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Cumulative learning through intrinsic
reinforcements

Vieri G. Santucci Gianluca Baldassarre Marco Mirolli

Abstract Building artificial agents able to autonomously learn new skills and
to easily adapt in different and complex environments is an important goal
for robotics and machine learning. We propose that providing reinforcement
learning artificial agents with a learning signal that resembles the charac-
teristic of the phasic activations of dopaminergic neurons would be an ad-
vancement in the development of more autonomous and versatile systems.
In particular, we suggest that the particular composition of such a signal,
determined by both extrinsic and intrinsic reinforcements, would be suitable
to improve the implementation of cumulative learning in artificial agents. To
validate our hypothesis we performed experiments with a simulated robotic
system that has to learn different skills to obtain extrinsic rewards. We com-
pare different versions of the system varying the composition of the learning
signal and we show that the only system able to reach high performance
in the task is the one that implements the learning signal suggested by our
hypothesis.

1 Introduction

Building artificial agents able to autonomously form ample repertoires of ac-
tions and to easily adapt in different and complex environments is an impor-
tant goal for robotics and machine learning. One of the features that allows
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agents to achieve autonomous development and high versatility [1] is cumu-
lative learning: the ability to use previously acquired skills to learn new ones,
to combine sequences of actions to interact in different and more complex
ways with the environment. Implementing cumulative learning in artificial
agents presents many difficulties: two of the main and more general problems
[2] are (a) the generation of the learning signals that can drive cumulative
learning and (b) the type of architecture that can support such a process. In
this work we focused on problem (a), trying to suggest a novel way to solve
it.

In the computational literature a way to tackle the problem of cumulative
learning has been to replace tasks-specific learning signals with new non-
tasks-specific learning signals inspired by what psychologists have been calling
intrinsic motivations (IM) [3, 4, 5]. These were introduced in the 1950s in
animal psychology to explain experimental data (e.g.[6, 7]), incompatible with
the classic motivational theory (e.g. [8]), showing that stimuli not related to
(extrinsic) primary drives present a reinforcing value capable of conditioning
instrumental responses [9, 10, 11]. Some authors focused on learning signals
determined by the acquisition of knowledge by the system (e.g. [12, 13, 14,
15], while other authors used learning signals based on what the system is
doing, and in particular on the acquisition of new competences (e.g. [16,
17]). Although with different solutions, the intrinsically motivated approach
influenced many works (for a review see [18]) focused on the development of
more versatile and autonomous systems able to acquire repertoires of skills,
possibly in a cumulative fashion [19].

Our idea (first presented in a preliminary version in [20]) is that if we
want to solve the problem of which learning signal can be suitable for the
implementation of cumulative learning, a good solution is to look at biological
organisms: the characteristics that we are trying to implement in artificial
systems are typical of biological agents, that are able to cumulatively (and
autonomously) learn new skills and to combine them together to optimise
their survival chances. What we suggest is to look at those data that can
explain how these features are developed in biology, focusing on those signals
that can support cumulative learning.

The neuromodulator dopamine (DA) has long been recognized to play a
fundamental role in motivational control and reinforcement learning processes
[21, 22, 23]. In particular, phasic DA activations have been related to the
presentation of unpredicted rewards [24, 25, 26, 27] but also to other phasic,
non reward-related, unexpected stimuli [28, 29, 30, 31]. These data led to
the formulation of two main hypotheses on the functional role of the DA
signal. One hypothesis [32, 33] looks at the similarities of DA activations with
the temporal-difference (TD) error of computational reinforcement learning
[34], and suggests that phasic DA represents a reward prediction error signal
with the role of guiding the maximisation of future rewards through the
selection of the appropriate actions. The second hypothesis [35, 36] focuses
on the activations for unexpected events and states that phasic DA is a
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sensory prediction error signal with the function of guiding the discovery
and acquisition of novel actions.

As we pointed out in another work [37], we consider these two hypothe-
ses both partially true, but at the same time not capable of taking into ac-
count all the empirical evidence on phasic DA activations. What we proposed
in that work is that phasic DA represents a reinforcement prediction error
learning signal analogous to the computational TD-error, but for a learn-
ing system that receives two different kinds of reinforcements: (1) temporary
reinforcements provided by unexpected events, and (2) permanent reinforce-
ments provided by biological rewards. In our hypothesis, the DA signal has
the function of driving both the formation of a repertoire of actions and the
maximisation of biological rewards through the deployment of the acquired
skills. Moreover, we suggest that phasic DA activations determined by unex-
pected events may constitute part of the neural substrate of IM: unpredicted
events are intrinsic reinforcers that drive the same reinforcement learning
processes as extrinsic reinforcers.

