
A TGA-based Method for Safety Critical Plan Execution

Andrea Orlandini, Marco Suriano, Amedeo Cesta
CNR – National Research Council of Italy

Institute for Cognitive Science and Technology
Rome, Italy – {name.surname}@istc.cnr.it

Alberto Finzi
Università di Napoli “Federico II”

DIETI
Naples, Italy – alberto.finzi@unina.it

Abstract

Safety critical planning and execution is a crucial issue in au-
tonomous systems. This paper proposes a methodology for
controller synthesis suitable for timeline-based planning and
demonstrates its effectiveness in a space domain where ro-
bustness of execution is a crucial property. The proposed ap-
proach uses Timed Game Automata (TGA) for formal mod-
eling and the UPPAAL-TIGA model checker for controllers
synthesis. An experimental evaluation is performed using a
real-world control system.

Introduction
The design of safety critical and dependable systems is be-
coming increasingly important as technology advances. In
fact, safety critical systems need to be certified and, thus,
crucial properties, e.g., a bounded maximum execution time,
require to be enforced. On the other hand, the need of
meeting operational requirements in challenging domains
as, for instance, in several space applications, often leads
to the use of highly efficient software modules that address
specific sub-parts of a larger problem with ad-hoc solving
algorithms that cannot be easily verified. In this regard,
the authors are working at the integration of Planning and
Scheduling (P&S) technology with Validation and Verifica-
tion (V&V) techniques to synthesize safety critical systems
in space robotics. In particular, our current goal consists
in cascading a timeline-based planner (OMPS (Fratini, Pec-
ora, and Cesta 2008)) and a V&V technique based on Timed
Game Automata (TGA) (Maler, Pnueli, and Sifakis 1995) to
automatically synthesize a robot controller that guarantees
certain properties.

More specifically, we are addressing the dynamic control-
lability issue (e.g., see (Morris and Muscettola 2005)): once
a planner has generated a temporal plan, it is up to the execu-
tive system to decide, at run-time, how and when to execute
each planned activity preserving both plan consistency and
controllability. Such capability is even more crucial when
the generated plan is temporally flexible, as it captures an
envelope of potential behaviors to be instantiated during the

The present paper has been already accepted for publication at
the IEEE International Conference on Tools with Artificial Intelli-
gence (ICTAI 2013).

execution taking into account temporal/causal constraints
and controllable/uncontrollable activities and events. 1

A previous paper (Cesta et al. 2010a) introduces a tech-
nique for the P&S and V&V integration, while (Orlandini et
al. 2011) first uses such integration for controller synthesis.
The present paper integrates the technology in a real con-
trol architecture result from the GOAC project 2 (Ceballos
et al. 2011) and explores the applicability in a set of exper-
iments based on a real robot. The experimental evaluation
shows the practical feasibility of the on-line deployment of
such TGA-based approach in different operative modalities
considering increasingly complex instances of a real-world
robotics case study. In all the considered settings, robust
plan execution is formally enforced maintaining plans as dy-
namically controllable. It is worth underscoring that, even
though the running example is taken from a specific project,
the work described in this paper is valid for any generic lay-
ered control architecture (e.g., (Gat 1997)) that integrates a
temporal planning system.

Plan of the Paper. A first section introduces timeline-
based planning and execution to set the context of the work.
The second presents the integration with the TGA-based
method. The real-world robotic scenario is illustrated in the
subsequent section followed by the outcome of the associ-
ated empirical evaluation. Some conclusions end the paper.

Planning and Execution with Timelines
Timeline-base planning has been introduced in (Muscet-
tola 1994) and has demonstrated successful in a number of
space applications (Muscettola 1994; Jonsson et al. 2000;
Cesta et al. 2007). The modeling assumption underlying
this approach is inspired by the classical Control Theory:
the problem is modeled by identifying a set of relevant com-
ponents whose temporal evolutions need to be controlled to
obtain a desired behavior. Components are primitive entities
for knowledge modeling, and represent logical or physical

1Uncontrollable events are those that cannot be planned for as
they are decided by Nature – the external environment.

2GOAC (Goal Oriented Autonomous Controller) has been a
multi-institutional effort within the activities on robotics funded by
the European Space Agency (ESA)

39

subsystems whose properties may vary in time. In this re-
spect, the set of domain features under control are modeled
as a set of temporal functions whose values have to be de-
cided over a time horizon. Such functions are synthesized
during problem solving by posting planning decisions. The
evolution of a single temporal feature over a time horizon
is called the timeline of that feature. In particular, for the
purpose of this paper multi-valued state variables are con-
sidered as the basic type of time varying features (Cesta and
Oddi 1996). As in classical control theory, the evolution of
those features are described by some causal laws which de-
termine legal temporal evolutions of timelines. For the state
variables, such causal laws are encoded in a Domain The-
ory which determines the operational constraints of a given
domain. Task of a planner is to find a sequence of control
decisions that brings the variables into a final set of desired
evolutions (i.e., the Planning Goals) always satisfying the
domain specification.

