation independent from the
terrain, enforce PTU positions for robot moves and hide
terrain switch events The produced low-level goals are
to control the mobility system and the PTU of DALA.
The Command Dispatcher encodes the planned values
into actual commands while producing observations for
the low-level timelines relying on the replies provided by
the functional layer.

6. CURRENT WORKS

Currently, new research efforts are aiming at enriching
the APSI-TRF, and the GOAC deliberative functionalities,
with additional capabilities investigating different rele-
vant aspects.

A research line is investigating the exploitation of Val-
idation and Verification techniques. In particular, the
KEEN environment [6] is composed of different V&V
modules implementing design support functionalities. A
Timed Game Automata (TGA) Encoding module is de-
puted to implement a translation from P&S specification
to TGA. The encoding method has been presented in [7]
and shares the same formal results presented in [8, 9].
Then, relying on that encoding and results, the KEEN
system is endowed with: a Domain Validation module,
to support the model building activity providing a tool to
assess models quality; a Planner Validation module, to as-
sess the P&S solver with respect to system requirements;
a Plan Execution Validation module, to check whether
the proposed solution plans are suitable for actual execu-
tion or not. In order to implement the modules function-
alities, the verification tasks are performed by means of
UPPAAL-TIGA [3], a toolbox for the specification, sim-
ulation, and verification of real-time games. Recently, the
KEEN environment has been endowed with a new func-
tionality: a method to synthesize robust plan controllers
for timeline-based flexible plans solving a TGA model
checking problem [22, 10].

Still related to the GOAC project, another initiative just
about to start and, then, currently under development is
the creation of an On-Ground Autonomy Test Environ-
ment (OGATE) 4. This initiative is intended to synthesize
an integrated environment to test features of autonomy
software of different goal oriented controllers and to ex-
plore quantitative comparisons based on accurate exper-
iments and also qualitative analysis allowed by inspec-
tion and visualization of software internal monitors and a
simulation-based verification. Broadly speaking, the sys-
tem will pursue the possibility of performing comparative
tests of different architectures for deliberative modules
in autonomy software. Additionally, the OGATE will
also investigate the possibility to implement mixed de-
cision making between human-operators and autonomy

4This is a 2012 ESA Networking/Partnering Initiative among ESA,
University of Alcalá and CNR.

software (e.g., test of different policies of goal specifica-
tion).

Finally, a multi-agent extension of the GOAC architecture
is under investigation. In fact, in domains such as space
exploration, it is worth studying scenarios with multiple
robots working together in order to increase efficiency in
terms of goals completed. In addition, single-agent ar-
chitectures do not offer the necessary fault tolerance that
multiple-agent coordination may offer. The envisaged
scenario is such that each goal can be carried out by a
team composed by one or more robotic agents. Agents
develop plans to carry out goals using timelines as well
as operate in unknown environments where failures occur
either due to exogenous conditions, or due to internal fail-
ures. The problem is that of optimizing efficiency, such
that agents accomplish more goals. The presence of hu-
man agents will be also considered in order to implement
a mixed-initiative multi-agent system where robots and
humans collaborate in order to accomplish the mission.

7. CONCLUSIONS

This paper describes a timeline-based, domain indepen-
dent deliberative layer (based on the APSI-TRF technol-
ogy) to be used in the Goal Oriented Autonomous Con-
troller (GOAC) software environment. The control sys-
tem is designed to be domain independent, i.e., it takes in
input a (timeline-based) model of the system to be con-
trolled, a (timeline-based) model of the specific controller
and a set of user goal to be (hopefully) achieved by the
controlled system. The controller uses a planner to plans
for user goals, dispatches commands for the controlled
system (the status planned for the controlled system in
order to achieve the user goals) and supervises plan ex-
ecution by reasoning on the telemetry of the controlled
system (the actual status of the controlled system). Some
open issues related to planning and execution with time-
lines have been discussed and addressed.

In particular, the proposed control system is constituted
by:

– a new planning module, referred to as the “AP2
planner” that exploits the timeline-based approach
provided by the APSI-TRF to model and solve
timeline-based planning problems. The AP2 plan-
ner generates time flexible plans: a set of timelines
where the transitions between the values are not
fixed by the planner but temporally related with a set
of constraints. The flexibility of the produced plans
and the capability of re-planning entail the suitabil-
ity of the system in controlling physical systems,
once coupled with an executive layer that takes care
of properly dispatching the plan and supervise its ex-
ecution.

– a module, called the “APSI Deliberative Reactor”,
that implements the sense-plan-act cycle as well as
the goal life-cycle management. The module dis-
patches planned timelines and supervises their exe-
cution status to enforce continuous synchronization
with the status of the controlled system and to allow
planning and re-planning.

The advantage of the controller being based on a do-
main independent planner entails both the capability of
the controller to plan for goal and to dynamically react to
off-nominal conditions detected from the controlled sys-
tem telemetry, as well as a twofold flexibility: in being
used to control different systems (by substituting the con-
trolled system domain description) and in the capability
of achieving different classes of user goals for the same
system (by substituting the controller model).

Acknowledgment. Authors were partially supported
by the ESA GOAC project (TRP/T313/006MM).
Amedeo Cesta and Riccardo Rasconi are currently par-
tially supported by MIUR under the PRIN project
20089M932N (funds 2008). Andrea Orlandini has been
supported by a grant within Accordo di Programma
Quadro CNR-Regione Lombardia: Progetto 3.

REFERENCES

1. R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. In-
grand. An architecture for autonomy. International
Journal of Robotics Research, Special Issue on Inte-
grated Architectures for Robot Control and Program-
ming, 17(4):315–337, April 1998.

