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Abstract. Timeline-based Planning and Scheduling applications have
been successfully deployed in various contexts. Often such applications
use specific solving algorithms and cannot be easily applied for solv-
ing different kind of problems. Then, an open research issue for such
planning modeling is the one of creating a software infrastructure with a
controllable search engine. In this regard, this paper presents an attempt
to synthesize such a software environment. The Fxtensible Planning and
Scheduling Library (EPSL) evolves from the Timeline Representation
Framework (APSI-TRF), a software environment supported by the Eu-
ropean Space Agency. Goal of EPSL is to obtain a software architecture
having the flexibility to focus on specific problem solving aspects. The
paper is an initial report on this effort: it introduces the whole idea, then
focuses on the definition of suitable heuristic functions, and presents ex-
periments related to two domains generated by current applications.

1 Introduction

Timeline-based planning has been shown very effective for applications in real-
world domains — see examples in space like [1,2,3]. On the side of these practi-
cal works several timeline-based planning and scheduling (P&S) environments
have been defined with the goal of acting as a seed for facilitating the synthe-
sis of new domain specific planners — see as examples EUROPA [4,5], ASPEN
[6], APSI-TRF [7]. Some work has been dedicated to show similarities between
timeline-based and classical planning [8,4] (features already operational in IxTeT
[9]). Other recent work is dedicated to determine similarities between different
approaches to achieve a synthesis useful for applications [10].

Indeed, an open problem is the one of importing within the timeline-based
environments the capabilities for speeding up search that have been developed
in the last ten years for PDDL-based planners. The most known environments
for application development (EUROPA, ASPEN, and APSI-TRF) have limited
abilities in this respect. The applications they contribute to realize are typically
closely connected to the domains for which they have been made and are hard
to adapt to other kind of problems. Some works on EUROPA have described
the general search algorithm [11], or specifically have tried to integrate heuristic
search features [5].

Our group has been working within the Advanced Planning and Schedul-
ing Initiative (APSI-TRF) promoted by the European Space Agency. Goal of
the initiative was the design and implementation of a framework for mission
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planning development able to integrate Al-based planning modules, in order to
improve the flexibility of the mission planning systems, to increase the automa-
tion of the planning process, and to generate more robust plans with respect to
execution uncertainty as well as adaptable to change. Starting from the observa-
tion that a lot of effort is usually spent in designing, implementing and testing
software components that could be reusable among different applications that
share the underlying timeline assumption, the APSI-TRF Timeline Representa-
tion Framework (APSI-TRF) infrastructure for P&S has been synthesized as a
first basic result [7] synthesizing a software library devoted to speed-up, simplify
and increase the quality of P&S software design and deployment. Some works
have described applications from the APSI framework [7,12,13] focusing on the
support offered by the software platform.

Indeed not enough support exists in APSI-TRF to develop general-purpose
domain independent solvers. As an example, the planning algorithm used in [14]
was strongly influenced by the OMPS [15] experience, an example of predefined
solving structure as a combination of macro-steps. Our goal is the one of building
a new software environment on top of the APSI-TRF, enhancing the definition
of different general purpose solvers as well as preserving some interfaces with
respect to the original tool. The paper is organized as follows: we first give some
basic information on the APSI-TRF framework, then introduce the Fxtensible
Planning and Scheduling Library (EPSL) our current software effort, and finally
report a set of experimental data showing the progress EPSL obtains with respect
to the planner used in [13]. Some conclusions end the paper.

2 Timeline-based Planning with APSI-TRF

The main modeling assumption underlying the timeline-based approach [1] is
inspired by the classical Control Theory: the problem is modeled by identifying a
set of relevant features whose temporal evolutions need to be controlled to obtain
a desired behavior. In this respect, the set of domain features under control are
modeled as a set of temporal functions whose values have to be decided over a
time horizon. Such functions are synthesized during problem solving by posting
planning decisions. The evolution of a single temporal feature over a time horizon
is called the timeline of that feature®.