In this area of research, a lot of effort has been dedicated
to build software development environments, like EUROPA
(Barreiro et al. 2012), ASPEN (Chien et al. 2010), and
APSI-TRF (Cesta et al. 2009), aiming to facilitate the syn-
thesis of timeline-based P&S applications. Nevertheless, a
crucial issue in real applications is the tight integration of
planning and execution.

Previous works have tackled the robust execution is-
sue within a Constraint-based Temporal Planning (CBTP)
framework deploying specialized techniques based on
temporal-constraint networks. Several authors (Morris,
Muscettola, and Vidal 2001; Morris and Muscettola 2005;
Shah and Williams 2008; Hunsberger 2010) have proposed
a dispatchable execution approach where a flexible tem-
poral plan is then used by a plan executive that schedules
activities on-line while guaranteeing constraint satisfaction.
This general line of research has concerned specifically the
use of timeline-based planning and their temporal constraint
networks implementation for an homogeneous synthesis of
controllers. Among the architectures that use a uniform rep-
resentation for the continuous planning and execution task
are IDEA (Muscettola et al. 2002), T-REX (Py, Rajan, and
McGann 2010) and, more recently, GOAC (Ceballos et al.
2011). In particular, the GOAC effort combines several tech-
nologies: (a) a timeline-based deliberative layer which inte-
grates a planner, called OMPS (Fratini, Pecora, and Cesta
2008), built on top of APSI-TRF to synthesize timelines and
revise them according to execution needs, and an executive
a la T-REX (Py, Rajan, and McGann 2010); (b) a functional
layer (Bensalem et al. 2010) which combines a state of the
art tool for developing functional modules of robotic sys-
tems (Gen

oM) with a component based framework for im-
plementing embedded real-time systems (BIP).

In this context, the present paper particularly focuses on
a timeline-based, domain independent deliberative control
system, called APSI Deliberative Reactor (ADR) 3 (Cesta

3The term Reactor is a legacy from T-REX. It is also worth
saying that the initial motivation of our work is to design a smooth
integration with the T-REX executive that in its original implemen-
tation uses a different timeline-based planner.

et al. 2012), proposed in GOAC. The ADR has been de-
signed to address a set of open issues in planning and execu-
tion with timelines, i.e., the dynamic management of goals
during planning and execution, the assessment of the sta-
tus of partially executed goals and the dynamic dispatch-
ing of commands. More in detail, the ADR is an instance
of a proactive control system entirely based on APSI-TRF
technology and is constituted by (i) an execution module, to
dispatch planned timelines, to supervise their execution sta-
tus and to entail continuous planning and re-planning, (ii) a
timeline-based planning module, i.e., OMPS, to model and
solve planning problems.

The ADR is designed to be domain independent, i.e., once
provided a suitable timeline-based description model of the
system to be controlled and a set of temporal goals to be
achieved it fully implements all the required functionalities
to plan for goals, dispatch planned values to the controlled
system and supervise plan execution collecting the teleme-
try of the controlled system. One of the main advantage
of domain independence is the capability of the delibera-
tive reactor to both plan for user goals and dynamically re-
act to off-nominal conditions detected from the controlled
system telemetry. Additionally, it allows flexibility in two
direction: it can achieve different classes of user goals in the
same system by substituting the controller model and it can
be deployed to control different systems by substituting the
domain description of the controlled system.

Finally, it is worth pointing out that, following a T-REX-
like approach (Py, Rajan, and McGann 2010), the use of re-
actors allows to implement controller systems by means of
hierarchical compositions of various deliberative reactors.
In fact, reactors are differentiated on the basis of whether
they need to deliberate in abstraction (reasoning on the high-
est level of representation) or they need to be responsive to
the inputs from the lower levels closer to the robotic hard-
ware. In the former case the planner a have larger planning
horizon to deliberate and return partial plan for dispatching
to other reactors. In the latter the planner has a no time to
reason, hence it implements simple reactive policies. Such
gradation allows the entire system to be both deliberative
and reactive over its temporal scope. The GOAC architec-
ture, whose executive component is based on T-REX, uses
such a hierarchical configuration of reactors (see further de-
tails in (Ceballos et al. 2011)).

TGA-based controller synthesis
This section presents the integration in APSI-TRF of an
alternative and novel approach to flexible plan dispatch-
ing/execution proposed in (Orlandini et al. 2011), where
robust plan execution is pursued by relying on Timed Game
Automata (TGA) formal modeling and controller synthesis.
The technique used to synthesize plan controllers is a di-
rect consequence of the formalization proposed in (Cesta et
al. 2010a) in which plan correctness as well as dynamic
controllability are checked by means of TGA model check-
ing. Analogously to that work, the dynamic P&S domain
and the generated flexible temporal plan are encoded into
TGA models. However, a different perspective is exploited
through the use of a model checker (i.e., UPPAAL-TIGA

40

(Behrmann et al. 2007)) to directly synthesize a real-time
plan controller for the flexible plan. Such controller guaran-
tees robust plan execution along with dynamic controllabil-
ity.

