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Abstract— In designing artificial systems for studying motor
control in humans and other organisms a key point to consider
is the complexity reached by brain and body in their devel-
opmental stages. An artificial system whose brain and body
complexity is shaped according to developmental stages might
allow understanding weather, for example, newborn infants,
infants, and adults use different neural mechanisms to cope
with the same motor control problems. This article proposes
an artificial system which aims at becoming a tool to study this
type of problems. The system has a brain and body endowed
with a set of minimal bio-mimetic features: (a) neural maps
activated by receptive fields; (b) connections plasticity changed
by Hebbian rule; (c) robotic arm actuated by a McKibben
muscle. The arm autonomously learns to reach specific positions
in space under the effect of gravity and for different load
conditions. The results suggest that a fast and incremental goal-
action mapping formation could constitute the computational
mechanism underlying the neural growth and plasticity of an
early developed brain at the onset of reaching. The same
mechanism also allows a first approximate solution for load
compensation avoiding the use of more sophisticated internal
models (developed in further brain and body developmental
stages). This paper aims to be a preliminary study on the
feasibility of this approach.

Index Terms— compliant arm, hebb rule, load compensation,
neural-networks, one-shot learning, reaching, receptive fields,
stiffness modulation

I. INTRODUCTION

It is increasingly recognized that behaviour of humans

and other animals arises through the interactions of brain

neural activity, body features and environmental context

[1][2]. This is particularly true in the field of motor control

where limb geometry and muscle properties can influence

the pattern of neural activities which determines movements

[3][4]. This “neuroethological approach” [1][3] can crucially

support collaborations and cross-fertilizations among experts

of different disciplines. Roboticians and engineers can be

inspired by neurological and psychological studies to design

artificial systems which incorporate aspects of organism’s

biomechanics and neural control to improve their agility and

robustness for a given task [5]. On the other side, neurologist

and psychologists can better understand biological systems,

analyzing results coming from experiments run on the mod-

els [6].

This work was supported by the EU funded Project IM-CLeVeR
Intrinsically Motivated Cumulative Learning Versatile Robots, contract no.
FP7-IP -231722. P. Tommasino, D. Caligiore, V. Sperati, and G. Baldassarre
are with Laboratory of Computational Embodied Neuroscience, Istituto
di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle
Ricerche (LOCEN-ISTC-CNR), Roma, Italy {paolo.tommasino,
daniele.caligiore, valerio.sperati,
gianluca.baldassarre}@istc.cnr.it

In this framework a critical point which is weakly ad-

dressed regards the role played by the ontogenetic factors in

the emergence of motor control strategies [7][8]. Brain and

body constraints change during life and these changes have

a critical effect in how brain, body and environment interact.

Brain changes are present from the birth. Infants are not

born with all the interconnections already formed in their

brains and some cortical areas (e.g. the prefrontal cortex)

are less developed [9]. After birth, there is a period of rapid

synapse formation in the infant’s brain, and the “plasticity”

of the brain allows different parts to develop and mature at

different rates . Beneficial effects on brain connectivity and

growth have been shown when newborn infants have been

reared in an enriched environment [10].

The motor control strategies also depend on changes in

body constraints management. Bernstein proposed that when

organisms first learn a skill they restrict the degrees of

freedom (DOFs) that they use [11]. In this way organisms

simplify the dynamics of the effector and reduce the size

of the search space. Once the organisms got some initial

proficiency, the restrictions on the DOFs is gradually relaxed

so that a skilled actor will be able to use the full power

of the effectors. Similar behaviours have been observed in

infant learning to reach [12] and to walk [13]. This evidence

on brain and body constraints changes suggests that motor

control strategies adopted by an infant’s brain which interacts

with an infant’s body could be different by the ones adopted

by an adult’s brain which interacts with an adult’s body.

This ontogenetic perspective suggests that in building

artificial systems to study human motor behaviour it is

crucial to consider the cross-influence among brain, body

and environment in relation to the degree of development

reached by the brain and body. Artificial systems whose

brain and body complexity is shaped consistently with the

complexity of the brain and body of the real organism might

highlight alternative mechanisms by which, for example,

newborn infants, infants, and adults cope with the same

motor control problem. In this way, the limitations often

encountered explaining and interpreting the data on infants

motor behaviour based on the knowledge on data about

adults motor behaviour (cf. [14]) might be overcome.

