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Studies have revealed the potential risks to which human health and ecosystems are exposed in the Venice 

Lagoon, due to the atmospheric deposition of persistent pollutants such as trace metals and organic 

compounds. A total of seventy-seven atmospheric bulk deposition samples were collected monthly from April 

2002 to December 2004, from three sites located in the cities of Mestre and Venice, and inside the industrial 

area of Porto Marghera. Samples were analysed by HRGC/HRMS for polycyclic aromatic hydrocarbon 

(PAH) content. Spatial variations of atmospheric fallout were investigated, and source identification was 

attempted using diagnostic ratios and multivariate statistical analysis. Different conditions were recorded, 

with three anthropic signatures: i) industrial, mainly affected by local industrial sources and diesel engine 

emissions, ii) urban, mostly influenced by high traffic density, especially petrol car emissions and iii) 

lagoonal, characterised by diesel emissions from boat engines and oil burning, with random transport of 

industrial emissions. 

 

Keywords precipitation, atmospheric fallout, persistent organic pollutants, diagnostic ratios, Porto Marghera, 
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The protection of Venice and its lagoon is at the centre of an international debate1, 2, 3 which has only recently 

recognised the existing environmental problems.  

In the last 20–30 years, several studies have focused on the potential risks to which both human health and 

ecosystem are exposed due to the presence of persistent pollutants such as trace metals and persistent 

organic pollutants (POPs) in the lagoon4, 5, 6. Other studies had already revealed the evident influence of 

atmospheric deposition in the area. Preliminary available data on atmospheric fallout of POPs were provided 
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by bulk deposition samplings7, 8, 9, and Marcomini et al.10 showed that atmospheric deposition accounted for 

a quarter of the total dioxin and furan (PCDD-Fs) load in the Lagoon of Venice. Data on soils collected 

around the industrial zone revealed an airborne PCDD-Fs fallout effect up to several kilometres downwind11.  

The main anthropogenic activities with important influence on air quality in the area of Venice may be 

summarised as follows12: (i) oil refining; (ii) metallurgy, now mainly confined to the production of Al; (iii) 

chloro-soda cycles, discharging dichloroethane, vinyl chloride monomer and polyvinylchloride; (iv) power 

generation (oil and coal-fired); (v) urban waste incineration and (vi) traffic emissions. Most of these activities 

are carried out inside the industrial area of Porto Marghera. Moreover, a glass-making district is present on 

the Island of Murano (Fig. 1). 

Polycyclic aromatic hydrocarbons (PAHs) are harmful semi-volatile organic compounds formed during the 

incomplete combustion and pyrolysis of organic material. Their widespread occurrence is largely due to 

anthropogenic emissions (coal-, oil- and gas-burning facilities, motor vehicles, waste incineration and 

industrial activities such as oil refining and production of coke, asphalt, aluminium, steel, iron, etc.)13. Some 

of them (benzofluoranthenes, benzo[a]pyrene, benz[a]anthracene dibenz[a,h]anthracene and indeno[1,2,3-

cd]pyrene) are among the strongest human carcinogens known14. 

This paper shows data on PAHs in atmospheric fallout, collected during three years of monthly bulk sampling 

in three stations located in and around the Lagoon of Venice, with a view to estimating the spatial variability 

of atmospheric fallout in the lagoon and identifying its sources using PAH diagnostic ratios13 and multivariate 

statistical analysis15. 

 

 

MATERIALS AND METHODS 

 

A total of seventy-seven atmospheric bulk deposition samples were collected monthly from April 2002 to 

December 2004, at three sites located in the cities of Mestre and Venice and inside the industrial area of 

Porto Marghera (Fig. 1). Site ADM was located in the city of Mestre, near an air monitoring station of the 

local environmental pollution agency (via A. Da Mestre, WGS84 coordinates 12°14’13.5”, 45°29’36.4”). Site 

EZI was inside the industrial zone of Porto Marghera, close to a meteorological station of the industrial 

district environmental service (Ente Zona Industriale – CED, WGS84 coordinates 12°14’35.7”, 45°26’44.1”). 