TGA-based controllers for flexible plan execution
Timed Game Automata (Maler, Pnueli, and Sifakis 1995)
(TGA) allow to model real-time systems and controllabil-
ity problems representing uncontrollable activities as adver-
sary moves within a game between the controller and the
environment. Following the same approach presented in
(Cesta et al. 2010a) (and briefly discussed above), flexible
timeline-based plan verification can be performed by solv-
ing a Reachability Game using UPPAAL-TIGA (Cassez et
al. 2005). To this end, flexible timeline-based plans, state
variables, and domain theory descriptions are compiled into
a network of TGA (nTGA). This is obtained by means of
through following steps: (1) a flexible timeline-based plan
P is mapped into a nTGA Plan. Each timeline is encoded
as a sequence of locations (one for each timed interval),
while transition guards and location invariants are defined
according to (respectively) lower and upper bounds of flex-
ible timed intervals; (2) the associated set of state variables
SV is mapped into a nTGA StateVar. Basically, a one-to-one
mapping is defined between state variables descriptions and
TGA. In such encoding, value transitions are partitioned into
controllable and uncontrollable according to their actual ex-
ecution profile; (3) an Observer automaton is introduced to
check for violations of both value constraints and Domain
Theory. In particular, two locations are defined: an Error
location, to state constraint violations, and a Nominal (OK)
location, to state that the plan behavior is correct. The Ob-
server is defined as fully uncontrollable. (4) the compound
nTGA PL = StateVar ∪ Plan ∪ {Observer} encapsulates
flexible plan, state variables and domain theory descriptions.

Then, considering a Reachability Game RG(PL, Init,
Safe, Goal) where Init represents the set of the initial lo-
cations of each automaton in PL, Safe is the OK location
of the Observer automaton, and Goal is the set of goal loca-
tions (one for each automaton in Plan), plan verification can
be performed solving/winning theRG(PL, Init, Safe, Goal)
defined above. In order to win/solve the reachability game
RG, UPPAAL-TIGA is exploited as verification tool check-
ing a suitable CTL formula, i.e., Φ = A [Safe U Goal] in
PL. In fact, the formula Φ states that along all its possible
temporal evolutions, PL remains in Safe states until Goal
states are reached. That is, in all the possible temporal evolu-
tions of the timeline-based plan P all the constraints are ful-
filled and the plan is completed. Thus, if the solver verifies
the above property, then the flexible temporal plan is valid.
Whenever the flexible plan is not verified, UPPAAL-TIGA
produces an execution trace showing one temporal evolution
that leads to a fault. Such a strategy can be analyzed in order
to check either for plan weaknesses or for the presence of
flaws in the planning model.

Furthermore, a mapping between flexible temporal behav-
iors defined by P over the temporal horizon [0, H] and the
automata behaviors defined by PL can be shown: for each
partial temporal behavior pb ∈ P defined over H ′ < H ,

it there exists a unique temporal evolution ρpb of PL such
that ρpb represents the partial temporal behavior pb over the
same horizonH ′. That is, ρpb represents the same valued in-
tervals sequence in P limited to H ′ and the duration of ρpb
is exactly the horizon H ′. As a consequence, the winning
strategy f generated by UPPAAL-TIGA solving the reach-
ability game on PL represents a flexible plan controller Cf
that achieves the planning goals maintaining the dynamic
controllability during the overall plan execution. In (Orlan-
dini et al. 2011), the reader may find a formal account of the
generation of a plan controller Cf derived from a winning
strategy f generated by UPPAAL-TIGA.

Integrating the controller in the deliberative
reactor
Here, the integration in the ADR of the TGA-based method
discussed above is presented. In particular, a suitable em-
bedding of the UPPAAL-TIGA tool within the ADR plan-
ning and execution cycle is shown and, then, the advantages
in terms of plan correctness and robust execution enforce-
ment (i.e., dynamic controllability) are discussed.

The integration schema is shown in Figure 1. The left
part of the figure shows the APSI-TRF general architecture.
The domain and problem models are encoded as Domain
Definition Language (DDL) and Problem Definition Lan-
guage (PDL) input files. Then, both DDL and PDL files
are parsed and managed by the Component-based Domain
Modeling Engine and a Current Plan (i.e., the initial plan-
ning problem) is created to be manipulated by a Problem
Solver. Indeed, the Current Plan is specialized as a data
structure called Decision Network in APSI-TRF. Then, a
generic problem solver, e.g., OMPS, applies a solving pro-
cedure until the Current Plan satisfies all the planning goals
(or fails in finding a solution plan).

