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ABSTRACT 

A comparative study was performed of three instruments used to measure the grain-size distribution 

of thirty sediment samples from shallow lagoonal flats: the hydrometer, the Sedigraph 5000 and the 

CIS-1. The hydrometer and Sedigraph are based on sedimentation whilst the CIS-1 uses time of 

transition. The percentage of the samples accounted for by the <8 µm fraction were not affected by 

the technique used, but this was not the case with the clay fraction (<2 µm). Due to its relative 

independence from the analytical method applied, the <8 µm fraction can be used in ternary 

diagram classifications. This fraction also has an environmental significance in coastal lagoons in 

terms of hydrodynamics, organic enrichment and macrozoobenthos assemblages. The linear 

relationships obtained in this study may provide useful operational indications for similar studies.  
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INTRODUCTION 

Although common standards of analysis have not yet been established by the scientific community, 

grain-size and grain-size distribution are key factors in sedimentology and landscape evolution 

(Goossens, 2008). Sediment grain-size data are commonly used for textural classification, but the 

details remain unresolved for lagoon sediments. Lagoons may display a large variety of sediment 

patterns depending on the relative strength of waves and tides (Nichols and Boon, 1994). Grain-size 

distribution is certainly one of the more helpful tools for describing the environmental conditions in 

lagoon systems, because fine-grained material correlates strongly with pollutants. In addition, 

variability in chemical, physical and hydrographical parameters is always related to variation in 

sediment grain-size (Kjerfve, 1994). Particle dimensions therefore describe environmental 

conditions and provide information about processes acting on the ecosystem. They may thus be 

regarded as an "environmental tracer". For these reasons, it is very important to characterise the 

grain-size of bottom sediments. Indeed, grain-size data is essential for the modelling and 

management of lagoon environments.  

Flemming (2000) proposed an updated version of the texture ternary diagram (Reineck and Siefert, 

1980; Pejrup, 1988), which increases the range of application and the environmental sensitivity of 

textural sediment classification. The classification incorporates a genetic element by distinguishing 

between different hydrodynamic regimes. While Molinaroli et al. (2009a, b) showed that the <8 µm 

and approximately 20 µm fractions could be used to classify lagoonal sediments in terms of their 

hydrodynamics, Chang et al. (2006, 2007) showed that 8 µm is an important size-limit in the 

Wadden Sea sediments, delimiting the transition between cohesive flocs and aggregates and non-

cohesive single grains. The debate among sedimentologists about the importance of this limit is 

ongoing. Moreover, the <8 µm fraction was found to be correlated with the total organic carbon and 

organic matter content of sediments in the Lagoon of Cabras (De Falco et al., 2004; Magni et al., 

2008). In this homogeneously muddy system, impaired benthic assemblages were found in 

sediment characterised by 77% ≤8 µm, 11% OM and 3.5% TOC (Magni et al., 2008).  

The use of specific grain-size intervals for sediment classification, such as <2 µm (hereafter PM2) 

and <8 µm (hereafter PM8), requires that results derived from different analytical methods are 

broadly comparable. The problem of comparing grain-size analyses based on different techniques 

and physical principles has been discussed by several authors (Konert and Vanderbergen, 1997; 

McCave et al., 2006; Goossens, 2008) and because of the differences in results, many comparative 

studies of grain-size techniques have been carried out over the last two decades (Syvitski et al., 

1991; Shillabeer et al., 1992; Duck, 1994; Bergen & Sukuda, 1995; Cramp et al., 1997; Konert & 
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Vandenberghe, 1997; Beuselinck et al., 1998; Bianchi et al., 1999; Molinaroli et al., 2000; McCave 

et al., 2006; Goossens, 2008).  

For the same silty-clay sediment, laser techniques (diffraction and time-of-transition methods) tend 

to yield coarser grain size estimates than sedimentation techniques. Konert & Vandenberg (1997) 

found that the PM8 fraction measured by laser diffraction corresponded to the PM2 fraction 

measured by sedimentation for sediments of fluvial, aeolian and lacustrine origin. McCave et al. 

(2006) showed that the laser diffraction method increasingly overestimated the 10-63 µm fraction as 

the fine silt/clay content, measured by sedimentation using a Sedigraph, increased. However, they 

found that the differences between grain size distributions derived by laser diffraction and 

Sedigraph become negligible when the 10-63 µm fraction was higher than 40%. Molinaroli et al. 