Site IBM was located in the city of Venice, at the Institute of Marine Sciences (ISMAR-CNR, WGS84 

coordinates 12°21’26.4”, 45°25’39.1”). 
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Atmospheric depositions were collected by 3 bulk samplers already described by Guerzoni et al., 20048. The 

samplers were polymer structures, composed of a cylindrical container with a ring and a net protecting them 

from damage caused by birds and animals, clamped to a 60-mm pole. Depositions were collected in a Pyrex 

bottle with a Pyrex funnel (surface area = 0.043 m2) treated with 5% dimethyldichlorosilane in toluene16. 

Total atmospheric samples were first spiked with a series of 5 deuterated PAHs (Acenaphthene-D10, 

Chrysene-D12, Naphtalene-D8, Perylene-D12, Phenanthrene-D10) as internal standards, and then extracted 

in a separation funnel with dichloromethane. Extraction and clean-up procedures are extensively described 

in Raccanelli et al., 200216. HRGC/HRMS analyses were conducted using an HP 6890 plus gas 

chromatograph coupled to a Micromass Autospec Ultima mass spectrometer, operating in EI mode at 35 eV 

with 10,000 resolution (5% valley). Quantitative determination of PAHs was performed by isotope dilution 

methods, using relative response factors previously obtained from standard solution injections17. All solvents 

were Picograde® reagent grade (Pomochem GmbH, Wesel, Germany). Native and deuterated PAH 

standards were purchased from Supelco (Belfonte, PA, USA), Acenaphtylene-D8 standard was purchased 

from Cambridge Isotope Laboratories (Woburn, MA, USA). Recoveries were always 50% to 110%. 

Reproducibility was ±15% for lower values, or better. Laboratory blanks, repeated twice a week, were lower 

than 9% with respect to the minimum concentration found. 

 

 

RESULTS AND DISCUSSION 

 

Atmospheric deposition samples were analysed for Naphthalene (Naph), Acenaphthylene (Acenaph), 

Acenaphthene (AN), Fluorene (F), Phenanthrene (PHE), Anthracene (A), Fluoranthene (FA), Pyrene (PY), 

Benz[a]anthracene (BaA), Chrysene (CHR), Benzo[b+k+j]fluoranthene (BbkjFA), Benzo[a]pyrene (BaP), 

Indeno[1,2,3-cd]pyrene (IPY), Dibenz[a,h]anthracene (dBahA) and Benzo[ghi]perylene (BghiPE). Values 

below the detection limit (DL) were considered equal to 0.5DL. 

Fig. 2 shows the mean PAH profiles (mean deposition fluxes and the amount of each PAH compound as a 

percentage of ΣPAHs) for the three sites. The atmospheric bulk deposition fluxes are reported in Table 1.  

The  PAH mass as a whole was dominated by high-molecular weight PAHs, which accounted for 64%, 61% 

and 79% at the ADM, IBM and EZI stations respectively. Low-molecular weight PAHs were also important, 

Naph being the most abundant compound at ADM and IBM (accounting for 22% and 25% of ΣPAHs 
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respectively). At EZI the profile was mainly characterized by BbkjFA (16%), and this site also had the highest 

relative importance of BaA, BaP, IPY, dBahA and BghiPE (Fig. 2b). 

Several PAHs are considered to be probable or possible human carcinogens, and most of them are known to 

be associated with airborne particles18. The sum of the six carcinogenic PAHs (BaA, BbFA, BkFA, BaP, 

dBahA, and IPY) accounted for 26%, 24% and 36% of the total PAH deposition at ADM, IBM and EZI 

respectively. The WHO considers BaP in their air quality guidelines when calculating unit risk factors, and a 

number of EU states have independently adopted health guidelines or regulations for BaP concentrations in 

the air. However, regarding PAHs in atmospheric depositions, there are currently no recognised quality 

standards. The average daily atmospheric depositions in the three sites (and the range of values), expressed 

as BaP equivalents,19 were 38 (17-72), 44 (4-122) and 328 (76-968) ng m-2 d-1 at ADM, IBM and EZI 

respectively. As can be seen, during the study period the deposition flux at EZI was on average one order of 

magnitude higher than the other sites.  