We consider multi-valued state variables representing time varying features as
defined in [1,16]. As in classical control theory, the evolution of controlled features
are described by some causal laws which determine legal temporal evolutions of
timelines. For the state variables, such causal laws are encoded in a Domain
Manager which determines the operational constraints of a given domain. Task
of a planner is to find a sequence of control decisions that brings the variables
into a final set of desired evolutions (i.e., the Planning Goals) always satisfying
the domain specification.

! In this paper we use the term “timeline-based planning” because recently it is more
widely used, see for example [10]. Other authors prefer “constraint-based interval
planning” [4] following a perspective more connected to the technical way of creating
plans. According to Wikipedia, a timeline is a way of displaying a list of events
in chronological order. It is worth saying that this style of planning synthesizes a
timeline for each dynamic feature to be controlled



2.1 The APSI-TRF

The APSI-TRF software framework supports the development effort by provid-
ing a library of basic planning and scheduling, domain independent solvers and
a uniform representation of the solution database. Modeling risks are reduced
because the use of the framework standardizes and simplifies the process of ap-
plication deployment fostering a rapid and iterative prototyping cycle, involving
directly the users to take into account their feedbacks during the application de-
sign. In [7,12,13], some works have described applications from the APSI frame-
work focusing on the support offered by the software platform.

The APSI-TRF architecture.
The APSI-TRF software consists of
a layered architecture which is or-
ganized according to the abstrac-
tion level of the solving process.
Broadly speaking, constraints are Component Layer
posted on the lower levels as a [ component
consequence of decisions taken on
higher levels by analyzing variables
in the underlying layers (for further
details, the reader should refer to Fig. 1. The APSI-TRF architecture
7).

The Time and Parameter Layer is the lowest layer of the APSI-TRF archi-
tecture and it is responsible of managing temporal and parameter information.
It provides the functionalities for creating temporal and parameter elements,
imposing constraints on them and querying the database to access information
about events, temporal positions and parameter values. In particular, temporal
information are managed in shape of Temporal Constraint Networks (TCNs).
This layer is also endowed with propagation algorithms to maintain the consis-
tency of the possible value assignments to time points. The current implementa-
tion is based on the Simple Temporal Problem. The Component Layer is the point
of expansion of the APSI-TRF architecture. A component is a module which en-
capsulates the logic for computing a timeline resulting from decisions, evaluating
the consistency of the computed timeline with respect to a set of given rules and
computing a set of temporal and/or parameter constraints or new decisions to
solve (if possible) any flaw for the consistency of the computed timeline. The
Domain Layer is responsible for managing decisions and relations among them.
This information are managed through a particular data structure called Deci-
sion Network. This layer is responsible for providing management functions and
generating synchronizations among components. The Decision Network provides
a unified vision of the current solution while the Domain Manager provides a
unified means for expressing the constraints that the decisions must satisfy. A
decision is a generic term to represent a choice with respect to the temporal
evolution of the domain components and it constitutes the primitive operator to
interact with them.

The APSI-TRF provides the timeline-based modeling primitives, to obtain a
complete application that solves a particular problem, it is necessary to build a
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problem solver on top of the framework. The Open Multi-Component Planner &
Scheduler (OMPS) [15], as implemented for the GOAC project [13] is an example
of such solvers. It builds upon the APSI-TRF framework by selecting the domain
components relevant to control and implements the solving engine able to find
solution plans.

Limitations in APSI-TRF and Owmps. After the deployment phase of the
OMPS planner in the GOAC project, a further research effort has been provided
to enhance solver development within the APSI-TRF and, in particular, enabling
the definition of general-purpose domain independent solvers. During the GOAC
project, the main aim was to generate an effective P&S application to address
a particular problem and, more in general, the need of meeting operational re-
quirements in challenging domains (like for instance the space context) often
leads to the use of highly efficient software modules to address specific sub-parts
of the problem with ad-hoc solving algorithms, while the need of reducing mod-
eling mistakes leads to the need of involving users as much as possible in all the
steps of software development.