In this work we propose that providing artificial agents with a learning sig-
nal that resembles the characteristic of the phasic DA signal, determined both
by extrinsic and intrinsic reinforcements, would be an advancement in the de-
velopment of more autonomous and versatile systems. Moving from biology
to artificial agents, we can identify extrinsic reinforcements with those deter-
mined by the achievement of the tasks decided by the researchers, whereas
intrinsic reinforcements are identified with those determined by a category of
more general events, such as the unexpected activations of the sensors of the
robot, determined by its interactions with the environment. Similarly to what
happens in biological systems [38], we believe that intrinsic reinforcements
can play a key role in determining a proper signal for the implementation of
the cumulative learning of skills and for the acquisition of complex behaviours
that would not be learned simply with extrinsic reinforcements.

To test our hypothesis, we built a simulated robotic system that has to
autonomously acquire a series of skills in order to maximise its rewards (sec.
2). We compare the performance of the system with different compositions
of the learning signal and we show (sec. 3) that the system implementing our
hypothesis is the only one that is able to learn the task. We then draw the
conclusions (sec. 4) by analysing the results of the experiments and discussing
the implications of our hypothesis.
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2 Set up

2.1 The task and the stmulated robot

The system is a simulated kinematic robot composed of a fixed head with a
“mouth”, a moving eye, and a two-degree-of-freedom kinematic arm with a
hand that can “grasp” objects. The task consists in learning to eat food (i.e.,
bring a red object to the mouth) randomly placed on a rectangular table
(with dimensions of 4 and 7 units, respectively) set in front of the robot (fig.
1). In the middle of the table we add a visual “distractor” of a different colour
(blue) that can only be foveated while, for simplicity, it cannot be touched
or grasped: interacting with this second object does not increase the chance
for the system to achieve the final goal.

In real environments the organisms are surrounded by many different ob-
jects with which they can interact in many different ways. However, not every
interaction has the same importance: some actions could turn out to be the
basis for more complex ones, while others may even result useless. Since we
want to improve the versatility of artificial agents, we want to test our hy-
pothesis in an environment that presents, although much simplified, some of
the characteristics of the real world: for this reason we put a “distractor”
that has no relations with the task, in order to provide a set up where not all
the possible interactions with the environment are related to the main task
of the experiment.

N
Food o
Fovea

Distractor ).

Fig. 1 Set up of the experiment: the system composed by a two dimensional arm and
a moving eye (dotted square with a fovea at the centre). Food and a fixed distractor are
positioned on a table in front of the robot. The task consists in eating the food by bringing
it to the mouth. See text for details.
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Since we are focusing on cumulative learning, there is a dependency be-
tween the skills that the robot can learn: the arm receives as input what the
eye sees, so that learning to systematically look at the food is a prerequi-
site for learning to reach for it; at the same time, reaching for the food is
necessary for grasping it and bringing it to the mouth.

The sensory system of the robot is composed of: (a) an artificial retina (a
square of 14 units per size; note that this implies that at the beginning of
each trial the whole table is always within the eye image) sensible to the two
different colours of the objects, encoding the position of the hand, of the food
(a circle with 0.3 units diameter) and of the distractor (diameter 0.4) with
respect to the centre of the visual field; (b) a “fovea”, encoding whether the
food or the distractor are perceived in the centre of the visual field; (c) the
proprioception of the arm (composed of two segments of 4 units), encoding
the angles of the two arm joints; (d) a touch sensor encoding whether the hand
is in contact with the food (i.e., if the hand and the object are overlapping:
for simplicity collisions are not simulated). The eye moves along the x and y
axes with a maximum step of 8 units. The two joints of the arm move within
the interval [0, 180] degrees, with maximum step of 25 degrees.

