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Abstract. Some areas of biological research use artificial means to explore the 
natural world. But how the natural and artificial are related across wide-
ranging research areas is not always clear. Relations differ further for 
bioengineering fields. We propose a taxonomy which would serve to elucidate 
distinct relations; there are three ways in which the natural is linked to the 
artificial, corresponding with distinct methods of investigation: i) a 
comparative approach (natural vs artificial) in which artificial systems are 
treated in the same way as natural systems, ii) a modeling approach (natural 
via artificial) in which we use artificial systems to learn about features of 
natural ones, and iii) an engineering approach (natural pro artificial) in which 
natural systems are used to draw inspiration for artefacts. Ambiguities about 
and between these approaches limit the development of fields and impact 
negatively on interdisciplinary communication.  

Keywords: Artificial Life, Extended Mind, Thought Experiments, Modeling, 
Bioengineering. 

1 Introduction 

Distinction between two kinds of synthetic approaches to biology – i) comparative, 
such as ALife or Evolutionary Robotics and ii) the more widely known (and 
understood) modeling practice – are not entirely new. These approaches have 
previously been separated on the basis of: clarity or complexity [1]; methodology 
(Miller 1995 cited in [2], [3-5]; abstractness [6]; and as different levels of enquiry 
[7-8]. There are implicit arguments about the relationship between natural and 
artificial underlying each of these distinctions but these considerations are not seen 
as important. For example, in [5] Harvey et al. argue that Evolutionary Robotics 
(ER) ‘is a new scientific tool’, insofar as the methodological emphases (minimal 
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cognition, existence proofs and reduction of bias) are very different from modeling. 
They claim that ER ‘systems will not tell us how real cognitive systems work’ 
whereas, for example, neuroscientific models might [5]. It is clear that the artificial 
system in modeling stands in for the natural system – because results about the 
model tell us how natural systems work. Yet it is not always clear how the ER 
system relates to a natural system. This is evidenced for example in the discussion of 
an ER simulation study into the origins of learning (Tuci et al. [9] cited in [5]). In 
this experiment some mechanisms for learning emerged, although no hypothesis 
could be made for these kinds of processes or the architecture that would support 
them – otherwise it could not be a study into the origins of learning itself. The 
learning mechanisms cannot be evidence for a natural system because the 
methodological processes have not specified a target system for this purpose, as 
modeling a learning mechanism would do [5]. What this ER experiment did show is 
that while an organism can evolve processes which enable it to learn, the actual 
mechanisms that emerged can only be used to help build concepts about learning. 
The relationship between natural and artificial in such work is not explicit; this has 
resulted in a negative view of simulation approaches. For example, Webb argues in 
[7] that because theoretical proofs eventually require comparison to the natural 
world they are basically a class of model, and if they don’t represent anything “real” 
in the natural world they are (or should be) irrelevant to biological investigation. The 
issue for simulation work, if Webb’s argument is accepted, is that it would be 
evaluated against the same requirements as modeling – justifying work on the basis 
of a concrete fit to empirical data [1], [7]. As we have just shown it is not empirical 
data that is generated but ideas about what mechanisms might be, and proof that 
learning can evolve from simple mechanical components. The outcome forced by 
Webb would not enable ALife researchers to develop scientific practices or revise 
relevant biological concepts (see [4] for an example), both of which are important 
for the advancement of this newer field. Furthermore, given the possibility that life 
might be artificially created, we would need a structure for the analysis of this 
artificial system because the artificial would have the same characteristic as a natural 
system, making it distinct from the representative characteristic of a model. 

These two distinct relationships between the natural and artificial each give rise 
to their own epistemological concerns and considerations. One important concern is 
that the processes of simulation work in ways that go beyond (or abstract away 
from) our cognitive abilities. The argument that the non-anthropocentric process of 
simulation requires different epistemological considerations follows Humphreys 
(see [3]). Humphreys has different arguments from the one we present here, but we 
do have similar conclusions – that a “new-analysis” of the relation between artificial 
and natural is necessary, and that this includes making their epistemological 
concerns distinct. Our paper provides a structure for this analysis to take place. 