This article presents a preliminary study on the feasibility

of this approach. More in details, it illustrates an experiment

to study the motor behaviour which emerges endowing

the brain and body of an artificial system with a set of

minimal bio-mimetic features: (a) neural maps activated by

overlapped Receptive Fields (RFs); (b) connections plasticity

changed by an associative Hebbian rule; (c) an artificial arm

actuated by a McKibben muscle.
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The experiment demonstrates that an artificial system

endowed with these minimal features is capable of capturing

crucial aspects of motor behaviour of real organisms whose

brain and body are early developed. First, a fast and compu-

tationally cheap learning (through one-shot learning) allows

the system to autonomous acquire motor skills through self-

exploration of the environment (similarly to the infants motor

babbling [15][16]). Second, the overlapped RFs, fast learning

rule and biceps compliance allows the system to quickly

learn a load compensation and generalization avoiding to use

sophisticated methods [3][17]. Finally, the incremental goal-

action mapping formation (see Sec. II-B) during reaching ac-

quisition, might shed light about the computational strategies

adopted by the brain of real organisms at the beginning of

their developmental history, when a limited set of resources

are available [10].

The rest of the paper is organized as follows. Sec. I-

A presents the main bio-mimetic features of the artificial

system. Sec. II presents the artificial arm and the task used

to test the neural controller and explains the functioning and

the learning mechanisms of this. Sec. III shows the results

obtained by testing the system. Sec. IV draws the conclusions

and suggests future work.

A. Biomimetic constraints used to build the system

1) Arm actuated by a McKibben muscle: The body of the

artificial system is formed by a single joint arm actuated by

a McKibben muscle (Sec. II for details). McKibben artificial

muscles are the most representative pneumatic air actuators

used as a main motion power source in bio-mimetic robotics

and in biomedical applications [18][19]. Thanks to their high

power-to-weight and power-to-volume ratios they have an

high level of functional analogy with human skeletal mus-

cles. One of the major attractions of these actuators regards

the inherent compliant behavior they show [20]. Compliance

is due to the compressibility of air and can be influenced by

controlling the operating pressure. Thanks to compliance a

soft touch and safe interaction can be obtained. Hydraulic

and electric drives, in contrast, have a very rigid behavior

and can only be made to act in a compliant manner through

the use of relatively complex feedback control strategies [21].

On the other side, the compressibility of air and friction are

the main factors to the nonlinearities in the system that make

these actuators difficult to control (this issue is common of all

pneumatic air actuators [21]). In addition, since McKibben

muscles are mainly used to actuate bio-mimetic robots which

operate in unstructured and highly noisy environments, there

are a series of nonlinear and time varying factors to take

into account in designing a control strategy (e.g changing

in load force due to unexpected variation of environment

conditions). All these factors make difficult and potentially

inefficient adopting traditional control theories strategies for

McKibben muscles. In this respect, interesting results have

been obtained using supervised neural networks [22] or

hybrid solutions which combine traditional controllers (e.g.

PID) with neural networks [23][24].

2) One-shot Hebbian learning and overlapped Receptive

Fields (RFs): The proposed learning algorithm (Sec. II-B)

aims at capturing two basic ingredients underlying motor

learning mechanisms of real brain: fast learning and gener-

alization. The human brain supports one-shot fast learning

processes which are mainly implemented by one of the oldest

sub-cortical area, the Hippocampus (Hip) [25]. Generaliza-

tion mechanisms are instead mainly supported by the cortical

regions [26][25].

The one-shot Hebbian rule used in the present paper

reproduces the computational mechanisms underlying fast

learning processes implemented by Hip. The overlapped RFs

are instead used to mimic the computational mechanisms

underlying the generalization processes developed within the

cortical regions. In general, information processing based on

RFs is an ubiquitous organizational principle in neurobiology

which offers interesting computational opportunities [27].