2. J. Ambros-Ingerson and S. Steel. Integrating Plan-
ning, Execution and Monitoring, volume 1, pages 83–
88. AAAI Press, 1988.

3. G. Behrmann, A. Cougnard, A. David, E. Fleury,
K. Larsen, and D. Lime. UPPAAL-TIGA: Time for
playing games! In Proc. of CAV-07, number 4590 in
LNCS, pages 121–125. Springer, 2007.

4. S. Bensalem, L. de Silva, M. Gallien, F. Ingrand,
and R. Yan. “Rock Solid” Software: A Verifiable
and Correct-by-Construction Controller for Rover
and Spacecraft Functional Levels. In i-SAIRAS-10.
Proc. of the 10th Int. Symp. on Artificial Intelligence,
Robotics and Automation in Space, 2010.

5. A. Ceballos, S. Bensalem, A. Cesta, L. de Silva,
S. Fratini, F. Ingrand, J. Ocon, A. Orlandini, F. Py,
K. Rajan, R. Rasconi, and M. van Winnendael. A
Goal-Oriented Autonomous Controller for Space Ex-
ploration. In ASTRA-11. 11th Symposium on Ad-
vanced Space Technologies in Robotics and Automa-
tion, 2011.

6. A. Cesta, A. Finzi, S. Fratini, and A. Orlandini. En-
riching apsi with validation capabilities: the keen
environment and its use in robotics. In ASTRA-11.
11th Symposium on Advanced Space Technologies in
Robotics and Automation, 2011.

7. A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and
E. Tronci. Flexible Timeline-Based Plan Verification.
In KI 2009, volume 5803 of LNAI, 2009.

8. A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and
E. Tronci. Analyzing Flexible Timeline Plan. In
ECAI 2010. Proceedings of the 19th European Con-
ference on Artificial Intelligence, volume 215. IOS
Press, 2010.

9. A. Cesta, A. Finzi, S. Fratini, A. Orlandini, and
E. Tronci. Flexible plan verification: Feasibility re-
sults. Fundamenta Informaticae, 107:111–137, 2011.

10. A. Cesta, A. Finzi, and A. Orlandini. Using Valida-
tion and Verification Techniques for Robust Plan Ex-
ecution. In i-SAIRAS-12. Proc. of the 11th Int. Symp.
on Artificial Intelligence, Robotics and Automation in
Space, 2012.

11. A. Cesta and S. Fratini. The Timeline Representation
Framework as a Planning and Scheduling Software
Development Environment. In PlanSIG-08. Proc. of
the 27th Workshop of the UK Planning and Schedul-
ing Special Interest Group, Edinburgh, UK, Decem-
ber 11-12, 2008.

12. S. Chien, R. Knight, A. Stechert, R. Sherwood, and
G. Rabideau. Integrated Planning and Execution for
Autonomous Spacecraft, volume 1, pages 263–271.
IEEE Aerospace, 1999.

13. J. Frank and A. Jonsson. Constraint Based At-
tribute and Interval Planning. Journal of Constraints,
8(4):339–364, 2003.

14. E. Gat. On Three-Layer Architectures. In Artificial
Intelligence and Mobile Robots. MIT Press, 1997.

15. R. P. Goldman, D. J. Musliner, and M. J. Pelican.
Exploiting implicit representations in timed automa-
ton verification for controller synthesis. In HSCC-02.
Proc. of the Fifth Int. Workshop on Hybrid Systems:
Computation and Control, 2002.

16. A. Jonsson, P. Morris, N. Muscettola, K. Rajan, and
B. Smith. Planning in Interplanetary Space: Theory
and Practice. In AIPS-00. Proc. of the Fifth Int. Conf.
on Artificial Intelligence Planning and Scheduling,
pages 177–186, 2000.

17. R. Knight, G. Rabideau, S. A. Chien, B. Engel-
hardt, and R. Sherwood. Casper: Space exploration
through continuous planning. IEEE Intelligent Sys-
tems, 16(5):70–75, 2001.

18. S. Lemai and F. Ingrand. Interleaving Temporal Plan-
ning and Execution in Robotics Domains. In AAAI-
04, pages 617–622, 2004.

19. N. Muscettola, G. A. Dorais, C. Fry, R. Levinson,
and C. Plaunt. Idea: Planning at the core of au-
tonomous reactive agents. In Proc. of NASA Work-
shop on Planning and Scheduling for Space, 2002.

20. K. L. Myers. Cpef: A continuous planning and exe-
cution framework. AI Magazine, 20(4):63–69, 1999.

21. I. Nesnas, R. Simmons, D. Gaines, C. Kunz,
A. Diaz-Calderon, T. Estlin, R. Madison, J. Guineau,
M. McHenry, I. Shu, and D. Apfelbaum. Claraty:
Challenges and steps toward reusable robotic soft-
ware. International Journal of Advanced Robotic Sys-
tems, 2008.

22. A. Orlandini, A. Finzi, A. Cesta, and S. Fratini. Tga-
based controllers for flexible plan execution. In KI
2011: Advances in Artificial Intelligence, 34th An-
nual German Conference on AI., volume 7006 of

Lecture Notes in Computer Science, pages 233–245.
Springer, 2011.

23. F. Py, K. Rajan, and C. McGann. A systematic agent
framework for situated autonomous systems. In AA-
MAS, pages 583–590, 2010.

24. R. Simmons and D. Apfelbaum. A task description
language for robot control. In in Proceedings of the
Conference on Intelligent Robots and Systems (IROS,
1998.

25. B. C. Williams, M. D. Ingham, S. H. Chung, and
P. H. Elliot. Model-based programming of intelligent
embedded systems and robotic space explorers. Proc.
of the IEEE, 91(1), jan 2003.