As well as aiding the development of newer fields we see our work as providing 
an important framework for interdisciplinary communication. In light of the ever-



 

greater specialisation within science – and, conversely, the rise of collaboration – 
our taxonomy offers a new tool for assisting professional dialogue and public 
science engagement. It is in this spirit that we include clarification of how the 
developing fields of bioengineering relate to the epistemological approaches of 
comparison and modeling. Finally, following Cordeschi [10] our intention here is 
not to carve unnecessary boundaries between approaches and opposing paradigms 
(i.e. we think that both comparative and modeling work is important, and within 
them, work from different kinds of theoretical positions). 

2 Comparative, Modeling and Engineering Approaches 

In the following sections we outline the three approaches – natural vs artificial, 
natural via artificial and natural pro artificial – discussing the role of artificial 
systems in each. Figure 1 provides a context for this taxonomy. 

 
Fig. 1. Diagram showing the use of natural and artificial systems (arrows depict direction of 
system use) 
 

We will show that the difference between comparison and modeling also concerns 
different levels of explanation and experimentation. We then argue that as the 
relation between the natural world and the artificial system is different, the 
epistemological issues must also be different. Further distinction will then be made 
between the epistemological (scientific) approaches of vs and via, and the 
engineering (technological) one of pro. We explain how the relationship between 
natural and artificial is reversed in these engineering approaches; even though 
models can be physically built as artefacts (albeit using engineering techniques), the 
aim of an actualised model is still the explanation of a natural phenomenon. 
However, before we outline these approaches we need to disambiguate the use of 
“simulation” to avoid confusion between simulations as used in the comparative 
approach and the simulation techniques used in modeling and engineering: in the 
comparative approach (vs), simulations are artificial systems used to build theories, 
question assumptions and explore mechanisms (as in ALife); in the modeling 
approach (via), simulation is used to animate the model. Once a model – 



 

representing a natural system – has been developed, the simulation – representing 
the operation of the model over time – can act as a descriptive or predictive tool. 
Finally in engineering processes (pro), simulations are rich in detail and used to trial 
technologies for economic reasons; they are a more efficient test than expensive 
hardware prototypes. 

 
Comparing Systems: Natural vs Artificial. Comparative (animat) approaches1 to 
science investigate the origins and mechanisms of phenomena. In treating artificial 
systems like natural ones we can deepen our understanding of nature, gain further 
insight, or develop a new means of problem-solving – for example Webb notes that 
comparing a heart to a pump has an explanatory value distinct from modeling the 
process of blood circulation or creating an artificial heart [7]. The value lies in the 
pump being a kind of source model – usually seen as an artificial system that exists 
independently of the target system or hypothesis (i.e. the pump became a model for 
circulation after its creation) [7]. It is also common in the animat community to 
work with artificial and natural systems simultaneously (i.e. comparing the artificial 
and natural processes against each other in real time, see [11] for an example). Thus 
comparison does not stop at treating artificial systems like natural ones; the term 
‘compare’ implies that there is value in noting the similarities and dissimilarities. 
The vs approach can then be seen as a two-way explanatory relationship between the 
two kinds of system; which would have methodological similarities with ethological 
practices (e.g. [8]). Furthermore, this relation allows all possible similarities and 
dissimilarities to be addressed– i.e. counterfactual analysis. Under this approach we 
would identify at least two important kinds of experimentation. The first is thought 
experiment – ‘devices of the imagination used to investigate the nature of things’ 
[12]. Thought experiments have no accepted definition but are widely held to be a 
useful method for highlighting inconsistencies in theories and building intuitions [2]. 
A famous example of a thought experiment is Schrödinger's Cat. The experiment 
shows that a quantum system (a cat in a box with various items including a 
radioactive substance) can be in two states at once (a superposition), because until 
you open the box and observe whether the radioactive substance has decayed, there 
is no other option but to hold that cat is both alive and dead.2 Secondly, we are 
introducing the notion of extended experiment to link the aims and methods of 
comparative approaches with those of the Extended Mind Thesis (EMT hereafter, 
[13]).3 We see affinity between comparative approaches, which can promote 
understanding and allow new means of problem solving, and EMT, which holds that 
                                                             
1 We use the term “comparative approach” instead of the commonly used “animat approach” 
to show one alternative way to understand and explain the place of ALife in the biological 
sciences.  
2 In separating thought experiments from ALife simulations we are agreeing with Wheeler 
that ‘ALife models are not thought experiments – philosophical or scientific’[14]. 
3 See Humphreys [3] for an alternative (non-embodied) approach to defining hybrid 
investigations.  