(2000) found a correspondence between PM4 (<4 µm) measured by laser (time-of-transition) and 

PM2 measured by Sedigraph, with the differences found using the time-of-transition laser technique 

(Galai CIS-1) less accentuated than those found using laser diffraction (Malvern Mastersizer). 

Recently Goossens (2008) published a detailed comparative study analysing four sediments with ten 

techniques. Although the trends were generally similar, he observed differences in the results of 

grain size analyses conducted with different instruments. It follows from these observations that the 

classification of sediments in terms of sand, silt and clay ratios depends on the type of instrument 

used for grain size analysis (Goossens, 2008).  

The aim of this study was to compare grain size data from samples collected across lagoonal flats to 

ascertain whether analyses performed with instruments based on laser (time-of-transition) and 

sedimentation techniques produced comparable results, especially for those fractions considered to 

be most useful in environmental sedimentology.  

 

 

METHODS 

Techniques and instruments  

Two sedimentation methods (hydrometer and Sedigraph) and one time-of-transition laser method 

(CIS-1) were used. The hydrometer method (Lesikar et al., 1995) relies on the differential settling 

velocity of sediment grains of different sizes in a fluid with known viscosity and constant 

temperature. Sediment particles are dispersed with a substance such as sodium metaphosphate and 

then agitated. As grains of different size settle at different rates, so the specific density of the 

sediment-fluid mixture, measured with a hydrometer, changes and Stoke’s law can be used to 

calculate the grain-size distribution. The Sedigraph 5100 (Micromeritics Instrument Corporation, 

Norcross, GA, USA) measures the sedimentation rate by determining X-ray obscuration at different 
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levels in a sample cell. The grain-size data are given as mass percentages. The CIS-1 (Galai 

Production Ltd, now owned by Ankersmid B.V., Oosterhout, the Netherlands) is based on the 

detection of particles by a rotating laser beam and a photodiode. The data are given as volume 

percentages. In this study, we employed small-volume cuvettes with magnetic stirring to suspend 

particles (see Molinaroli et al., 2000 for analytical procedures). Four analytical replicates were 

carried out for each sample and each instrument, the mean grain diameter variability between 

replicates being <2%. 

 

Sediment characteristics 

Thirty sediment samples collected from shallow lagoonal flats in the Lagoon of Venice (LV) were 

analysed. Sediment samples were pre-treated with H2O2 (20% volume) to eliminate organic 

material, washed with bi-distilled water to eliminate chlorides, and then oven-dried at 40°C for 12h 

they subsequently were wet sieved in order to eliminate the sandy fraction (>63 µm). Finally 

samples were pre-treated with 6‰ Na-hexametaphosphate solution for 24 h and then sonnicated for 

5 min before analysis. Sediment textures ranged between silty clay and clayey silt. The composition 

of the 30 sediment samples in terms of seven grain-size fractions (32-63; 16-32; 8-16; 4-8; 2-4; 1-2; 

<1 µm) was determined. 

There are substantial differences between the sediment samples used in this study and the samples 

used by Goossens (2008). Unlike Goossens’ samples, lagoonal sediments generally contain 

significant amounts of organic matter (LV average approximately 5%) (Frangipane et al., 2009), 

which must be removed in order to avoid the formation of aggregate particles. There are also some 

differences in analytical procedures. Goossens analysed the bulk sediment without previous sieving 

at 63 µm. In this study the focus was on the fraction that passed through the 63 µm sieve.  

 

 

RESULTS 

Comparison of the three techniques 

For each sediment class there were differences in the proportions determined by each method. The 

mean differences (± standard deviation) for each size class percentage were computed for each pair 

of instruments (Figure 1). Comparisons of the differences in frequency distributions as determined 

by hydrometer, Sedigraph and CIS-1 showed that the dissimilarities among the instruments were 

mainly in the 32-63 µm, 16-32 µm and <1 µm size intervals.  