2.2 Architecture and experimental conditions

As we are proposing to look at biological organisms to improve the imple-
mentation of cumulative learning in artificial agents, we tried to build the
architecture of the system (fig. 2) following some constraints deriving from
the known biology underlying reinforcement learning in real animals. The
controller of the system reflects the modular organization of the basal-ganglia-
thalamo-cortical loops [39], where the acquisition of new motor skills and the
selection of motor commands take place [40]. We implemented the system
as an actor-critic reinforcement learning architecture based on TD-learning
because there is evidence [41] that the dorsal regions of the basal ganglia
reflect the characteristics of this structure and because this solution has also
some appealing theoretical properties from the machine learning point of
view [34, 42]. Moreover, the reinforcement learning signal is unique for both
the sub-controllers, because the phasic DA signal is likely to be the same
for all sensory-motor subsystems [43]: this simplifies the computation of the
learning signal and allows to reinforce some actions also if they determine the
activations of sensors not directly connected to the effectors that generated
those effects.

As described in sec. 1, the reinforcement signal is determined by both the
extrinsic rewards provided by eating the food and by the intrinsic reinforce-
ments provided by the unpredicted activations of the fovea and the touch
sensors. To implement the intrinsic reinforcements, the system includes also
three predictors, two for the fovea sensor (one for each colour of the ob-
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Fig. 2 The controller formed by two components (arm and eye controllers), the two pre-
dictors of the fovea sensor (for simplicity, in this schema they are presented as a single
structure), the predictor of the touch sensor, and the reinforcement system. « and 8 are
the angles of the two arm joints; x” and y” are the hand positions with respect to the fovea
on the x and y axes; Aa and Af are the variations of angles as determined by the arms
actor; Grs is the grasping output; Va is the evaluation of the critic of the arm; xr’, yr’ and
xb’, yb’ are the positions of food and distractor with respect to the fovea on the x and y
axes; Ax and Ay are the displacements of the eye determined by the actor of the eye; Ve
is the evaluation of the critic of the eye; F-RPred and F-BPred are the predictions of the
fovea-predictors; T-Pred is the prediction of the touch-predictor; fr and fb are the activa-
tions of the fovea sensor for the two colours; t is the activation of the touch sensor; Rifr,
Rfb and Rt are the reinforcements related to sensors activations; Ret is the reinforcement
provided by eating the food; R is the total reinforcement. See text for details.

jects) and one for the touch sensor. Each predictor is trained to predict the
activation of the corresponding sensor and inhibits the part of the intrin-
sic reinforcement that depends on the unexpected activation of that sensor.
Hence, the total reinforcement (R) driving TD-learning is:

R=R.+Ryr+Rpg+ Ry

where R, is the extrinsic reinforcement provided by bringing the food to
the mouth (with a value of 15), while Ry, Ryq and R, are the intrinsic
reinforcements provided by the unpredicted activations of the fovea sensor
caused by the food (Ryy), or by the “distractor” (Rjsq) and the unpredicted
activations of the touch sensor (R;) caused by the food. In particular, for a
generic sensor S, the reinforcement Rg provided by the activation of S is:

Rs = maz[0; Ag — Ps]

where Ag is the binary activation {0; 1} of sensor S and Py is the prediction
generated by the predictor of sensor S. In this way we use only the positive
reinforcements generated when the activation of Ag is not fully predicted by
Ps.

To test our hypothesis, we compare the described condition (called intrin-
sic condition), with two different conditions, where we vary the composition
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of the learning signal. In the extrinsic condition the reinforcement is given
only by the extrinsic reinforcements provided by eating the food (R.). This
condition is useful to test if extrinsic reinforcements by themselves are able
to drive the cumulative learning of skills. In the sub-tasks condition, the ad-
ditional reinforcements provided by the activations of the sensors (Rys¢, R4
and R;) are also “permanent”, in the sense that they are not modulated by
the activities of the predictors and hence do not change throughout train-
ing. With this condition we want to test if the temporary nature of intrinsic
reinforcement is necessary to facilitate learning.

2.3 Input coding

All the inputs are encoded with population coding [44] through Gaussian
radial basis functions (RBF) [45]:

- ("d_"id )2
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where a; is the activation of unit 4, ¢4 is the input value on dimension d, ¢;q4 is
the preferred value of unit i with respect to dimension d, and 02 is the width
of the Gaussian along dimension d (widths are parametrized so that when
the input is equidistant, along a given dimension, to two contiguous neurons,
their activation is 0.5).