Importantly, the neural controller proposed here is able

to deal with the intrinsic non-linearities of the McKibben

actuator (see Sec. III). However, it does not aim to overtake

the performance of the controllers already proposed in lit-

erature for control of McKibben muscle systems [23][24].

Rather, it aims at demonstrating that one-shot Hebbian rule

and overlapping RFs might represent low cost computational

mechanisms used by a non-fully developed brain (as the

newborn infants’ brain is) to learn basic motor strategies (cf.

[28][16]). The resultant motor behaviour might be further

refined involving other functions to get more sophisticated

motor control skills (e.g. action selection through basal

ganglia and cortical loops [25] or motor adaptation exploiting

cerebellar functions to create internal models of the world

[14]).

II. METHODS

A. The Artificial Arm and the Task

Figure 1 shows the artificial arm and the environment.

The arm has one DOF corresponding to the elbow joint. The

dimensions of humerus and forearm (both wooden made), are

comparable to the human arm, being respectively 30cm and

27cm long. The arm is actuated by a McKibben pneumatic

muscle mimicking the action of biceps. The muscle has

been built in our lab1 using a simple air balloon inserted in

an expandable braided sleeving clamped at the extremities

(Figure 2).

The biceps muscle contributes to the elbow flexion al-

lowing to lift and balance the forearm against gravity.

From a physics point of view the forearm is a pendulum

whose equation, under static condition, can be expressed as:

u(P, ǫ) = −m ·g ·r ·sin(θ) (parameters were not constrained

with real data because not necessary for the present work),

where u is the joint torque due to the artificial muscle that

mainly depends on its pressure P and its contraction ratio ǫ

[29], m is the mass applied to the center of mass, g is the

1http://www.istc.cnr.it/group/locen. We aimed at building a low cost and
easy to maintain system. The total cost of the whole hardware (arm, sensors,
actuators, microcontroller) has been about 350 euros.

1230



Fig. 1. Schematic of artificial arm and environment. Two solenoid valves
(PVQ31, from SMC) regulate the quantity of air present into the muscle,
determining the current pressure. The pressure sensor (ASDX015D44D,
from Honeywell) detects the current pressure into the biceps. These devices
are managed by a microcontroller Arduino Mega 2560, which interfaces
with the neural controller. The position sensor (implemented through a
webcam and a computer vision alghorithm), detects the current elbow angle.
For now the load sensor is virtual, and its value is manually set in the
software by the experimenter, according with the load put on the hand
(i.e. the forearm tip). In future, these last two sensors will be replaced
respectively with an encoder and a load cell, both connected with the
microcontroller, in order to enhace the autonomy of the system.

Fig. 2. The artificial arm during motion. At rest the muscle is 22cm long,
and lets the forearm extended at 10◦ (first pic on left). When air is inflated,
it slowly shrinks to about 17cm, corresponding to a 110◦ forearm flexion
(last pic on right). Given the used materials, the muscle inner pressure never
exceeds an increment of 0.7bar with respect to atmospheric pressure.

gravity force, r is the distance between the elbow joint and

center of mass, and θ the elbow angle.

The task requires that the neural controller (Sec. II-B)

learns to control the muscle allowing the arm to reach several

positions in the workspace with its “hand” by starting from

different positions and with different loads carried by its

“hand”. Despite the high simplicity of the system the task

is rather challenging for several reasons if one would solve

it with standard robotic methods. First, it is strongly non-

linear. The joint torque u depends in a non-liner manner

on the pressure P , the contraction ratio ǫ and the load

that influences the task in a sinusoidal manner. Second, the

task requires stiffness modulation because the same posture

could be associated to different pressures (and hence different

forces) due to the presence or not of the load. Third, the

neural controller requires to generalize for unexperienced

desired postures and loads without using dynamic internal

models of body and environment.