The mean deposition flux of ΣPAHs observed at EZI is 90±59 µg m-2 month-1, which is three times higher 

than the value of 33.5 µg m-2 month-1 measured by Gevao et al.20 in northwest England. In contrast, at the 

ADM and IBM sites the ΣPAHs were 24±16 and 28±25 µg m-2 month-1 respectively, comparable with the 

data of Gevao et al.20. 

The spatial and temporal variations of atmospheric fallout were also investigated, and source identification 

was performed using diagnostic ratios13. Before attempting to do this, it is important to stress that the relative 

composition of the different PAH compounds in dry deposition samples does not resemble that of the gas 

phase. Specifically, low-molecular weight (LMW) PAHs, being mostly in the gas phase, are under-

represented, and the main contributors to dry deposition are the high-molecular weight (HMW) PAHs, mainly 

associated with particulates21. However, LMW PAHs are efficiently scavenged during rain events, and given 

long sampling periods their contribution to bulk deposition can therefore be important. In general, it can be 

assumed that diagnostic PAH ratios utilising mainly HMW PAHs can give important information when applied 

to bulk deposition samples. 

The ratios of certain PAH species listed in a previous study by Mantis et al.13 are reported in Table 2, and 

descriptive statistics of compound ratios calculated from deposition sampling in the three sites investigated 

are shown in Fig. 3 for comparison. BaA decays faster than the more stable isomer CHR, and the BaA/(BaA 

+ CHR) ratio can thus indicate the distance of the source, higher values indicating a possible local origin and 

lower values indicating transport of PAHs from further away. Higher values of the BghiPE/BaP ratio are 

linked to traffic emissions. Lower values of the FA/(FA + PY) and IPY/(IPY + BghiPE) ratios also indicate 
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traffic emissions, whereas higher values indicate contributions from oil burning13. The monthly sampling 

frequency may produce artefacts, due to PAH instability, if compared to traffic and industrial PAH ratios, 

which are generally calculated on a 24-hour sampling basis. Ambe and Mukai, 199721 calculated a 10-20% 

loss of BaP after a few months of atmospheric particulate matter sample storage. Additional loss is due to 

reactions with oxidants and therefore some of the results need to be treated with caution. Nevertheless, the 

bulk deposition samples in this study captured the different signals at industrial, urban and lagoon sites, thus 

demonstrating that the HMW PAH diagnostic ratios are useful to trace possible sources. 

To summarise, all sites were affected by combustion sources with variable contributions, and several 

differences in deposition fluxes and pollutant patterns among industrial, urban and lagoonal stations can be 

observed. The comparison of the data reported in Fig. 3 and Table 2 suggests, as expected, that the 

signature of the station located inside the industrial area (EZI) is mainly affected by local industrial sources 

and diesel engine emissions (Fig. 3A). The influence of these sources is lower at the ADM and IBM stations. 

The station located in the city of Mestre (ADM) appears to be mostly affected by the high traffic density, with 

a major contribution from petrol car emissions (Fig. 3B). The signature of the Venice station (IBM) is 

characterized by diesel emissions of boat engines and oil burning, with possible transport of industrial 

emissions from distant sources (Figs. 3C and 3D). 

Principal components analysis (PCA) can be used as a classification technique for reducing data to fewer 

dimensions. In PCA, the number of variables in the data set is reduced while retaining much of their 

information content, enabling a better visualization of the information in two or three dimensions, which can 

be interpreted as factors influencing data distribution. The principal components are constructed in such a 

way that the first principal component (PC) explains the maximum variance or information in the data set. 

The subsequent components are orthogonal to the previous PCs and they explain the maximum amount of 

the remaining variance. Hence by definition PC1, PC2 and PC3 contain more variance than any other PCs. 