The right part of Fig. 1 depicts a simplified view of the
APSI Deliberative Reactor with two relevant services, i.e.,
the Dispatch services and the Execution Feedback modules,
in charge of (respectively) dispatching suitable commands
for the controlled system and collecting feedback from the
field. The new APSI Deliberative Reactor architecture still
reflects the structure of a T-REX reactor (as defined in (Cesta
et al. 2012)) as well as it introduces two new components,
i.e., the TGA-based Controller (TC) and the Strategy Man-
ager (SM), enabling robust plans execution through the use
of strategies generated by UPPAAL-TIGA.

The TC is in charge of managing plans in order to (i) ver-
ify plan correctness and (ii) generate a dynamically control-
lable execution strategy: once a solution plan P is generated
by the problem solver (i.e., the stored Current Plan is actu-
ally the valid plan to be executed), the TC automatically gen-
erates the associated TGA encoding (PL) and, then, invokes
UPPAAL-TIGA in order to verify the correctness of the plan
as well as to check for the existence of (at last) one tem-
poral plan execution guaranteeing the correct achievement
of the plan goals, independently from the exogenous events
generated by the environment (i.e., enforcing the dynamic
controllability). If the verifier finds one of these sequences,
then a strategy for the plan execution is generated. Namely,
a strategy generated by UPPAAL-TIGA is a set of tempo-

41

Component
Based

Modeling
Engine

Domain
Description
Language

Problem
Description
Language

Dispatch	
Services	

Execu1on	
Feedback	

APSI Deliberative Reactor

Current Plan

APSI-TRF

TGA-‐based	
Controller	

TIGA

Verify
Plan

Generate
Strategy Problem Solver

Strategy
Manager

Figure 1: Integration of TGA-based controller in the APSI Deliberative Reactor

ral rules that should guide the controlled system through the
execution space avoiding plan failures during its execution.
More formally, an UPPAAL-TIGA strategy is a set of rules
f(t, s) defined as follows:

f(t, s) =

{
twl < t < twu Wait
tal < t < tau Action an
t > terr Error

where t is the execution time, s is one of the possible state
of the system, twu and twl represent, respectively, lower
and upper bounds of a time interval in which the system
must wait for the environment to act, tal and tau represent
lower and upper bounds of a time interval in which the sys-
tem should perform the action an (i.e., one of the timeline
should change value) and terr is a time limit beyond which
the system generates an error. The latter represents the case
in which the execution strategy is coping with exogenous
events that are not properly modeled in the planning do-
main, e.g., the actual duration of an uncontrollable event is
shorter/longer than the minimal/maximal duration stated in
the domain model. This implies that the planning model is
inconsistent with the actual behavior of the controlled sys-
tem and, thus, a revision of that model (and the TGA encod-
ing) is required.

The SM is the module in charge of implementing the
concrete dispatching policy relying on the UPPAAL-TIGA
strategy. In fact, once generated, the SM exploit such strat-
egy to to choose the more suitable f(t, s) rule to be exe-
cuted, thus, extracting the associated action to be dispatched
(or to wait while the controlled system is evolving) as well
as to continuously monitor the internal status of the reactor
timelines and the execution feedback received from the field.

Given the above, the new integrated reactor architecture
guarantees plans correctness as well as the robust execution
of the generated plans, thus, increasing the probability of
successfully performing the temporal plan.

Testing the Synthesis on a Robot Controller
This section describes a robotic scenario related to the GOAC
project exploited as case study for the experimental assess-
ment presented in the next section. First, we describe the
DALA platform, i.e., the real robotic platform deployed
within the GOAC project. Then, we exploit the same sce-
nario in order to show a possible configuration of a control

system implemented by means of an APSI Deliberative Re-
actor.

The Robotic Platform
The DALA rover is one of the LAAS-CNRS robotic plat-
forms that can be used for autonomous exploration experi-
ments. In particular, it is an iRobot ATRV robot that pro-
vides a large number of sensors and effectors. It can use
vision based navigation (such as the one used by the Mars
Exploration Rovers Spirit and Opportunity), as well as in-
door navigation based on a Sick laser range finder. Then, the
use of DALA in the GOAC project was to simulate a robotic
scenario as close as possible to a planetary exploration rover.

In this regard, DALA can be considered as a fair repre-
sentative for a planetary rover equipped with a Pan-Tilt Unit
(PTU), two stereo cameras (mounted on top of the PTU), a
panoramic camera and a communication facility. The rover
is able to autonomously navigate the environment, move the
PTU, take high-resolution pictures and communicate images
to a Remote Orbiter. During the mission, the Orbiter may be
not visible for some periods. Thus, the robotic platform can
communicate only when the Orbiter is visible. The mission
goal is a list of required pictures to be taken in different loca-
tions with an associated PTU configuration. A possible mis-
sion actions sequence is the following: navigate to one of the
requested locations, move the PTU pointing at the requested
direction, take a picture, then, communicate the image to the
orbiter during the next available visibility window, put back
the PTU in the safe position and, finally, move to the follow-
ing requested location. Once all the locations have been vis-
ited and all the pictures have been communicated, the mis-
sion is considered successfully completed. The rover must
operate following some operative rules to maintain safe and
effective configurations. Namely, the following conditions
must hold during the overall mission: (C1) While the robot
is moving the PTU must be in the safe position (pan and tilt
at 0); (C2) The robotic platform can take a picture only if
the robot is still in one of the requested locations while the
PTU is pointing at the related direction; (C3) Once a picture
has been taken, the rover has to communicate the picture to
the base station; (C4) While communicating, the rover has
to be still; (C5) While communicating, the orbiter has to be
visible. The reader may refer to (Ceballos et al. 2011) for
further details.