This issue became more evident while applying that APSI-TRF application
in solving problems different from the one for which it was developed (see Sec-
tion 4.3). In fact, as applications are designed and implemented to focus on
very complex problem contexts, the lack of generality is a reasonable payoff.
Thus, the EPSL has been developed to enhance the current APSI-TRF solving
structure exploiting the same representation layers. In fact, the EPSL has been
built introducing a more general search structure relying on the same APSI-TRF
functionalities for managing and representing the domain timelines as well as on
a set of operators (Resolvers) obtained by a decomposition of the OMPS solving
process.

3 The Extensible Planning and Scheduling Library

The main goal of the Extensible Planning and Scheduling Library (EPSL) is
to provide a planning environment in which it is possible to easily define and
evaluate different solving configurations in order to find the best one for the
particular problem to address.

3.1 Architectural Description

The EPSL can be seen as a solver which uses the APSI-TRF modeling func-
tionalities described in Section 2.1 (see again Figure 1) to solve timeline-based
problems. The new planning framework can be sketched as a layered architecture
whose main elements are depicted in Figure 2.

Engine Layer. This lower layer manages a set of algorithms, called Resolvers
(inspired by the basic OMPS solving process), that directly act on a timeline-
based plan. Indeed, each Resolver is responsible to manipulate the plan in order
to solve a particular kind of flaw (where a flaw identifies a condition which must



be removed to obtain a solution plan). So this layer provides a set of “ready-to-
use” plan manipulation operators that can be combined together by the planner
during the search. For the purpose of this paper, the operators that manipulate
the timeline-based plan (implemented by Resolvers) are the following:

Decision Justification: 1t is the pro-
cess needed to safely introduce new
decisions (goals) into the plan (a.k.a.
plan refinement). The introduction
of a decision into the plan induces on
the associated components a parti-
cular behavior on a certain time in-
terval. So, the justification process
guarantees the overall plan consis-

tency by synchronizing the result-
W ing component’s behavior with other
] domain components.
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Fig. 2. EPSL layered architecture

State Variable Scheduling: 1t is the
process responsible to solve state variable value contention flaws. It allows to
solve state variable inconsistencies due to partial overlapping of component de-
cisions (a.k.a. values). We use the term scheduling because the timeline decisions
may be considered as activities containing “resource requirement” where the re-
source (a State Variable) is a binary resource (a single value for each time instant
is allowed). The contention flaws are solved by scheduling activities to achieve a
total order among them (i.e., avoiding overlaps).

Timeline Extraction: It is the process that fixes floating time points on a com-
ponent (a state variable) so that a particular temporal evolution (a timeline)
is decided for the component itself. Before the extraction step, plan decisions
are not “fully ordered” so components may have several possible behaviors. The
current extraction procedure uses an Earliest Start Time (EST) approach: each
decision is allocated as soon as possible over its time bounds. It is worth re-
minding that a valid behavior requires a completely allocated timeline in order
to avoid unpredictable component behaviors.

State Variable Completion: It is the process responsible to solve state variable
gap flaws. It is an operator used, for example in the timeline-extraction proce-
dure. It completes a timeline when any temporal gap is detected (a gap is timeline
time interval with no value assigned).

Search Layer. This is the layer for specifying planners in EPSL. It implements
the search process by coordinating and integrating together all elements that
compose a planner instance. It is the “glue” among the set of Resolvers needed
to refine the plan, the Heuristics used to analyze it and the Strategy used to
manage the possible alternatives during the search.