 

artefacts can be tools for thought – because they can function as, and therefore 
enhance, our cognitive processes. EMT holds that the physical mechanisms of our 
thinking extends beyond our biological boundaries when a two-way relationship 
between cognitive and external systems exists – for example using a smart phone as 
an external memory store, or a notepad to work out a sum [13]. Thus extended 
experiments can also be extended systems (as defined by EMT), because cognitive 
processing is enhanced and distributed across biological and technological 
boundaries: in devising new theories we’re doing so with the additional processing 
power of technology, but it’s a reciprocal relationship because our biological 
processes are necessary to make sense of a scientific experiment. An important 
outcome in viewing the process and evaluation of simulation work in this way is that 
“experiment as a tool to further understanding” underlines the distinct scientific 
character of simulation and the two-way relationship between natural and artificial. 
It has been argued that simulation experiments have no scientific value (reported by 
Di Paolo et al. in [2]): they are seen merely as computer programs in which symbols 
are re-arranged logically and as such cannot give rise to new knowledge. However, 
given that in our taxonomy extended experiments can be tied to cognitive processes 
as tools for problem-solving, they can be more than “just a computer program” – 
they can be part of a process which facilitates conceptual development. Therefore, 
extended experiments do not test concepts; rather, they come up with concepts, 
aiding the (re-)formation of concept and theory. ALife holds a special role within 
this context because it i) serves as a bridge between disciplines [14], [16], ii) allows 
phenomena to be described in abstract terms [1] and, iii) helps us derive intuitions 
about life [2].  

Evolutionary Robotics, like the origin of learning study mentioned above, is full 
of experiments that can be viewed as comparative (see also [5], [15] and [17]). 
Similarly, Ponticorvo and Miglino’s work [4] compares a simulation with a variety 
of natural behaviours. Their research aims for insight into the many potential 
mechanisms that cause spatial behaviours, in order to create “theoretical proof” – 
backing up the intuition that mechanisms of orientation behaviours in natural 
systems do not require a modular neuro-cognitive system. Importantly, they 
conclude that modeling work would be needed to provide “actual proof” for spatial 
mechanisms [4]. Consequently the study can be seen as effective if it aids cognitive 
processes for a re-conceptualisation of spatial behaviours in natural systems, as 
opposed to providing actual evidence that architecture is non-modular. The 
epistemological concerns here are centred on how the artificial is compared to the 
natural at different stages of investigation, how results relate to theory or intuition 
about a natural phenomena, and how we learn from processes we cannot fully 
access.  

 
Modeling Systems: Natural via Artificial. Scientific models can be conceptual, 
computational, or mathematical representations of nature. The empirical inquiry 
surrounding modeling centres on how closely a model “applies” to anything in the 
world so as to be a useful prediction or explanation [7]. Once the model is said 



 

sufficiently (or perhaps roughly) to predict or explain something, the hypotheses are 
said to be true [1]. The degree to which ‘the hypothesis accounts for existing data 
and predicts new data from observations on the target phenomenon is taken to 
support its status as an explanation’ [7]. Cordeschi explains further: ‘The artefact 
therefore embodies the explanatory principles (the hypotheses) of the theory and is 
considered a test of the theory’s plausibility’ [10].4 However, the hypothesis is only 
associated with a simplified or narrow element of the natural system, factoring out 
unrelated phenomena, to make analysis possible [10]. The process of modeling as a 
whole is the process of creating a representation of a target phenomenon, testing this 
artificial system, and evaluating the success against evidence about the target 
system: the artificial system models the natural – this is as depicted in Figure 1. 