Measured percentages of the <1 µm grain size fraction were, on average, higher when measured 

with the sedimentation techniques rather than the laser method. The devices have different lower 
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limits for grain-size detection, with the CIS-1 measuring particles down to a limit of 0.5 µm but the 

sedimentation techniques measuring finer particles than that. Differences were also found between 

the two sedimentation techniques: the Sedigraph yielded higher percentages in the <1 µm class 

(approximately 8% more) than the hydrometer. Comparison of coarser classes shows that the CIS-1 

yielded lower values for the 32-63 µm fraction than the hydrometer (approximately 20% less) and 

Sedigraph (approximately 7% less) (Figure 1). The hydrometer considerably overestimated the 

coarse-silt fraction (32-63 µm) by approximately 14%, compared to the Sedigraph. The opposite 

trend was found for the 16-32 µm class. The CIS-1 values were  approximately 16% higher than 

those by the hydrometer method and approximately 6% higher than those given by the Sedigraph. 

The values given by the Sedigraph were approximately 9% higher than those given by the 

hydrometer. In general, the 32 µm boundary is a critical point, beyond which the instruments yield 

the most widely varying results. 

 

PM2 and PM8 fractions 

The PM2 and PM8 are descriptors for the transition from cohesive flocs and aggregates to non-

cohesive single mineral grains. Two-way comparison plots (based on the entire data set of 30 

samples) for PM2 and PM8 as measured with the three devices are shown in Figures 2 and 3 

respectively. Since there is uncertainty in both the dependent and independent variables, a type-II 

regression model was adopted. which minimises the perpendicular distance between the data points 

and the model line.  

With the PM2 data, the correspondence was poor. In contrast, good relationships were found for the 

PM8 fraction, allowing PM8 data to be transformed from  values  measured  using one instrument 

to equivalent estimates as if measured by another instrument. The linear relationships between the 

data obtained by Sedigraph, CIS-1 and hydrometer for the PM8 fractions were:  

% CIS-1 = 0.74 • % hydrometer + 14.73 (r=0.90; p<0.001)  

% Sedigraph = 1.09 • % hydrometer + 0.18 (r=0.94; p<0.001)  

% CIS-1 = 0.63 • % Sedigraph + 17.0 (r=0.89; p<0.001) 

 

 

DISCUSSION 

The comparison of grain size data from the different instruments used in this study shows that the 

biggest differences are in estimation of the clay fraction (PM2), thus confirming for lagoonal 

sediments, the findings of previous investigations for sediments from other environments (McCave 

et al., 2006; Beuselinck et al., 1998; Konert and Vandenberghe, 1997). As here, Beuselinck et al. 

(1998) and Konert and Vandenberghe (1997) showed that the PM2 estimates obtained from laser 
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diffraction were generally less than those measured using sedimentation techniques. This 

discrepancy was attributed to the effects of clay mineralogy (Beuselinck et al., 1998). Our results 

showed that the analysis of PM2 in lagoonal samples using different instruments did not produce 

comparable results, thus confirming that the problem with comparing grain size data obtained with 

different devices seems to be mainly related to the finest fractions. In contrast, the analysis of PM8 

in the lagoonal sediments indicated good relationships between the three instruments. 

 The proportions of PM2 and PM8 as detected with the three techniques were compared with the 

results obtained by Goossens (2008). The Atterberg cylinder method (tested by Goossens) and 

hydrometer techniques are based on the same principle, so we consider the two techniques to be 

similar, just as the CIS-100 tested by Goossens is considered to be similar to the CIS-1. Goossens 

(2008) compared four sediment samples (G-A, G-B, G-C, G-D) characterised by decreasing median 

grain diameter (35 µm, 30 µm, 12 µm, 9 µm respectively) and increasing clay content (3%, 8%, 

10%, and 15%). In order to compare our results with those of Goossens (see table 1 and Fig. 8 in 

Goossens, 2008), we grouped our samples into four classes with increasing PM2 and PM8 content, 

using the mean percentage values (±SD) of each class for comparison (Figure 4). 

Examination of Goossen’s data shows (Fig. 4A, B) that the CIS-100 underestimated the clay 

fraction (PM2) by between 1 and 10% compared to the Atterberg technique. In contrast, the CIS-

100 overestimated the fine silt fraction (2-8 µm), especially in the silty samples (G-C and G-D), 

with values that were 10-20% higher on average than the Atterberg values. The PM2 fraction 

determined by Sedigraph was overestimated by 2-14% and 3-22% with respect to the Atterberg and 

CIS-100 respectively. The Sedigraph overestimated the PM8 fraction by 8-17% with respect to the 

Atterberg, while the Sedigraph data differed by between -13% and 16% with respect to the CIS-

100, depending on the silt content. 