B. Neural controller and Learning Mechanisms

Different powerful machine learning techniques, like gaus-

sian processes (GP) or support vector machines (SVM) [30],

Fig. 3. The neural architecture (bold frame) and its connections. Each
map receives sensory feedback from the arm by the Arduino Board. Dashed
arrows are connected only during the “Incremental Goal Action Mapping
Formation Phase”. The bold line W represents the connection weights
formed during learning of reaching.

address the question of incremental learning with kernel basis

functions.These algorithms rely on statistical techniques and

are far from brain computational mechanisms. In contrast,

the algorithm that we developed, even if it is less powerful

compared with GP and SVM, allows using Hebbian learning

and investigating the relationship between different neural

maps that are linked with synapses. We will use the term

fast learning or one-shot learning to mean that the algorithm

needs only one training epoch to output the right response

either on the training data set or the generalization set.

Figure 3 shows the neural architecture of the model and its

connections with the other components. The neural controller

is formed by two interacting neural maps: the Goal Map

(GM) and the Action Map (AM). The GM is activated by

elbow angles and load stimuli and abstracts the brain areas

(such as parietal region cf.[31]) that are involved with motor

planning and where external stimuli are translated into motor

goals. AM is activated by the pressure stimuli and abstracts

the brain motor areas (such as premotor and motor regions

cf. [31]) mainly involved in generating motor command sent

to muscle accomplishing the planned goal encoded by GM.

The motor command used to control the muscle is pressure.

Before training, both the maps have no RFs and there are

no connections linking them. The aim of the training phase is

to incrementally create and associate neural representations

(i.e. RFs) of the elbow and load stimuli in the GM,to the

representations of the pressure stimuli in AM. More in

details, during training 9 elbow equilibrium postures (ranging

from 30◦ to 110◦, with a step of 10◦) are associated with

the corresponding 9 biceps pressures without a load on the

hand and when a load of 100g is set on the hand.

The resultant neural growth process during the training

phase depends on the motor experience arising from the

interaction with the environment and mimics the neural

growth mechanism present in the brain in the early stage of

life [10]. Even if several works have addressed incremental

perception formation [32], only few of them have considered

simultaneously incremental formation of both perception and

motor actions [33].

After the training phase, setting a desired goal xd in

the GM, which means setting a desired elbow angle θdes
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while sensing the load L(t) acting on the hand, the AM

supplies the desired pressure Pdes to achieve the goal. AM

is directly connected with a comparator which gradually

increases the current pressure Pt (acting on the voltage of

valves) to reach Pdes. The comparator is turned-off as soon

as Pt = Pdes±0.0025bar. The next two subsections explain

the computational details underlying these processes.

1) Incremental Goal-Action Mapping Formation Phase:

During this phase the babbling generator (switched on 1 in

fig. 3) sets several desired pressures Pdes that the muscle

reaches thanks to the comparator. When Pdes = P (t) the

information (normalized in [0, 1]) about the current elbow

angle θ(t) and the current load L(t) carried by the hand

is used to decide if creating or not a RF in the GM. The

information about the P (t) is used to decide if creating or

not a RF in the AM (see below the RFs trashold constraints).

In both maps the activation of the RFs are computed

according to a population code (cf. [27]). Each neuron has

a Gaussian activation when exposed to a stimuli x:

ai(x) = e(−(x−ci)
T
·Σ

−1
·(x−ci)) (1)

hence a RF is completely defined given its center position ci

∈ R
n and its covariance matrix Σ ∈ R

[n×n]. The center ci
represents the stimuli vector x which maximally activates the

RF. The covariance matrix Σ regulates region-of-influence

of RFs over the input (GM) and output (AM) spaces. Each

RF belonging to the GM has a constant diagonal Σ whose

elements are set to 5·10−4 and 0.1 for angle and load

respectively allowing the formation of a new RF at each

10◦ and 100g. For AM Σ is a scalar whose element is set to

10−5 allowing to insert a new RF at each 0.07bar. Since the

algorithm estimates the centers of the AM, the higher the

number of RFs, the higher the resolution of the estimation.

A new RF is added in the map if
∑

i ai(x) < atr,

where atr = 0.001 represents a threshold that measures

“how far” the current stimuli are from those experienced

during previous experiences and hence regulates both the

RFs growing and the estimation accuracy. The values of

covariance matrixes Σ allowed to allocate 18 different RFs (9

with the load and 9 without it) in both maps while preserving

the generalization capability for the intermediate angles and

loads thanks to the overlapping of RFs (Sec. III).