Heuristics. This module is responsible for search node evaluation. It manages
the specific knowledge about the problem in order to better support the solv-
ing process, also providing the facilities to easily define and integrate into the
framework new heuristics. At present EPSL uses two classes of heuristics: (i)
Search-Heuristic identifies the class of heuristics used for search space node eval-
uation in order to identify the most promising node to expand during solving
process. (ii) Plan-Analyzer identifies the class of heuristics used for flaw selec-
tion. So they have the responsibility to extract a set of flaws from the current
partial plan, classify them and select the more relevant to solve in order to find
a solution. Within EPSL, a basic search-heuristic implementation is defined as
follows:

Definition 1. Given that G(n) = {go, g1, -, gk } is the set of goalss of the prob-
lem status associated to the node n, the estimated cost solving the problem h(n)
computed by the heuristic function is: h(n) = 3 cqeny fi(g) wi, Vi € OP where
OP is the set of primitive operators of the solving process, f; is the iy, solving
step and w; 1is the associated cost.

Strategy. This module is responsible for managing the fringe of the search space.
A strategy defines a particular queuing policy of nodes not yet expanded and it
may use an Heuristic function to better support the search process. The EPSL
is endowed with a set of basic strategies, i.e., A*, Depth First Search (DFS) and
Breadth First Search (BFS).

In addition, a probabilistic search strategy is provided. It consists of a greedy
search in which an evaluating function f(n) = P(n) is exploited representing a
probabilistic distribution which expresses the probability of a node n to be the
solution node, so f(n) = P(n) € (0,1].

Definition 2. The probabilistic function P(n) is defined as: P(n) = e,—}) with
limp, (1) 400 e,% =0 limp, )0+ e,% =1 with h(n) € [0,400).

The strategy sorts boundary nodes according to their probability values in
order to extract first the nodes with the highest probability to be the solution.

Finally, the EPSL framework provides the capability of introducing either
new search strategies or defining composite strategy taking advantage of a (sort
of) composition operator to integrate different (already defined) search strate-
gies.

Application Layer. This module represents the user interface which provides
functionalities for easily define and run new planning instances. A user can define
a planner configuration by simply declare the elements composing the planner,
then the framework is responsible to create the planner instance that the user
can run to solve problem instances.

3.2 Main advantages in using EPSL

The EPSL design has been started in order to address the limitations discussed
in Section 2.1. In fact, the APSI-TRF framework provides the possibility to effec-
tively design applications relying on tailored solving structures but, in general,



they can not be easily (and quickly) deployed in different contexts. The main
reason is that APSI-TRF currently allows the design and development of ap-
plications relying on solvers strictly coupled with search strategy and heuristic
information.

Then, as discussed above, EPSL provides an enhanced framework for devel-
oping applications in which designers may focus on a single aspect of the solving
process. In particular, EPSL allows to focus on (i) resolvers design (i.e., adding
new reasoning capabilities), (ii) search strategies (i.e., possibly implementing
additional algorithms) and (iii) heuristic functions definition (i.e., identifying
suitable control strategies for the specific problem). All the above features con-
cur in creating a portfolio of operators, algorithms and heuristics that actually
enable the possibility to combine them in many possible ways (not only the ones
for which they have been designed), then, providing application designers with
a really flexible framework for P&S application development.

Finally, even though the EPSL is in an initial development stage, results
collected after an experimental evaluation show that EPSL performances are
comparable with OMPS in the domain for which such APSI-TRF application
has been developed (i.e., the GOAC domain). On the other hand, a particular
EPSL planner (whose configuration has been identified after a fast assessment
on the considered domain) shows better performances of OMPS on a different
planning domain elicited from a different space domain (see section 4.3).

4 Current Empirical Results

In this section, we present an experimental evaluation comparing EPSL and
OwmPS performances while solving different problem instances in two different
planning domains derived from real world scenarios: a robot control domain ex-
tracted from the GOAC project [13] and a space facility management domain
extracted from the ULISSE project [17]. Before discussing empirical results, a
brief description of the problem domains and their timeline-based representa-
tions is provided. Then, experimental results are reported and discussed. All the
experiments have been ran on a MacBook endowed with an Intel Core 2 Duo
(2.26GHz) processor and 2GB RAM.