42

The Figure 2 shows a timeline-based plan and the
associated temporal constraints implementing the opera-
tive rules given above. The depicted constraints are:
(C1) GoingTo(x,y) must occur during PointingAt(0,0); (C2)
TakingPicture(pic,x,y,pan,tilt) must occur during At(x,y)
and PointingAt(pan,tilt); (C3) TakingPicture(pic,x,y,pan,tilt)
must occur before Communicating(pic); (C4) Communi-
cating(file) must occur during At(x,y); (C5) Communicat-
ing(file) must occur during Visible.

C5

C4 C3

C2

C1 C2

Figure 2: An example of timeline-based plan with con-
straints.

Control system configuration
According to T-REX design approach (Py, Rajan, and Mc-
Gann 2010), a GOAC control system configuration has been
designed considering an analogy between human control re-
sponsibilities for the mentioned rover, thus, implementing a
suitable control system as the composition of a set of differ-
ent deliberative reactors. Namely, some different personnel
acting specific roles can be considered as involved in con-
trol tasks (Ceballos et al. 2011). As the goal of this paper
is to evaluate the new architecture for the APSI Delibera-
tive Reactor, taking advantage of the flexibility provided by
the GOAC framework, a control system is here defined con-
sidering only two different reactors i.e., a Mission Manager
responsible to perform all the deliberative tasks and a Com-
mand Dispatcher in charge of executing commands and col-
lecting execution feedback.

More in detail, the Mission Manager reactor is designed
to provide plans for user requested goals, i.e., requests for (i)
scientific pictures in desired locations, (ii) reaching a certain
position and (iii) monitoring a certain area. Then, the time-
lines planned by the Mission Managers are dispatched for
execution to the Command Dispatcher reactor that, in turn,
encodes the planned values into actual commands for the
rover and uses the replies provided by the functional layer to
produce observations on the low-level timelines. Thus, each
reactor has a specific functional role over different temporal
scopes during the mission: the Mission Manager’s tempo-
ral scope is the entire mission and potentially can take min-
utes to deliberate; the Command Dispatcher interfaces to the
DALA functional layer and requires minimal latency with
no deliberation. It is also worth underscoring that the Mis-
sion Manager is the only APSI Deliberative Reactor in this

use of the GOAC architecture. The Command Dispatcher
is a fully reactive system that interacts with the actual con-
trolled system with no deliberation task involved.

Empirical Evaluation
This section illustrates the assessment of the new APSI De-
liberative Reactor performance considering the control sys-
tem configuration presented in the previous section. Here,
the aim is to assess the on-line TGA-based Controller syn-
thesis performance in a real world scenario in order to show
its viability with respect to actual execution requirements,
i.e., the latencies of an on-line planning and execution cy-
cle. Therefore, similarly to (Orlandini et al. 2011), different
planning/execution scenarios are considered by varying the
complexity of the robotic planning problem dimensions:
(1) Plan Length. Problem instances are considered with an
increasing number of requested pictures (from 1 to 3). At
the same time, flexible plans are generated over a horizon
length ranging from 150 to 400 seconds.
(2) Plan Flexibility. For each uncontrollable activity (i.e.,
robot and PTU movements as well as camera and commu-
nication tasks), a minimal duration is set, but temporal flex-
ibility on activity termination is considered, i.e., the end of
each activity presents a tolerance ranging from 10 to 30 sec-
onds. This interval represents the degree of temporal flexi-
bility/uncertainty that we introduce in the system.
(3 Plan Choices. We define from 1 to 3 visibility windows
that can be exploited to communicate picture contents. No-
tice that an increasing number of communication opportu-
nities raises the complexity of the planning problem with a
combinatorial effect.

More in general, among all the generated problems in-
stances, the ones with higher number of required pictures,
higher temporal flexibility, and higher number of visibility
windows result as the hardest ones. In these scenarios, we
analyzed the performance of the APSI Deliberative Reac-
tor considering costs for planning, TGA model generation,
plan verification-strategy synthesis and actual plan execu-
tion. The OMPS tool has been exploited as CBTP Domain
Independent Planner. The DALA rover has been simulated
by means of a software environment 4 used for testing the
control system during the GOAC project and offering the
same robotic functional interface as well as fully replicat-
ing the physical rover behaviors (i.e., random temporal du-
rations for uncontrollable tasks). The experiments have been
ran on a PC endowed with an Intel Core i7 CPU (2.93GHz)
and 4GB RAM and, for each setting, 10 runs have been per-
formed, and in tables, average timings are reported in mil-
liseconds.