The dimensions of the input to the two “retinas” of the eye controller are
the position of the respective object (in x and y) with respect to the centre of
the visual field and the activation of the touch sensor. We add the status of the
touch sensor because for computational limits the eye is not able to follow the
food when it is moved by the hand: providing this information we can separate
the two situation (object not grasped from object grasped) and prevent the
controller of the eye from losing the ability of looking at the objects. The
preferred object positions of input units are uniformly distributed on a 7x7
grid with ranges [-7; 7], which, multiplied by the binary activation of the
touch sensor, form a total 7x7x2 grid. In total, the eye has an input formed
by two 7x7x2 grids, one for each of the two objects.

The dimensions of the input to the arm controller are the angles of the
two joints (v and ), the position of the hand (x and y) with respect to the
fovea, and the activation of the touch sensor. The preferred joint angles of
input units are uniformly distributed on two dimensions (7x7) ranging in [0;
180] whereas the preferred positions of the hand with respect to the fovea
are uniformly distributed on other two dimensions (7x7) with ranges [-7; 7.
Hence, considering the binary activation of the touch sensor, the input is
formed by a total 7Tx7x7x7x2 grid.

The input units of the eye controller are fully connected to two output
units with sigmoidal activation:
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where M is the total number of input units, w;; is the weight of the connection
linking input unit 7 to output unit j and b; is the bias of output unit j. Each
actual motor command o7 is generated by adding some noise to the activation
of the relative output unit:

no_ .
oj—0J+n

where n is a random value uniformly drawn in [-0.02; 0.02]. The resulting
commands (in [0; 1]) are remapped in [-8, 8] and control the displacement of
the eye along the two dimensions.

The arm controller has three output units. Two have sigmoidal activation,
as those of the eye, with noise uniformly distributed in [-0.2; 0.2]. Each result-
ing motor command, remapped in [-25; 25] degrees, determines the change
of one joint angle. The third output unit has binary activation {0; 1}, and
controls the grasping action (the activation is determined by the sigmoidal
activation of the output unit plus a random noise uniformly drawn in [-0.2;
0.2], with a threshold set to 0.5). The activation of the grasping output is
slightly punished with a negative reinforcement of 0.0001 to avoid that the
system performs grasping also when it is not on the target.

The evaluation of the critic of each sub-controller k (V) is a linear com-
bination of the weighted sum of the respective input units.

The input units of the predictors of fovea activation are formed by two
35x35 grids, each one encoding the position of the respective object with re-
spect to the fovea along one axis and the programmed displacement of the eye
along the same axis. Similarly, the input of the predictor of the touch sensor
is formed by two 35x35 grids, each one encoding the position of the hand
with respect to the food along one axis and the programmed displacement
of the hand along the same axis. Preferred inputs are uniformly distributed
in the range [-7; 7] for objects positions and [-25; 25] for displacements. The
output of each predictor is a single sigmoidal unit receiving connections from
all the units of the predictor.

2.4 Learning

Learning depends on the TD reinforcement learning algorithm [34] that was
introduced to solve the temporal credit assignment problem, i.e. the problem
of learning which of many actions contributed to the achievement of reward:
the TD learning solves the problem with the use of predictions and in par-
ticular with the use of the TD-error as the learning signal reinforcing all
those actions that lead the system closer to rewards. The TD-error ¢ of each
sub-controller k is computed as:
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where R' is the reinforcement at time step ¢, V/! is the evaluation of the critic
of controller k at time step ¢, and ~ is the discount factor, set to 0.9 for both
the eye and the arm controllers.

The weight wy,; of input unit ¢ of critic k is updated in the standard way:

Awy; = 10104

where 77 is the learning rate, set to 0.02 for both the eye and the arm con-
trollers.
The weights of actor k are updated as follows:

Awgji = 00k (0); — 0k;j) (0, (1 — o;))a:

where 7 is the learning rate (set to 0.2 for both the eye and the arm con-
troller), and og;(1 — og;) is the derivative of the sigmoid function.

Predictors are trained through a TD-learning algorithm (for a generaliza-
tion of TD-learning to general predictions, see [46]). We decided to use TD-
learning neural networks to implement the predictors because it is difficult
to built predictors able to perfectly anticipate the activations of the sensors:
a TD neural network solves the problem because it starts to anticipate the
activations earlier than a one-step predictor.