4.1 GOAC: A Robotic Domain

The Goal Oriented Autonomous Controller [13] is an ESA effort to create a
common platform for robotic software development. In particular, the delivered
GOAUC architecture has integrated: (a) a timeline-based deliberative layer which
integrates a planner based on the APSI Platform [7] and an executive a la T-REX
[18]; (b) a functional layer which integrates G*”,M and BIP [19].

The GOAC Domain. The robotic domain considers a planetary rover equipped
with a Pan-Tilt Unit (PTU), two stereo cameras (mounted on top of the PTU)
and a communication facility. The rover is able to autonomously navigate the en-
vironment, move the PTU, take pictures and communicate images to a Remote
Orbiter. A safe PTU position is assumed to be (pan, tilt) = (0,0). Finally, during



the mission, the Orbiter may be not visible for some periods. Thus, the robotic
platform can communicate only when the Orbiter is visible. The mission goal is
a list of required pictures to be taken in different locations with an associated
PTU configuration. A possible mission action sequence is the following: navigate
to one of the requested locations, move the PTU pointing at the requested di-
rection, take a picture, then, communicate the image to the orbiter during the
next available visibility window, put back the PTU in the safe position and, fi-
nally, move to the following requested location. Once all the locations have been
visited and all the pictures have been communicated, the mission is considered
successfully completed.

The rover must operate following some operative rules to maintain safe and
effective configurations. Namely, the following conditions must hold during the
overall mission: (C1) While the robot is moving the PTU must be in the safe
position (pan and tilt at 0); (C2) The robotic platform can take a picture only
if the robot is still in one of the requested locations while the PTU is pointing
at the related direction; (C3) Ounce a picture has been taken, the rover has to
communicate the picture to the base station; (C4) While communicating, the
rover has to be still; (C5) While communicating, the orbiter has to be visible.

Timeline specification for the
robotic domain. To obtain a
timeline-based specification of our
robotic domain, we consider two types
of state variables: Planned State Vari-
ables to represent timelines whose val-
ues are decided by the planning agent,
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We use four of such state variables,
namely the RobotBase, PTU, Camera and Communication.

In Fig. 3, we detail the values that can be assumed by these state variables,
their durations and the legal value transitions in accordance with the mission
requirements and the robot physics?® Additionally, one external state variable
represents contingent events, i.e., the communication opportunities. The Orbiter
Visibility state variable maintains the visibility of the orbiter. The allowed val-
ues for this state variable is Visible or Not-Visible and are set as an external
input. The robot can be in a position (At(z,y)) or moving towards a destination
(GoingTo(z,y)). The PTU can assume a PointingAt(pan,tilt) value if pointing
a certain direction, while, when moving, it assumes a MovingTo(pan,tilt). The
camera can take a picture of a given object in a position (z,y) with the PTU

2 Note that variables (e.g., ?x) represents parameters with values in a finite set of
symbols, used to compactly represent the allowed values for a given state variable.



in (pan,tilt) and store it as a file in the on-board memory (TakingPicture(file-
id,x,y,pan,tilt)) or be idle (Camldle()). Similarly, the communication facility
can be operative and dumping a given file (Communicating(file-id)) or be idle
(Comldle()). Domain operational constraints are described by means of synchro-
nizations. A synchronization models the existing temporal and causal constraints
among the values taken by different timelines (i.e., patterns of legal occurrences
of the operational states across the timelines).

Fig. 4 exemplifies the o
use of synchronizations :C”me"”
implementing the oper- :
ative rules (see Section \Pan-Tilt . fv

R . i S _
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(C2); TakingPicture(pic, z, y, pan, tilt) must occur before Communicating(pic)
(C8); Communicating(file) must occur during At(z,y) (C4); Communicat-
ing(file) must occur during Visible (C5). In addition to those synchronization
constraints, the timelines must respect transition constraints among values and
durations for each value specified in the domain (see again Fig. 3).