When a new RF is allocated in a map, synaptic con-

nections are formed between the novel RF and the RFs

belonging to the other map. The strength of the synapse

(wij ), initialized to zero, is incremented with the following

Hebbian rule [16]:

△wij = bGMmax
j (x) · bAMmax

i (y) · (1− wij) (2)

where bGMmax
j and bAMmax

i are the maximum softmax

activations (obtained by normalizing ai(x) with respect to∑
i ai) of the GM and AM respectively, given the current

stimuli x = [θ(t), L(t)] and y = [P (t)]. The term (1 −

wij) avoids that synapses connections assume values beyond

one if the architecture is subject to more training epochs (a

condition that we do not test in our experiments).

2) Goal Planning and Action Recalling: During the func-

tioning of the system the babbling generator is kept out

(switched on 2 in fig. 3). Given a desired goal xd, the

architecture estimates the Pdes to achieve that goal by

computing the reading-out of AM as follows:

h = W · aG(xd); Pgoal =

∑
i hi · cpi∑

i hi

(3)

where W represents the synaptic weights matrix, aG(xd) are

the activations of the RFs in the GM exposed to the stimuli

xd. The internal activation h is used to compute a weighted

mean of the centers of the AM (cp) to estimate Pdes. Pdes is

then sent to the comparator to control the muscle as explained

before (Sec. II-B.1). Importantly, the Eq.II-B.3 allows the

computation of a voting mechanism involving the population

of neurons of GM and their synaptic relations to select the

pressure neurons of the AM. Similar voting processes are

implemented by real brain structures involving, for example,

the basal ganglia [25].

III. RESULTS

The performance of the artificial system is tested setting

several desired equilibrium postures ranging from 30◦ to

110◦ with an incremental step of 5◦ to test both the learning

of training set and the generalization capability. The gen-

eralization is also tested by applying a never-experienced

load of 50g and the same postures. The average reaching

error computed on training set is 1.03◦ ± 0.89◦ while the

average reaching error computed on the generalizations set is

1.84◦±0.98◦. The entity of these errors is largely acceptable

for the aim of the work (cf. Sec. I-A.2).

During the test each desired goal xd in GM causes an

activation of a corresponding Pdes in AM. The corresponding

desired pressures-desired angles curve is showed in Figure 4.

The figure shows that, given a posture, a higher pressure is

needed due to the load presence. Moreover, higher pressures

are required to reach higher desired angles.

By abstracting the artificial muscle as a linear spring

we have that the contraction force is directly proportional

to its stiffness K and to the displacement between the

spring equilibrium posture θdes and the current posture θ(t):
Fspring = K(θdes − θ(t)). As a result a specific contraction

force can be obtained by setting θdes or by modulating

the stiffness K. In this respect, Figure 4 shows that the

neural architecture is able to express both mechanisms. In

particular, different θdes are modulated when the muscle

moves along one curve, while “jumping” from the no load

curve to the load curve, the neural architecture increases the

biceps stiffness and therefore it balances a higher force with

respect to the same equilibrium posture θdes.

The performance of the system depends by the RFs

mapping and by the choice of pressure as a control variable.

In this respect, Figure 6 shows what happens within the

GM and AM during the incremental goal-action mapping

formation (cf. Sec. II-B.1) as well as during goal-action

recalling (cf. Sec. II-B.2), for different desired angles and

load conditions. Each Goal RF has a preferred Action RF
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Fig. 4. Desired pressures (Pdes) generated by desired angles (θdes). Solid
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the training pairs. Crosses represent Pdes estimated by AM when θdes
belonging to the training set activate GM. Stars represent Pdes estimated
when θdes belonging to the generalization test (not previously experienced)
activate GM. The middle curve is relative to a never experienced load of
50g and it is obtained by interpolating pressure and desired postures (those
of the training set) before the training started. Therefore, stars on it are
relative to a further generalization test. The curves are approximately linear
until 70◦ after that they assume an exponential variation. This is mainly due
to the gravity effect (which acts maximally at 90◦) and to the non-linear
expandability of the braided sleeving and the balloon which increases further
the slope of the curves over 100◦.
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(lower lines), and 110◦ (top lines). Dashed lines, crosses, and continuous
lines concern respectively the training set, the test on the training set, and the
generalization tests. The plot shows that the 100g condition increases the
desired pressure of ∼ 0.05bar until 100◦, and more than 0.1bar at 110◦.
Even if such increment can appear negligible, data not reported here have
shown that without a further training with the 100g load, the architecture
produces reaching errors above 5◦.