An inclusive account of what constitutes a model is required here so that more 
general or conceptual work is permitted. One such account is Barandiaran and 
collegues’s [18-19]; they propose that there are four types of modeling distinguished 
by their degree of abstraction: mechanistic, characterised by an almost one-to-one 
correspondence between variables in the model and observables in the natural 
system; functional, which aims for behavioral or functional (rather than a variable-
to-variable) correspondence between the model system and the target natural 
system; generic, covering a wide spectrum of phenomena in search for generic 
principles of complex systems; and conceptual, which do not target any particular 
natural system nor a collection of them – they are built from theories. As such 
conceptual models illustrate concepts by representing theoretical principles [18]. 
Despite the abstract nature of the latter two modeling types, the process of an 
artificial system standing in for the natural remains common, allowing an 
exploration of a biologically founded hypothesis, which is subsequently evaluated 
on the strength of its ability to predict or explain the target natural systems or natural 
phenomenon. Models can also be used as metaphor to support justification. There 
are thus different levels of explanation and investigation: the construction of the 
model, the analysis of the model, and the way that the model is used to aid 
explanation. 

The epistemological concerns within the modeling approach – how we learn from 
models – have a complex history (see [10], [20-21]), especially in light of new 
debates on how modeling differs from ALife simulation [1], [14]. In modeling, the 
natural phenomenon is related to the stages of designing, building, manipulating and 
evaluating in different ways [20]. The scientific process and the epistemological 
processes are thus intricately linked – and there are two key arguments for this 
interconnection. According to Hughes [20] there are three stages involved in gaining 
knowledge from modeling. These are denoting (which links a theory or hypothesis 
of a natural system to the building of the model), demonstration (connecting the 
natural system to the representative model) and finally interpretation (linking the 
success of predictions to the explanation of the natural phenomenon). On Hughes’s 

                                                             
4 To clarify, we’re not arguing for a specific view on the relationship between model and 
theory we mean to show that the structure provided here can accommodate various positions. 



 

view there are three clearly defined relationships between the model and the target 
system – which should hold for any level of abstraction. Another influential, and 
similar, view comes from Morgan. Her argument says that we learn from models in 
two ways – from building them, and from manipulating them – but it is the 
“representational mechanisms” involved which underlie both [21]. From both 
Hughes and Morgan, the representative essence of modeling provides the foundation 
for epistemological gain, and subsequently for philosophical debate. 

 
Engineering Systems: Natural pro Artificial. Engineers use natural systems to 
develop novel solutions to engineering problems and to construct technological 
artefacts; the artificial system in this approach is then the output of the process. 
Alongside the epistemological levels of vs and via there is a further “level” 
distinction – between epistemological approaches and technological approaches. A 
key characteristic of technological work is the separation of design and fabrication 
[22]. This pro approach includes, among others: bioengineering – taking what we 
know of natural systems and adapting it for the development of new engineering 
solutions. This kind of approach is widely used in synthetic biology; biomimicry – 
directly copying nature to create new technologies; and natural computation, 
incorporating the use of natural systems to develop alternative problem-solving 
techniques, the use of computers to synthesise natural phenomena, and the use of 
natural materials to compute [22]. Alongside electronic hardware, computation can 
be implemented in a range of media (e.g. silicone). 

An example of bioengineering is Micro-Aerial Vehicles [24] – small, insect-like 
flying devices developed for robustness and efficiency. Applications include video 
surveillance, weather mapping and military surveys. An example of biomimicry is 
the creation of buildings that copy the structure of termite mounds for a more 
efficient, cheaper means of air circulation than air conditioning [25]. Meisel et al. in 
[22] classify the many types of naturally-inspired computation, including cellular 
automata, neural computation, evolutionary computation, swarm intelligence, 
artificial immune systems, membrane computing and amorphous computing. 

3 Differentiating Epistemological Concerns 

We have just outlined how comparison and modeling are distinct – based on how 
each approach uses artificial systems to learn about natural ones. In this section we 
develop this argument, showing that what follows from this are two distinct sets of 
epistemological concerns. We then differentiate engineering practice. 