4.2 Testing Results on the GOAC Domain

This section investigates the EPSL planners performance by using our robotic
case study as a benchmark. For this purpose, we introduce different planning
problem scenarios obtained by varying the problem complexity along the follow-
ing dimensions: plan length by playing on both the number of pictures (from 1
to 5) to be taken and the plan horizon; plan choices by changing the number
of communication opportunities (from 1 to 4 visibility windows). Notice that an
increasing number of communication opportunities raises the complexity of the
planning problem with a combinatorial effect. More in general, among all the
generated problem instances, the ones with higher number of required pictures
and higher number of visibility windows result as the hardest ones. In these
scenarios, we analyzed the performance of the planners.

Exploiting the flexibility provided by EPSL, we have easily configured five
different planners in order to test the framework capabilities and also to compare
their performances with OMPS. Therefore, exploiting the strategies and heuris-
tic functions described in Sec. 3.1, we have defined the following planners: BFS
Planner, A* Planner, Probabilistic Planner, and DFS Planner. In addition, a
more general planner, called Chronological Backtracking Planner, has been de-
fined extending the DFS Planner using the Probabilistic Strategy described in
Sec. 3.1.

This strategy splits the solving process in two phases. During the first phase,
the planner uses the Probabilistic Strategy to apply the justification decisions,



then, the planner switch to the DFS Strategy in order to complete the plan and
find a solution as soon as possible. Basically, this strategy provides a trade off
between controlling the decisions to apply and completing the plan as quick as
possible.

Moreover it is important to point out that EPSL features give the possi-
bility to set several configuration parameters in order to affect planner choices
during solution search. Therefore, Fig. 5 shows the results obtained by the best
parameter configuration for each tested planner.
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Fig. 5. EPSL testing results and comparison with OMPS on GOAC problem with: (a)
one, (b) two, (c) three and (d) four communication windows.

The resulting performances demonstrate how different planner configurations
may lead to pretty different results. The BF'S Planner is the worst among the
defined EPSL planners as it is able to solve few problem instances. Indeed,
using such strategy leads to expand a lot of nodes before a solution is found,
possibly because the problem domain structure determines very deep solution
nodes. So, in this case, the planner spends a lot of time in expanding nodes and
in maintaining Temporal Network consistency without approaching the solution
node. This is also confirmed by the fact that A* Planner has performances very
close to those of the BFS Planner. This also allows us to argue that the exploited
heuristic function is not informed enough.

On the other hand, the DFS Planner and OMPS results as the best planners
(see again Fig. 5). In fact, both use a strategy that does not make an evaluation of
boundary nodes during the search. They always make the same choices (decision
expansion) during the search. Given the characteristics of the GOAC problem,
this results as the best approach as they are able to manage in a more effective
way the underlying Temporal Network, thus, reducing the propagation cost due
to the maintenance of temporal constraint consistency. However, such planners



do not provide any control on the solving process and, as we will see in the next
section, this is not a good behavior for different kind of problems.

As a final remark, EPSL does not always offer performances better than
Owmps. In particular, only DFS Planner is comparable to OMPS (even better in
some cases). However, it is important to notice that the main goal of the system
is to realize a flexible and extensible software library by which it is possible to
easily define new planning instances or to adapt an already defined planner to a
particular problem. Indeed, EPSL unlike OMPS gives the possibility to focus the
efforts on specific aspects of solving process so by means of its functionalities it is
possible, for instance, to improve solution search by providing a more informed
heuristic as well as to improve the Temporal Network management by providing
more efficient algorithms.

4.3 FSL: A Space Facility Management Domain

The "USOCs Knowledge Integration and dissemination for Space Science Ex-
perimentation” (ULISSE) is a project (funded by EU and indicated by REA as
example of successful FP7 project in the Space field) whose objective is data val-
orization around the ISS experiments. Each USOC (User Support and Operation
Centre) is responsible for a particular on-board facility that is to be operated to
perform scientific experiments and to generate the related scientific data. Here,
we report a simplified planning domain derived from the one described in [17]
aiming at addressing a short-term planning problem in managing a particular
ISS facility.