In this study, PCA was applied to the congener profiles of the PAHs, together with diagnostic ratios (Table 3).  

Three factors were extracted from the analysis (Table 3), accounting for 85% of total variance (extraction 

method: Principal Component Analysis; rotation method: Varimax with Kaiser Normalization, results 

achieved in 5 iterations), and each monthly deposition sample can now be ordered by the three factors and 

plotted in the space of the new variables (Fig. 4).  

Factor 1 (F1) is characterised by almost all considered PAH congeners and by BaA/(BaA+CHR). It accounts 

for 56% of variance and represents the industrial component of the atmospheric deposition. All samples with 

higher levels of PAHs and with a high BaA/(BaA+CHR) ratio are plotted in the right part of the graph. As Fig. 
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4 shows, all EZI samples plotted in this area, together with a few ADM and IBM deposition samples. 

Regarding ADM, which is mostly affected by traffic emissions, positive F1 values are observed for samples 

collected in July and August (dotted line in Fig. 4A), when the industrial component prevails over the urban 

one.  

Factor 2 (F2) is influenced by low molecular weight PAHs in the positive sense and by BaA/(BaA+CHR) in 

the negative, and it represents 18% of variance (Table 3). The samples collected in the cold period (Nov - 

Feb) are mainly located in the upper part of Fig. 4A.  

Factor 3 (F3) is influenced by BghiPE and BghiPE/BaP in the positive sense and by IPY/(IPY+BghiPE) in the 

negative, and accounts for 11% of variance. High levels of BghiPE and higher values of the BghiPE/BaP 

ratio are characteristic of local traffic emissions, and all ADM samples are plotted in the upper part of Fig. 4B, 

with samples collected in July and August (dotted line in Fig. 4B) more affected by the industrial component 

and therefore having positive F1 values. IBM deposition samples fall in the lower part of the plot, 

corresponding to higher levels of the IPY/(IPY+BghiPE) ratio, which indicate contributions from diesel 

emissions of boat engines and oil burning. Positive F1 values are observed for a few IBM samples, indicating 

a greater contribution from industrial emissions. However, since the observed frequency of W and NW winds 

was always <10%, these samples are probably not strictly related to transport from the Porto Marghera 

industrial zone. It is more likely that emissions from local industrial activities (glass-making on the nearby 

Murano Island) are having an impact here and this hypothesis seems to be confirmed by the heavy metal 

content of bulk samples23. 

 

 

CONCLUSIONS 

 

The PAH profiles of three anthropic signatures of atmospheric bulk depositions in and around the Lagoon of 

Venice were studied, illustrating the different influence of industrial and urban atmospheric emission sources.  

PAH diagnostic ratios and multivariate statistical analysis were useful in estimating the spatial variability of 

atmospheric fallout and identifying pollutant sources. 

It was confirmed that atmospheric emissions from the industrial district affect depositions fluxes in the city of 

Mestre. PAH deposition in the city of Venice at times appeared to be influenced by local glass-making 

activity, carried out on the nearby Island of Murano. Traffic-related PAHs appeared to originate mainly from 
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petrol vehicles in the urban site of Mestre, whereas diesel emissions appeared to be significant in the 

industrial zone and in the city of Venice.  
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FIGURE CAPTIONS 

 

Figure 1. Location of sampling sites. Highlighted in grey = industrial area; horizontal dotted line = city of 

Mestre; vertical dotted line = city of Porto Marghera; oblique dotted line = city of Venice; MUR = Murano 

Island. 

 

Figure 2. Mean PAH deposition profiles observed during the study period. Error bars represent standard 

deviation. 

 

Figure 3. Descriptive statistics (min, 25%, median, 75%, max) of diagnostic PAH ratios during the study period. 

 

Figure 4. Plots of samples in the dimensional space of factors obtained from PCA applied to the congener 

profiles of PAHs. 
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Table 1. Atmospheric bulk deposition fluxes of PAHs observed during the study period. 