The separation of the way that simulation and modeling relate to natural systems 
is important for four key reasons. One, comparative experiments have been seen as 
unscientific because their relation to natural systems is not easily defined, as it is in 
the more established approach of modeling. In modeling the explanandum is clearly 
stated at every stage but in extended experiments it might not need to be. This would 
mean embracing the difference between a model and a source model (see section 2): 



 

the model relates to a pre-specified natural phenomenon at all stages of 
investigation, whereas simulation is allowed to be separate, or perhaps more 
“opaque” – as in the way Di Paolo et al. mean in [2]. With proper foundations for 
separation, ALife can grow as a field and define its own scientific methods and 
processes. New kinds of experimental work might be permissible under this distinct 
approach. Two, following these “unscientific” criticisms, the evaluation stage of 
simulations has been seen as unsuccessful when assessed against modeling criteria. 
So, contrary to Webb [7], the epistemological value of a study using artificial means 
cannot be measured solely on the basis of its direct impact on reality (or on data 
generation) – because this does not relate to experimentation within the comparative 
approach – which can allow counterfactual analysis and foundational explanations 
[26]. Three, this taxonomy facilitates interdisciplinary communication. In clearly 
defining the investigation within a specific approach other researchers can access the 
work of fields vastly different from their own. This might be useful, for example, 
given that thought experiments are in the same category as ALife simulation: some 
of the philosophical literature on thought experiments might help the development 
of Alife [1]. Better foundations for communication would also aid research across 
related fields: paired together, practitioners of ALife and economics, say, or 
neuroscience and ecology, might see structures and patterns in practice and 
methodology, hitherto invisible and mutually beneficial. Four, practice and 
terminology overlap in all the approaches, which might confuse elements of an 
investigation that should be separate, or that operate on a different level. An 
example relating to terminology would be “simulation” (see section 2). Webb’s 
argument for conflating modeling and simulation [7] illustrates the problems that 
arise when different levels of practice are confused. She claims that because 
theoretical proofs require comparison to the natural world (in their evaluation) 
simulations should be seen as a class of model because they are methodologically 
similar. However, this argument conflates the levels (and processes) involved in 
relating natural to artificial. The evaluative processes involved in modeling and 
simulation may seem similar, but the scientific processes as a whole are different. 
We should not want to evaluate two different processes in the same way, even if 
they come up with the same answer, because we will have lost a distinction they 
started with: theory, empirical data and the natural world are different. For example, 
in modeling we are matching the data from the model with the known data about 
the natural system – this is because the natural system has been specifically and 
directly related to the model. In the evaluative stages of comparison, however, we 
are assessing and contrasting the artificial system itself with a natural system, or 
perhaps a concept. The relationship of each scientific process within each approach 
thus operates on distinct conceptual levels.  

Following these level distinctions, the key epistemological difference lies in the 
way that comparative experiments can build or question theory, whereas models can 
represent or justify theory. Due to the character of their relationship with natural 
systems, comparative experiments and modeling have a number of distinct 



 

epistemological issues. We sum up the key philosophical questions in these 
approaches as:  

• Comparative – how we can know something new from a process we cannot fully 
access; how knowledge is acquired when intuition is involved; how we simplify 
an experiment of a natural phenomenon which is a characteristic of many 
different kinds of species (e.g. learning); and how we might apply a re-
conceptualisation of a theory into future scientific practice (see [2] for a 
discussion of many of these).  

• Modeling – how models denote theory; whether models represent theories; how 
we build and simplify the natural phenomenon to create successful models (which 
as mentioned above is linked to producing evidence); and the processes of 
interpreting the models to form predictions [20].  

The separation of epistemological concerns is important. If there are different routes 
to gaining knowledge there must also be different ways to question how we are 
gaining that knowledge. 