The Fluid Science Laboratory. The FSL is a ISS multi-user facility designed
for the execution of experiments on fluid physics under microgravity conditions.
The FSL is equipped with a number of optical instruments that allow to sepa-
rately implement a wide variety of diagnostic techniques that can be combined
together and each combination is called optical mode. Generally, an experiment
execution consists of several runs, a run is a part of the experiment that uses a
defined configuration and setting of the facility (as for example a specific optical
mode). The data recorded by the experiments are sent in a real-time manner to
the ground. Data is routed to the Columbus for communicating to the ground
through a High Rate downlink channel mainly intended for high rate science
data. The FSL is always in one defined status, among the following: Off, Stand-
by, Configuration & Checkout and Nominal. A set of operations on FSL has
been identified that require an initial status of FSL and may eventually lead
to a transition to a new status of the facility. Each activity is characterized by
several parameters, e.g., the team that operates the FSL, the duration of the
activity, etc. A complete specification of the FSL activities is given in [17].
Each plan executed on the FSL has to comply with a set of operative con-
straints. These are related to general operational requirements: prior to per-
forming scientific experiments and/or diagnostic tests correctly, the FSL must
follow a precise sequence of steps in order to be fully operative: initially, it must
be mechanically configured according to the experiment/test to be performed;
subsequently, the operative rack has to be activated; finally, the set of diagnos-
tics must be executed before the experiment can commence. At the end of each



operative cycle, the previous operations must be planned to be executed in the
reverse order. At the beginning of each operative period, an optical mode test
has to be performed to check whether the mechanical configuration has been cor-
rectly completed (avoiding to perform experiments with optical targets wrongly
set); the High Rate Data Link (HRDL) has to be allocated during each run that
requires real time data transmission; a run cannot be interrupted and has to
be executed continuously. Finally, other operative constraints are required for
safety issues: during non operative periods, the status of both the FSL and the
Rack must be off, FSL mechanical configuration and de-configuration activities
have to be performed with both FSL Rack and FSL switched off.

Generally, the execution of an experiment consists of several runs; a run is a
segment of the experiment that uses a defined configuration and setting of the
facility (as for example a specific optical mode). The objective function for the
problem is that all the planned experiments must be performed and the recorded
activities should be safely downloaded on ground stations.

A timeline specification for the FSL domain. To obtain a timeline-based
specification of the FSL domain a set of multi-valued state variables has been con-
sidered.
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tion, Rack, FSL and FSL_Acti- on o off
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a detailed view of the val-
ues that can be assumed by
these state variables, their du-
rations and the allowed value transitions in accordance with the operative con-
straints.

In general, before any operative period, the FSL requires a Mechanical Con-
figuration. In particular, during not operative period no optical target is mounted
on the FSL (Deconfigured) while, before starting an optical checkout, a suitable
optical target is to be mounted to result mechanically configured (Configured).
The Rack can assume a Active status when switched on while, when switched
off, it assumes a Not Active value. The FSL can assume different status as well as
perform different activities. The FSL may be in one of the following status: Off
while not operating, StandBy after initialization and in operative mode when
ready for Control and Checkout (i.e., CC). The FSL_Activilies represents the
full set of activities that can be performed on-board. Namely, the FSL activi-
ties are the following: installation or removal of an optical target (respectively,

Fig. 6. Value transitions for state variables describ-
ing the FSL (temporal durations in minutes).



OPT_TGT_INST(x) and OPT-TGT-RMV with x representing one of the 86
available optical modes); activation and deactivation of the rack (RACK_ACT
and RACK_DEACT); initialization and activation of the optical component
(FSL_STBY and FSL_CC); finally, while running an optical checkout the FSL
may assume the RT_-OPT_-CO(z); finally, executing a downlink activity results
in assuming the DATA_DNLK value. In Figure 6, we detail the values that
can be assumed by these state variables, their durations and the allowed value
transitions in accordance with the operative requirements.