For the data from this study (Fig. 4C, D), there was poor correspondence between the Sedigraph, 

CIS-1 and hydrometer for the PM2 fraction (Fig. 4C), while good correspondence was found for 

PM8 (Fig. 4D). The PM8 fraction measured by Sedigraph was overestimated with respect to the 

hydrometer by just 1-5%. In contrast, the Sedigraph data differ by between -5% and 8% with 

respect to the CIS-100 depending on the silt content. The results of this study are therefore in 

agreement with Goossens, according to whom there is no optimum technique for measuring the 

grain-size distribution of loamy sediments. The choice of technique thus depends on several factors 

such as type and quantity of sediment, speed of measurement, complexity of the measurement 

protocol, data processing and reproducibility of the results. 

The comparability of PM8 data obtained by the sedimentation and CIS-1 methods suggests that the 

latter can be used for the determination of the sortable/non-sortable ratio (sensu McCave et al., 

2006), which is considered a proxy for palaeo-current speed. Whereas laser diffraction systems tend 
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to overestimate the sortable/non-sortable ratio, especially for sediments with high clay content 

(McCave et al., 2006), the CIS-1 laser system, based on time transition, does not. 

The PM2 and PM8 intervals have specific sedimentological significance. The 2 µm boundary is 

used for sediment classification (clay/silt limit) in ternary diagrams (Flemming, 2000). The PM8 

fraction is known as the non-sortable silt fraction, consisting of both single particles and an 

aggregated or flocculated fraction, whereas the 8–63 µm fraction consists of sortable (non-

aggregated) silt particles (McCave et al., 1995; Chang et al. 2006, 2007; Molinaroli et al., 2009a, 

b). Furthermore, the results for PM2 and PM8 indicate that the appropriateness of a textural 

classification based on the sand/silt/clay ratio with boundaries at 63 µm and 2 µm (Flemming, 

2000) depends on the instruments used for the analysis. In contrast, the <8 µm fraction is 

comparable across instrument readings and our analysis suggests that a simple linear relationship 

can be used to convert one data set to another. In this case, ternary diagrams might more usefully 

utilise < 8 µm as a classification boundary. 

 

 

CONCLUSIONS 

This study compared grain size data for 30 sediment samples taken from shallow lagoonal flats 

obtained with instruments based on laser (time-of-transition) and sedimentation techniques. The 

main results are:  

1. The size of the PM8 (<8 µm) fraction was comparable regardless of the three techniques used, 

while this was not the case for the clay fraction (PM2= <2 µm). 

2. The PM8 grain size data obtained from the three devices may be converted into a comparable 

form by using simple linear relationships.  

3. The <8 µm fraction is suitable for ternary diagram classification due to its relative independence 

from the analytical method used. This limit has also an environmental significance in coastal 

lagoons in terms of hydrodynamics, organic enrichment and macrozoobenthos assemblages. 

4. The linear relationships obtained in this study may provide useful operational indications for 

similar studies in coastal lagoons. 
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FIGURE CAPTIONS 

Fig. 1. Mean differences (n = 30 samples) between the frequencies of seven clay – silt grain size 

fractions measured using two sedimentation methods (hydrometer and Sedigraph) and a laser 

time-of-transition method (CIS-1).. Standard deviations are indicated by bars. 

 

Fig. 2. Two-way comparison plots, based on the entire data set of 30 samples for the PM2 fraction 

as measured with the three devices. The equation y=x shown in the graph represents the 

theoretically perfect reproducibility of analyses using different methods. Given the poor 

correspondence between methods, the relative models were not calculated.  

 

Fig. 3 Two-way comparison plots, based on the entire data set of 30 samples for the PM8 fraction as 

measured with the three devices. The equation y=x shown in the graph represents the 

theoretically perfect reproducibility of analyses using different methods. The good 

correspondence between methods enabled models to be calculated in all three cases (see text for 

the relative equations). 

 

Fig. 4. Comparison of results from Goossens (2008) (A, B) measured by the three techniques and 

the results of the present study (C, D) for the PM2 and PM8 grain-size fractions. G-A, G-B, G-C 

and G-D = the four samples analysed by Goossens; 1, 2, 3, 4 = the groups of samples in this 

study (The number of samples for each group are 7, 9, 7 and 7, respectively). Standard 

deviations are indicated by bars. 



 12 

  

FIG.1 

 



 13 

 

FIG.2 



 14 

 

FIG. 3 



 15 

 

FIG. 4 