 
Issues in the Confusion Between the Approaches. The engineering approach is 
more obviously distinct than modeling and comparison. However, despite the clearer 
difference it could still be confused with elements of the other approaches. We 
would identify two potential mistakes: a) evaluating the validity or usefulness of an 
artefact on the basis of how much it is bio-inspired; or b) drawing inspiration from a 
natural system to construct an artefact as an explanation of a phenomenon. For 
example, in the case of the termite-inspired building, it would be a mistake to 
evaluate the usefulness of this building because it is a faithful replication of a termite 
mound. The extent to which it is bio-inspired bears no relationship to the success of 
the engineered artefact. Its success is in lowering building and operational costs and 
increasing efficient air circulation – removing the need for air conditioning. So, 
although the termite inspired building is a good example of a pro approach, it would 
not be hard to see how it might be misinterpreted as either a model of temperature 
control or as a building that didn’t look like a termite mound. An example of how 
this error manifests in artefacts that are constructed by faithfully copying a natural 
system – because they consider naturally-inspired design an accurate explanation of 
a phenomenon – can be found in the accidents (and fatalities) that occurred during 
the first human attempts of flight. Machines were built to imitate the structure and 
shape of bird wings because this was seen as an explanation of flight dynamics [27]. 
The first significant successes in flight were achieved only when the principle of 
imitation began to be separated from the design process. 

An example that perhaps embodies both the issues with levels of explanation, and 
the confusion between using natural systems and aiming to explain them, is the 
potential for misunderstanding early (Classic) Artificial Intelligence. In Classic AI 
the metaphor of the mind as computer operated at a different explanatory level to the 
actual engineering and logic-based foundations, which focused on designing more 



 

useful computer programs [28]. Drawing on Cordeschi’s example (in [10]), it would 
be a mistake to use the metaphor as more than a kind of explanation – i.e. as a basis 
to engineer an artefact to explain a phenomenon. A specific example of the distinct 
levels is found in the “frame-problem”. This was originally an engineering issue for 
logic-based systems [28]; Dennet [29] subsequently noticed the epistemological 
concerns. The engineering problem has now been solved but the epistemological one 
remains an open debate [28]. If we apply the epistemological issue to engineering an 
artefact we would be holding the idea that a classic model of computer vision in a 
human environment could “see”. Clearly, classical approaches to computer vision 
are models that work in experimental environments and the Classic-based-logic is 
sound; the issue here lies in treating the system like a natural one – as both an 
epistemic and technological artefact. Treating the artificial system like a natural one 
we have shown as characteristic of the epistemological comparative approach. 
Computational theories of mind thus operate at an epistemological level not an 
engineering one. Your laptop does not exhibit human behaviour even if some of its 
processing is akin to the processes of your cognitive system. The mind as computer 
is not invalidated as metaphorical use of a model, but it is invalidated as an actual 
hypothesis of human intelligence as a whole – there are no existing robots that 
exhibit human intelligence based on this Classic logic [30]. 

4 Conclusions 

Distinction between comparative, modeling and engineering approaches can serve 
science and technology, resulting in clearer objectives and more effective 
interdisciplinary communication. As well as supporting dialogues within the 
approaches, our taxonomy would also aid cross-approach communication. ALife 
seems especially well placed for this [14]. We would however, like to point out that 
some overlaps between approaches may be fruitful [7]; one might even use artificial 
systems developed in a comparative framework as a basis for developing a model 
[4]. So, while we think that research must be classified clearly, we don’t rule out the 
existence of additional approaches or advocate sharp distinctions that might hinder 
scientific or technological development. Application for future research includes the 
potential to develop new methodologies within the approaches. For example, the 
comparative approach could benefit from the practice of running experiments with 
natural and artificial systems in parallel, as outlined in [11]. Despite the greater 
issues faced in designing such an experiment (e.g. significant heterogeneity of natural 
and artificial systems) they might allow explanations of hypotheses without 
modeling. A further challenge would be explicating the relationship between 
artificial and natural in more complex cases, such as when a natural system is itself 
used as a model – sea slugs, cress and the common fruit fly are all now employed in 
science as (living) models of other systems. Finally, with the introduction of our 
extended experiments terminology under the comparative approach our aim is to 
cover a range of “actual” artificial systems acting as tools for conceptual thought: 
through this we hope to give “a new life to ALife”. 
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