In the FSL domain, the following compatibilities are considered (not shown
in Figure 6 not to overload the representation): (1) OPT-TGT-INST values
must occur DURING a Deconfigured value on the Mechanical Configuration
variable; (2) OPT-TGT-RMV as well as Active and RACK_ACT must occur
DURING a Configured value on the Mechanical Configuration state variable;
(3) RACK_DEACT, RACK_STBY and RACK_CC must occur DURING a Ac-
tive value on the Rack state variable; (4) RT_ OPT_CO and DATA_DNLK must
occur during a CC value on the FSL state variable. The first two compati-
bilities globally express the circumstance that all FSL activities must be per-
formed within a Rack activation/deactivation cycle, and that such cycle must
be performed once an optical target has been configured. The third compatibility
enforces that the FSL is supposed to be initialized before being fully operative.
Finally, constraint (4) enforces that the main FSL activities should be performed
while in CC.

4.4 Testing Results on the FSL Domain

This section further investigates the performances of the EPSL in the FSL case
study. Again, we consider different planning problem scenarios obtained by vary-
ing the problem complexity by varying: (1) plan length, i.e., both the number
of optical check out (from 1 to 30) to be taken and the plan horizon; (2) Plan
Flexibility, i.e., for each FSL activity, we set a minimal duration, but allow tem-
poral flexibility on the activity termination, namely, the end of each activity has
a tolerance ranging from 0 to 30 seconds. This temporal interval represents the
degree of temporal flexibility /uncertainty that we introduce in the system. It is
worth to underscore that, among all the generated problem instances, the ones
with higher number of required pictures and higher temporal flexibility corre-
spond to the hardest ones. In these scenarios, we analyzed the performance of
the planners but, here, rather than testing all the possible EPSL planners as in
the previous case study, we exploited the Chronological Backtracking Planner
configuration already defined for the GOAC problem (see Sec. 4.2) taking ad-
vantage of the EPSL flexibility to quickly configure the more suitable planner to
test the framework as well as to compare its performance with OMPs.

In this case, the EPSL Planner dominates OMPS (see Fig. 7) providing best
performances in every configuration. In this domain, there are different kind of
choices (decisions for unification) that must be applied in order to efficiently
find a solution and, in this regard, OMPS solving settings can not be adjusted in
order to change its solving behavior. Therefore, OMPS applies the same solving
approach (i.e., a fully DFS strategy) as for the GOAC domain, while EPSL
exploit the possibility to control the application of justification decisions during
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Fig. 7. EPSL comparison with OMPS (time in msecs.) on ULISSE problem with: (a) 0
seconds flex.; (b) 10 seconds flex.; (c) 20 seconds flex.; (d) 30 seconds flex..

the search, thus, providing a search strategy that allows the planner to efficiently
address the FSL problem. As discussed in Sec. 2.1, this is an expected behavior.
In fact, OMPS has been designed and developed to face different planning domain
and problem instances. Thus, given its structure, it would require additional
design efforts in order to address also the FSL management.

5 Conclusion

This paper has introduced EPSL a tool that represents an advancement in devel-
oping an extensible and general-purpose planning environment using the same
APSI-TRF interfaces. The system aims at providing the possibility to focus
on specific aspects (e.g. heuristic or strategy definition) taking advantage of
the flexibility of the implemented timeline-based solving process. The evalua-
tion presented in this paper shows how it can be used for synthesizing domain
independent planners. Such planners have been evaluated with respect to two
real-world application domains against the preheating OMPS planner as devel-
oped for the GOAC project. We have shown how the EPSL-based planners are
comparable with OMPS on the GOAC domain and outperform it on FSL. Some-
how this represents the basic seed result for justifying our research. We will now
continue our work comparing with other possible approaches (e.g., EUROPA)
but also pursuing further enhancements of EPSL to integrate state of the art
technology for domain-independent search control.
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