For each predictor p, the TD-error 9, is calculated as follows:

5 = (A4 +7,08) - OF !

where Ag is the activation of the sensor related to predictor p at time step ¢,
O;, is the output of predictor p at time step ¢, and ~, is the discount factor, set
to 0.7 for each predictor. Finally, the weights of the predictors are updated
as those of the critics of the two sub-controllers, with a learning rate set to

0.00008 for each predictor.

3 Results

We tested each condition on the experimental task for 500000 trials, each
trial terminating when food was eaten or when it “fell off” the table (i.e. if
the food is positioned outside the table and not “grasped”), or after a time
out of 40 steps. At the end of every trial the food, the eye centre and the hand
were repositioned randomly without overlaps, with the first two always inside
the table. Every 500 trials we performed 50 test trials (where learning was
switched off). For each condition we ran ten replications of the experiment
and here we present the average results of those replications.
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Fig. 3 Performance (percentage of test trials in which the robot eats the food) in the
three experimental conditions.

Fig. 3 shows the performance in the task of the three experimental condi-
tions. In the extrinsic condition the robot is not able to learn to eat reliably.
Adding permanent reinforcements for every possible interaction with the en-
vironment, as in the sub-tasks condition, does not improve the performance of
the system in the final task. Differently, in the intrinsic condition, where the
activations of the sensors are reinforcing only when unpredicted, the system
is able to reach high performance in the eating task (about 85%).
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Fig. 4 Behaviour of the eye and of the arm in the sub-tasks condition. Average percentage
of test trials in which the eye foveates the food (L-Food) and the distractor (L-Distr) and
in which the hand touches the food (Touch); average reinforcements per step generated by
the unpredicted activations of the sensors (R-Food, R-Distr and R-Touch).
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It is quite easy to understand why in the eztrinsic condition the system is
not able to achieve the final goal: the only reinforcement provided by the final
reward is too distant and infrequent to drive the learning of the sub-tasks
needed for bringing the food into the mouth. Although the TD algorythm is
built to solve the credit assignment problem it is difficult to trace back few
rewards provided by a complex sequence of different actions.

It is more interesting to analyse the results of the other two conditions
where further reinforcements are given in addition to the final one. To under-
stand the reason of these results we have to look at the behaviour of the eye.
In the sub-tasks condition (fig. 4), the robot starts to look at the distractor,
which is simpler to find within the table. Because of the permanent reinforce-
ments provided by the activation of the fovea sensor the system is stuck on
this activity, but looking at the distractor is not related to the other skills so
the agent is not able to develop the capacity to look at the food, which is a
prerequisite for the other abilities (reaching and grasping the food) and for
the achievement of the final goal.

On the contrary, in the intrinsic condition (fig. 5) the robot is able to
learn the correct sequence of actions. Also in this case the system starts
with looking at the fixed target, but after the predictor of the fovea sensor
for the blue colour starts to predict the perception of the distractor, that
sensory event is no more reinforcing. As a result, the robot can discover that
also foveating the food can be reinforcing and so starts acquiring this second
ability, that is the prerequisite for the arm to learn to touch and eventually
grasp the food and then to bring it to the mouth.

—L-Food—L-Distr—Touch == R-Food - - R-Distr - - R-Touc

(R

. ad PO et B nre R R R S e LA S s s ey

0 0.5 1 15 2 25 3 35 4 45 5
Trials 5

Fig. 5 Behaviour of the eye and of the arm in the intrinsic condition. Same data as in
fig. 4.

In the intrinsic condition the activations of the sensors determined by the
interactions with the objects are reinforcing only when they are unexpected.
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If we look at fig. 5, we can see that the reinforcements provided by the fovea
and the touch sensors are not continuous as in the sub-tasks condition: they
rapidly grow when the related ability is encountered and repeated, and they
fade away when the motor skills are learned and their consequences become
predictable. Although those skills do not directly generate more reinforce-
ments, they are still performed when they constitute the prerequisites for
successive actions that can provide new reinforcements and for the maxi-
mization of extrinsic rewards.

Notice (fig. 5) that as the robot learns to eat the food, the number of times
it looks at the distractor increases again. Due to architectural limits, the eye
is not able to track the food while the hand is moving it (the eye controller is
not informed about the movements of the arm). As a result, the eye resorts
to the behavior that it has previously learned, i.e. foveating the distractor.
Moreover, the performance of the arm in touching the food is higher than
the one of the eye in looking at it: when skills are learned it is sufficient that
the eye looks close to food to allow the arm to reach it.