                            
  ADM EZI IBM 

  
deposition 

range
mean 
value

median 
value samples

deposition 
range

mean 
value

median 
value samples

deposition 
range

mean 
value

median 
value samples 

                            
              
Naph ng m-2 d-1 17-1581 262 91 21 57-1063 215 151 26 3.6-1527 241 141 30 
Acenaph ng m-2 d-1 0.7-56 10 4.0 21 0.8-44 11 7.7 26 0.3-24 5.8 2.3 30 
AN ng m-2 d-1 0.8-49 5.4 2.7 21 5-120 23 19 26 0.8-77 13 6.2 30 
F ng m-2 d-1 1.7-49 8.8 4.8 21 5.8-70 23 18 26 0.8-78 13 8.0 30 
PHE ng m-2 d-1 25-279 82 53 21 88-1146 278 216 26 4.2-409 93 68 30 
A ng m-2 d-1 2.2-11 6.2 6.8 21 14-140 37 33 26 0.1-7 3.4 3.2 30 
FA ng m-2 d-1 32-291 94 76 21 108-1511 396 262 26 7-1010 146 91 30 
PY ng m-2 d-1 10-263 80 68 21 99-1183 353 241 26 7-548 100 67 30 
BaA ng m-2 d-1 14-46 25 23 21 50-671 175 153 26 1.7-107 27 19 30 
CHR ng m-2 d-1 9-117 59 61 21 121-1533 313 253 26 6-269 75 55 30 
BbkjFA  ng m-2 d-1 42-147 84 78 21 147-1951 470 395 26 12-369 107 75 30 
BaP ng m-2 d-1 8-52 24 20 21 47-686 229 205 26 2.5-90 30 24 30 
IPY ng m-2 d-1 13-45 25 24 21 44-527 179 133 26 2.5-75 29 21 30 
dBahA ng m-2 d-1 1.7-12 5.1 3.6 21 9.7-160 53 46 26 0.4-15 4.5 2.9 30 
BghiPE ng m-2 d-1 2.9-66 34 28 21 0.4-932 256 173 26 2.5-70 28 21 30 
ΣPAHs ng m-2 d-1 321-2301 806 635 21 1032-10575 3010 2370 26 221-3969 917 547 30 
Carcinogenic14 % 6-42 26 26 21 16-48 36 37 26 7-40 24 25 30 
BaP-Eq19 ng m-2 d-1 17-72 38 30 21 76-968 328 300 26 4-122 44 34 30 
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Table 2. Diagnostic PAH ratios (modified from Mantis et al., 200513)  
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Diesel vehicles  1.2–2.2  0.35–0.94  0.38–0.92  0.43–0.70  

Catalyst equipped cars  2.5–3.3  0.21–0.26  0.22–0.76  0.14–0.40  

Non-catalyst cars  1.72  0.51  0.58  0.17  

Oil burning  <0.5, 0.40  0.82  0.32  0.62  

Road dust  0.86–3.5  0.36–0.57  0.38  0.42–0.54  

Industrial furnaces  0.02–0.06  0.36–0.57  0.23–0.89  0.21–0.26  
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Table 3. Factor loadings from PCA. 

   
 Factor 1 Factor 2 Factor 3 
   
   

Naph 0.194 0.642 0.172
Acenaph 0.213 0.830 -0.014
AN 0.795 0.322 -0.103
F 0.592 0.696 -0.137
PHE 0.758 0.580 -0.086
A 0.871 0.190 0.106
FA 0.776 0.543 -0.094
PY 0.813 0.485 -0.007
BaA 0.968 0.170 0.029
CHR 0.852 0.400 -0.001
BbkjFA 0.938 0.252 -0.063
BaP 0.984 0.039 0.002
IPY 0.952 0.211 -0.039
dBahA 0.969 0.052 0.072
BghiPE 0.790 0.156 0.540
BaA/(BaA+CHR) 0.606 -0.559 0.077
BghiPE/BaP -0.214 0.196 0.880
IPY/(IPY+BghiPE) -0.134 0.166 -0.877

   
% of variance 55.96 18.31 10.78
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