In Table 1, the performance of the APSI Deliberative Re-
actor during the whole planning and execution cycle are re-
ported. Such execution settings seem to be suitable only in
problems with one picture while, with 2 pictures, verifica-
tion costs are rather dominating both deliberative and exe-
cution costs. For instance, with 3 communication windows
and 30 seconds flexibility (i.e., the most complex scenario),

4DALA software simulator courtesy of Felix Ingrand and
Lavindra De Silva from LAAS-CNRS.

43

Table 1: Performance with verification and strategy generation
performed on a complete TGA model (timings in secs).

1 Comm Window 2 Comm Windows 3 Comm Windows
flex 10 20 30 10 20 30 10 20 30

PLANNING
TP1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
TP2 1.0 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1

TGA ENCODING
TP1 0.008 0.007 0.006 0.007 0.009 0.006 0.009 0.007 0.006
TP2 0.007 0.007 0.008 0.008 0.006 0.007 0.007 0.007 0.008

PLAN VERIFICATION & STRATEGY GENERATION ON COMPLETE TGA MODEL
TP1 0.6 0.6 0.8 0.6 0.6 0.8 0.6 0.8 2.2
TP2 137.8 152.8 149.9 137.4 149.4 150.5 139.4 150.3 151.5

PLAN EXECUTION
TP1 27.9 38.3 42.7 30.8 36.5 44.5 31.7 36.4 40.4
TP2 65.5 77.2 103.5 60.4 78.7 89.0 66.0 78.0 106.1

even the execution costs are comparable with the time spent
by UPPAAL-TIGA in verifying the plan and generating the
strategy. Moreover, in the case of 3 pictures, UPPAAL-
TIGA has been always terminated after 500 seconds with
no suitable generated strategy.

Table 2: Performance with verification performed on a complete
TGA model and strategy generation on a reduced TGA model (tim-
ings in msecs).

1 Comm Window 2 Comm Windows 3 Comm Windows
flex 10 20 30 10 20 30 10 20 30

PLANNING
TP1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
TP2 1.0 1.0 0.9 1.0 1.1 1.0 1.1 1.1 1.1
TP3 14.9 15.2 14.1 15.4 15.7 15.9 16.4 16.4 16.5

TGA ENCODING
TP1 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.006
TP2 0.006 0.005 0.005 0.005 0.006 0.005 0.006 0.005 0.005
TP3 0.004 0.004 0.003 0.005 0.004 0.004 0.005 0.005 0.004

PLAN VERIFICATION (COMPLETE) & STRATEGY GENERATION (REDUCED)
TP1 0.6 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5
TP2 10.8 10.8 10.7 10.8 10.8 10.6 10.8 10.6 10.6
TP3 70.4 70.7 70.1 70.3 70.4 71.1 70.6 70.5 70.5

PLAN EXECUTION
TP1 37.6 46.4 49.8 38.8 47.6 50.2 39.4 49.6 50.8
TP2 89.4 100.8 120.6 87.0 108.6 117.4 90.8 110.8 124.0
TP3 142.2 165.6 169.6 137.8 166.6 182.6 135.8 172.8 180.2

Then, considering the different performance of the ver-
ification tool in checking plan correctness only (see (Or-
landini et al. 2011)) and taking advantage of the flexibil-
ity of the TGA method, a slightly modified approach has
been deployed and tested. The TC in the APSI delibera-
tive reactor has been modified in order to invoke first the
UPPAAL-TIGA tool to check the plan correctness on the
complete TGA model PL without generating the winning
strategy and, afterward, to ask the verification tool for gen-
erating a strategy on a reduced TGA model. Namely, the TC
produces a reduced TGA model considering only the plan
Plan and the Observer automata (i.e., focusing the strategy
generation on the plan and the domain theory descriptions
only) relying on the fact that the plan validity is guaranteed
by the previous verification step.

Such approach leads to verification performance more
compatible with the considered on line execution scenarios
even though, yet, plan verification and strategy generation
costs can not be neglected with respect to planning and ex-
ecution costs (see Table 2). Furthermore, considering the
average timing values among all the execution settings (i.e.,
the average values of each rows in the table), Figure 3 de-

1	

10	

100	

1000	

10000	

100000	
TGA	 Encoding	

Planning	

Plan	
Verifica3on	 &	

Strategy	
Genera3on	

Plan	 Execu3on	

3	 Pictures	 2	 Pictures	 1	 Picture	

Figure 3: Performance related to full execution with plan veri-
fication and strategy generation performed in two different steps
(timings in msecs).

picts a radar chart showing how each phase is affecting the
whole planning and execution cycle. The plan verification
and strategy generation task is always greater of almost one
order of magnitude (axis are in logarithmic scale) and, in the
3 pictures settings, such cost is comparable even with plan
execution cost.