We wondered if the results of the experiments are dependent on the values
that we assigned to the different reinforcements: to verify this possibility, we
tested the three conditions varying the value assigned to eating the food.
The results (fig. 6) show that changing the value of the extrinsic reward in
the learning signal does not modify the comparison between the different
conditions: lowering or rising the reward for eating the food maintains the
intrinsic condition as the best performer.

[ |Extrinsic
BISub-Tasks
Bintrinsic

Performance

12 18 20 25 30

15
Ret

Fig. 6 Average final performance of the three conditions as a function of the value of the
extrinsic reinforcement (Re) provided by eating the food. See text for details.
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4 Discussion

This paper validates our hypothesis that implementing artificial agents with
a learning signal that resembles the phasic activations of DA neurons of bi-
ological organism can support cumulative learning. We tested a simulated
robotic agent in a simulated environment where not all the possible inter-
actions with the world are useful for the achievement of the final goal. We
varied the composition of the learning signal and we verified that only the
one implementing our hypothesis was able to guide the simulated robot in
the achievement of the task.

Extrinsic reinforcements by themselves are not sufficient to drive the acqui-
sition of complex sequences of actions. Simply adding a further reinforcement
for every interaction with the environment will lead the agents to get stuck in
useless activities. Differently, a learning signal based both on the temporary
reinforcements provided by unexpected events and by the permanent rein-
forcements of extrinsic rewards is able to guide the discovery of novel actions
and the deployment of the acquired skills for the achievement of goals.

The nature of IM fits particularly well with the complexity of real envi-
ronments and cumulative learning. Intrinsic reinforcements are present only
when they are needed: when the system discovers a new possible way to in-
teract with the environment, the consequences of its actions provide high
reinforcement; once the system has learnt to systematically generate an ef-
fect (after some repetitions of the same actions), that effect can be predicted
and for this reason it is no more reinforcing; the system then is not stuck
on the repetition of the same actions and can move to different activities. In
this way intrinsic reinforcement are able to guide agents in the discovery of
novel interactions with the environment, increasing their repertoire of skills.
Moreover, such a learning signal can be useful to develop more autonomous
agents: IM are able to push systems to learn every possible interactions with
the environment just because of the novelty of those interactions, also if those
new skills are not immediately related to the fitness of the system [47, 38].
These skills can then be deployed in the appropriate situations exploiting the
reinforcing value of extrinsic reinforcements.

Looking at the implementation of our hypothesis, the system still has
some limits. Schmidhuber [12] underlined how using the prediction error as
an intrinsic reinforcement can generate problems if the environment is un-
predictable or the system has limited learning capabilities: in such cases, the
reinforcement would never decrease and the system would get stuck, trying to
reproduce outcomes with unpredictable consequences. To avoid this problem,
he proposed the progress in predictions error as a better intrinsic reinforce-
ment. However, we believe that this hypothesis does not reflect the biology
underlying IM and we built our system using the simple prediction error to
implement intrinsic reinforcements.

Another limit is connected to the second problem related to the implemen-
tation of cumulative learning (that we decided not to tackle in this work),



14 Vieri G. Santucci Gianluca Baldassarre Marco Mirolli

the architectural problem: building a complex repertoire of actions needs an
architecture that is able to discover and retain different abilities. In fact, an-
other problem related to cumulative learning is catastrophic forgetting, the
phenomenon by which neural networks forget past experiences when exposed
to new ones. A good solution to this problem is to develop hierarchical archi-
tectures (e.g. [48, 49]. See [16] for a review) that are able to store new skills
without impairing the old ones. We designed our system in order to bypass
some of the problems related to catastrophic forgetting, but we will certainly
need to move towards hierarchical structures in order to fully support cu-
mulative learning processes. Moreover, we believe that within the framework
of hierarchical organization of actions, we can provide a reinforcement signal
that, without loosing the inspiration provided by biological organisms, can
cope with the problem raised by Schmidhuber: intrinsic reinforcements can
be determined by the learning progress in skills acquisition [50]. If nothing
can be learnt, there will be no learning progress and the system will move
away looking for new skills to acquire.
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