and hence by moving horizontally in the GM the architecture

modulates the muscle force, by estimating Pdes (AM) in

proportion to the displacement between the current sensed

angle and the desired one. On the other hand by moving

vertically trough the GM the architecture modulates, through

Pdes (AM), the stiffness of the biceps and hence allows

balancing different loads when the same equilibrium posture

is specified.

The overlapping of the RFs and the voting mechanism

(Eq.II-B.3) also allows getting a good pressure estimation

when the GM is activated with unexperienced desired angle

and sensed load which are between the previously learned

ones. In other words, the angle overlapping regulates over its

region-of-influence the slope of the curve in fig. 4 while the

load overlapping allows to insert local biases on the curve

allowing good estimation also for the unexperienced object

whose weight is 50g.

IV. CONCLUSIONS AND FUTURE WORK

The artificial system proposed in this paper presents a

number of interesting aspects with respect to both robotics

and biology. From a robotic perspective several key fea-

tures are apparent. First, combining one-shot Hebbian rule

and overlapped RFs make the learning of simple reaching

movements and the generalization to new postures and loads

faster and computationally cheaper. In this respect, it was

critical to set the minimal region of influence of RFs so to

guarante that the overlapping of RFs avoided that only one

goal RF in GM was associated with several Pdes RF in AM

(e.g. this could happen in the case of learning redundant

sensory-motor mappings). A possible solution could be to

progressively reduce the covariance of the most active RF

until a new RF is required, and then add a new RF on GM.

Another solution could be to increase the number of inputs

of GM using a covariance Hebbian rule (cf. [16]) to better

disentangle the RFs. All these possible solutions are issues

for further investigation.

Second, the combination of a fast learning algorithm

for goal-action mapping with a compliant arm allows the

system to autonomously acquire motor skills through self

and safe exploration of the environment quickly learning

load compensations. Using traditional robotic humanoid ap-

proaches would make it more difficult to obtain autonomous

safe body-environment interactions and load compensation

without using sophisticated control systems [3][17].

Even if the controller proposed here acts on a single joint

arm the RF approach could be scaled to many DOFs system

[33]. One way to use the algorithm proposed here to learn

reaching movements to control redundant DOFs could be to

modulate the learning rate of the Hebbian rule (Eq.II-B.2)

according to the pressure costs of the McKibbens in order

to have that low learning rates postures reach high values of

pressures. In this way, the “low-pressure postures” could be

strongly learned and hence be used more likely (cf. Eq.II-

B.3). This solution could be further tested in future work.

The artificial system proposed here is also a valuable tool

to investigate developmental phenomena related to the onset

of reaching. In this respect, the experiments suggest that

the incremental formation of RFs through Hebbian learning

could constitute the computational mechanism underlying the

neural growth and plasticity of early developed brain [10].

In addition, the organization of RFs is reminiscent of the

possible organization of organisms motor behaviour on the

basis of motor-primitives [34].

Remarkably, the results also suggest that these two com-

putational mechanisms allow a first gross solution to cope

with load compensation. In this respect, the role of the sensed

load is to passively modulate the biceps compliance avoiding

the use of more complicated solutions based for example on

internal models which could be developed by the organism

in further developmental stages [35].
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Fig. 6. Example of activation of GM RFs (top row of graphs) and AM RFs (bottom row). In all graphs, the light gray ellipses represent the region of
influence of RFs, while dark gray circles represent the current neurons activations. Upper row, from left to right: graph 1 shows the GM when training has to
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test, when the requested position is 45◦, respectively with 0g and 100g. Note that in this case the overlapping of RFs (due to the previous training),
partially activate several GM neurons determining a cluster of active AM neurons used to estimate the desired pressure.
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