Then, a further modification of the TC has been deployed
where strategy generation is performed on the reduced TGA
model without checking plan correctness. This option en-
tails the strong assumption that every plan generated by the
problem solver, in this case OMPS, is supposed to be valid,
i.e., off-line plan verification is requested. In Table 3, the
reported performance shows that planning and strategy gen-
eration costs are equivalent and fully compatible in all the
plan execution scenarios. This is shown also in Figure 4
in which, again, average values are considered in the radar
charts.

Table 3: Performance with strategy generation only on a reduced
TGA model (timings in msecs).

1 Comm Window 2 Comm Windows 3 Comm Windows
flex 10 20 30 10 20 30 10 20 30

PLANNING
TP1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
TP2 1.0 1.0 0.9 1.0 1.1 1.0 1.1 1.1 1.1
TP3 14.9 15.2 14.1 15.4 15.7 15.9 16.4 16.3 16.5

TGA ENCODING
TP1 0.006 0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.006
TP2 0.006 0.005 0.005 0.005 0.006 0.005 0.006 0.005 0.005
TP3 0.004 0.004 0.003 0.005 0.004 0.004 0.005 0.005 0.004

STRATEGY GENERATION ON REDUCED TGA MODEL
TP1 0.6 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.5
TP2 3.9 3.7 3.6 3.8 3.7 3.6 3.8 3.6 3.6
TP3 15.4 15.7 15.1 15.3 15.3 16.1 15.6 15.5 15.5

PLAN EXECUTION
TP1 37.6 46.4 49.8 38.8 47.6 50.2 39.4 49.6 50.8
TP2 89.4 100.8 120.6 87.0 108.6 117.4 90.8 110.8 124.0
TP3 142.2 165.6 169.6 137.8 166.6 182.6 135.8 172.8 180.2

Discussion The present experimental evaluation shows
that the APSI Deliberative Reactor infrastructure allows the

44

1	

10	

100	

1000	

10000	

100000	

TGA	
Encoding	

Planning	

Strategy	
Genera4on	

Plan	
Execu4on	

3	 Pictures	 2	 Pictures	 1	 Picture	

Figure 4: Performance related to full execution with plan veri-
fication and strategy generation performed in two different steps
(timings in msecs).

deployment of different compositions of verification and
strategy generation tasks. In particular, the TGA-based Con-
troller is adaptable to different real contexts allowing the im-
plementation of different suitable controller solutions. The
most effective and affordable composition considers only a
strategy generation task even though it entails the assump-
tion on the validity of generated plans. Envisaging a use of
the technique within a suitable Knowledge Engineering sys-
tems (Cesta et al. 2010b; Bernardi et al. 2013) potentially
guarantees the deploying of an APSI-based application af-
ter an extensive off-line plan verification and testing phases
(in addition to the known deterministic behavior of the con-
sidered problem solver) and suggests to consider also such
composition as a fully reliable solution. More generally, the
APSI Deliberative Reactor is open to support any operative
modality with a computational load that can be tuned ac-
cording to the criticality of the controlled system.

Conclusion
In this paper, an extension of the APSI Deliberative Reac-
tor control system has been presented integrating a TGA-
based plan controller synthesis approach, thus, enforcing ro-
bust plan execution. Then, an experimental evaluation has
been reported discussing the practical feasibility of the on-
line deployment of such TGA-based approach in different
operative modalities and considering increasingly complex
instances of a real-world robotics case study derived from
a research project funded by the European Space Agency.
However, the work described here is valid for any generic
layered control architecture (e.g., (Gat 1997)) that integrates
a temporal planning and scheduling system.

The reported results show the viability of the approach as
well as enforce two main general advantages: the presented
methodology relies on off-the-shelf planning/verification
tools and, thus, it enables its application to any generic lay-

ered control architecture that integrates a temporal P&S sys-
tem; the possibility of applying different settings for the con-
trol system allows to look for trade-off between planning,
verification and execution costs, i.e., the control system can
be tuned up according to the actual criticality of the con-
trolled system.

Acknowledgments. Cesta, Orlandini and Suriano are partially
funded by the Italian Ministry for University and Research (MIUR)
and CNR under the GECKO project (Progetto Bandiera “La Fab-
brica del Futuro”). Finzi is partially supported by the EC within
the SHERPA FP7 project under grant agreement ICT-600958.

References
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.;
and Smith, D. 2012. EUROPA: A Platform for AI Planning,
Scheduling, Constraint Programming, and Optimization. In ICK-
EPS 2012: the 4th Int. Competition on Knowledge Engineering
for Planning and Scheduling.
Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.; Larsen, K.;
and Lime, D. 2007. UPPAAL-TIGA: Time for playing games! In
Proc. of CAV-07, number 4590 in LNCS, 121–125. Springer.
Bensalem, S.; de Silva, L.; Gallien, M.; Ingrand, F.; and Yan,
R. 2010. “Rock Solid” Software: A Verifiable and Correct-
by-Construction Controller for Rover and Spacecraft Functional
Levels. In i-SAIRAS-10. Proc. of the 10th Int. Symp. on Artificial
Intelligence, Robotics and Automation in Space.
Bernardi, G.; Cesta, A.; Orlandini, A.; and Finzi, A. 2013. A
knowledge engineering environment for p&s with timelines. In
ICAPS Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS).
Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime, D.
2005. Efficient on-the-fly algorithms for the analysis of timed
games. In CONCUR 2005, 66–80. Springer-Verlag.
Ceballos, A.; Bensalem, S.; Cesta, A.; de Silva, L.; Fratini, S.;
Ingrand, F.; Ocon, J.; Orlandini, A.; Py, F.; Rajan, K.; Rasconi,
R.; and van Winnendael, M. 2011. A Goal-Oriented Autonomous
Controller for Space Exploration. In ASTRA-11. 11th Symposium
on Advanced Space Technologies in Robotics and Automation.
Cesta, A., and Oddi, A. 1996. DDL.1: A Formal Description of
a Constraint Representation Language for Physical Domains,. In
Ghallab, M., and Milani, A., eds., New Directions in AI Planning.
IOS Press: Amsterdam.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Policella, N.
2007. An Innovative Product for Space Mission Planning: An A
Posteriori Evaluation. In ICAPS-07, 57–64.
Cesta, A.; Cortellessa, G.; Fratini, S.; and Oddi, A. 2009. De-
veloping an End-to-End Planning Application from a Timeline
Representation Framework. In IAAI-09. Proc. of the 21st Innova-
tive Application of Artificial Intelligence Conference, Pasadena,
CA, USA.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2010a. Analyzing Flexible Timeline Plan. In ECAI 2010. Pro-
ceedings of the 19th European Conference on Artificial Intelli-
gence, volume 215. IOS Press.
Cesta, A.; Finzi, A.; Fratini, S.; Orlandini, A.; and Tronci, E.
2010b. Validation and Verification Issues in a Timeline-Based
Planning System. Knowledge Engineering Review 25(3):299–
318.

45

Cesta, A.; Fratini, S.; Orlandini, A.; and Rasconi, R. 2012. Con-
tinuous Planning and Execution with Timelines. In i-SAIRAS-12.
Proc. of the 11th Int. Symp. on Artificial Intelligence, Robotics
and Automation in Space.
Chien, S.; Tran, D.; Rabideau, G.; Schaffer, S.; Mandl, D.; and
Frye, S. 2010. Timeline-Based Space Operations Scheduling with
External Constraints. In ICAPS-10. Proc. of the 20th Int. Conf.
on Automated Planning and Scheduling.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Planning
and Scheduling as Timelines in a Component-Based Perspective.
Archives of Control Sciences 18(2):231–271.
Gat, E. 1997. On Three-Layer Architectures. In Artificial Intelli-
gence and Mobile Robots. MIT Press.
Hunsberger, L. 2010. A fast incremental algorithm for managing
the execution of dynamically controllable temporal networks. In
Temporal Representation and Reasoning (TIME), 2010 17th In-
ternational Symposium on, 121–128.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and Smith, B.
2000. Planning in Interplanetary Space: Theory and Practice. In
AIPS-00. Proceedings of the Fifth Int. Conf. on AI Planning and
Scheduling.
Maler, O.; Pnueli, A.; and Sifakis, J. 1995. On the Synthesis
of Discrete Controllers for Timed Systems. In STACS, LNCS,
229–242. Springer.
Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic Con-
trollability Revisited. In Proc. of AAAI 2005, 1193–1198.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
Control of Plans With Temporal Uncertainty. In Proc. of IJCAI
2001, 494–502.
Muscettola, N.; Dorais, G. A.; Fry, C.; Levinson, R.; and Plaunt,
C. 2002. Idea: Planning at the core of autonomous reactive
agents. In Proc. of NASA Workshop on Planning and Schedul-
ing for Space.
Muscettola, N. 1994. HSTS: Integrating Planning and Schedul-
ing. In Zweben, M. and Fox, M.S., ed., Intelligent Scheduling.
Morgan Kauffmann.
Orlandini, A.; Finzi, A.; Cesta, A.; and Fratini, S. 2011. Tga-
based controllers for flexible plan execution. In KI 2011: Ad-
vances in Artificial Intelligence, 34th Annual German Conference
on AI., volume 7006 of Lecture Notes in Computer Science, 233–
245. Springer.
Py, F.; Rajan, K.; and McGann, C. 2010. A Systematic Agent
Framework for Situated Autonomous Systems. In AAMAS-10.
Proc. of the 9th Int. Conf. on Autonomous Agents and Multiagent
Systems.
Shah, J., and Williams, B. C. 2008. Fast Dynamic Scheduling of
Disjunctive Temporal Constraint Networks through Incremental
Compilation. In ICAPS-08, 322–329.

46

