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ABSTRACT

A limnological study was performed during 1991 and 1992 on lakes Paione Supe-
riore (LPS) and Paione Inferiore (LPI), located in the Ossola Valley, Central Alps. The
two lakes are characterized by very low alkalinity values (LPI <30 peq I, LPS <3 peq I'');
notwithstanding the relatively low atmospheric acid load, diatom remains, carbona-
ceous particles and pigment profiles in the sediments all indicate that the two lakes
have undergone acidification since the fifties. The biological communities (phyto-, zoo-
plankton and macrobenthic fauna) are simplified, in consequence of the extreme physi-
cal and chemical conditions. The biological characteristics of the two lakes are
discussed in relation to the water chemistry and the presence or absence of stocked fish.

Key words: mountain lakes, Alps, acidification, chemistry, phytoplankton, zooplankton,
macrozoobenthos, sediment core

1. INTRODUCTION

Italian alpine lakes were studied, largely from a biological standpoint,
during the 30s and 40s by researchers of the Istituto Italiano di Idrobiologia
(Baldi 1939; Pirocchi 1949). Many studies were done on the lakes in the
Bognanco Valley, particularly on lakes Paione Superiore and Inferiore (Tonolli
1947, 1949, 1954; Tonolli & Tonolli 1951); the net plankton community was
examined in detail, whereas the chemical data (Tonolli 1947) are very poor
and not really comparable with present measurements. No data on the macro-
benthic fauna were collected.

During the eighties, in the framework of research on the acidification of
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freshwater, chemical studies were performed on the Paione lakes, which were
found to be very poorly buffered due to the lithology of their watersheds
(Mosello et al. 1985; Mosello 1986). For this reason they were chosen as ‘rep-
resentative lakes’ for an ecological study as part of the EC STEP research on
“Acidification of Mountain Lakes: Palacolimnology and Ecology (AL:PE)”
(Wathne 1992). The basic assumption of this research is that high altitude lakes
are excellent indicators of air pollution and its effects, because they are not
influenced by other forms of disturbance and because the geology, soils and
relief of mountainous regions often give rise to surface water ecosystems sensi-
tive to acid deposition.

This paper reports the results of a multidisciplinary study performed by
the staff of the Istituto Italiano di Idrobiologia on the Paione lakes, in the
framework of the AL:PE research. The main aims of this work were, on the
one hand, to evaluate their recent evolution through sediment analysis and, on
the other, to gather information on the present situation monitoring the sea-
sonal variations in the chemical characteristics and in the planktonic and
macrozoobenthic communities.

2. STUDY AREA

Lakes Paione Superiore (LPS) and Paione Inferiore (LPI) are located in
the Bognanco Valley, a lateral of the Ossola Valley, in the Central Alps (Pen-
nine) in Piedmont (Italy) (Fig. 1). The valley is crossed by the Simplon-Cento-
valli Fault and presents a heterogeneous lithology; for a description of the
tectonics and geology of the area see Klein (1978) and Ferri (1982). The lithol-
ogy of the watershed of the two lakes (Fig. 2) is characterized by clear banded
orthogneisses and gray gneiss with potassium feldspar and epidote. Land
cover, mainly hay meadows, is restricted to small areas (Fig. 2); bare rocks and
debris characterize most of the watershed surface.

The main geographical and morphometric characteristics of the lakes are
presented in table 1, and the bathymetric maps (Tonolli 1947) in figure 3.

3. SAMPLING AND METHODS
3.1. Air temperature and volume of precipitation

As there are no meteorological stations in the Bognanco Valley, tempera-
ture and precipitation were measured at six stations in the neighbouring valleys
at altitudes between 1800 and 2600 m a.s.l., and at Lake Toggia (2160 m),
about 30 km NNW of the Paione lakes (Fig. 1), where atmospheric deposition
samples for chemical analysis are also collected weekly.
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MAGGIORE

Fig. 1. Location of the Paione lakes, of the sampling site of atmospheric deposition for
chemical analysis (Lake Toggia), and of the meteorological stations for measurement of
temperature and amount of precipitation (triangles).

Talus

Bog- lake deposit Rocks and debris

Orthogneiss Hay meadows

Fig. 2. Lithology and land cover of the watersheds of the studied lakes.
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Tab. 1. Main geographic, morphometric and hydrological features of the Paione lakes.

L. Paione L. Paione

Inferiore Superiore
Altitude ma.s.l. 2002 2269
Longitude East 8°11°23” 8°11°27”
Latitude North 46°10°1” 46°10°26”
Lake surface area km? 0.014 0.014
Watershed area
(lake included) km? 1.14 0.55
(Watershed+lake)/lake ratio 81 39
Maximum depth m 13.5 11.7
Mean depth m 7.35 5.12
Lake volume 10 m? 103 69
Precipitation mm y! 1450 1400
Mean residence time days 23 33

3.2. Chemistry

Lake water samples for chemical analysis were collected at the maximum
depth station at 0, 2.5, 5 and 8 m in LPS and at 0, 2.5, 5, 10 and 13 m in LPI.
At the same depths temperature was measured with a reversing thermometer.
Twelve and fourteen samplings were performed from October 1990 to Septem-
ber 1992 in LPS and LPI, respectively; in 1991 the samples were collected
from July, and in 1992 from February.

The following variables were analyzed: pH (pHM 84, Radiometer) and
conductivity (CDM 83, Radiometer), main ions (sulphate, nitrate, chloride, cal-
cium, magnesium, sodium and potassium) by ion chromatography (Dionex
2010), ammonium (spectrophotometry, indophenol blue, Fresenius et al.
1988), alkalinity (acidimetric titration, end-points 4.5-4.2, Rodier 1984), reac-
tive and total phosphorus (ammonium molibdate + ascorbic acid, Valderrama
1981), total aluminum (AAS, graphite furnace).

As no stable chemical stratification was detected during this study, the
data in the text and tables are expressed as volume weighted means.

3.3. Phytoplankton

Integrated phytoplankton samples were taken at intervals of one meter
from the surface to the bottom, simultaneously with those for chemical analy-
sis, and immediately fixed with Lugol’s solution. Countings were performed
on 25 ml subsamples using the inverted microscope at a 400x magnification,
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on 100 randomly selected fields (Sandgren & Robinson 1984); the biomass
was estimated from density data and mean cell volume (Smayda 1978). The
chrysophycean Mallomonas alveolata was identified using the scanning elec-
tron microscope.

3.4. Zooplankton

Zooplankton samples were collected in 1992 in both lakes with a 126 um
mesh size plankton net, vertical hauls were made in the central zone of the
lakes and under the ice cover. The samples were immediately fixed using alco-
hol 95% (Hall 1964) and then transferred into formalyn 10%. Most samples
were counted entirely, under a compound microscope, using a 1 mm Hydro-
Bios Kiel counting chamber. The different developmental stages were also
taken into account.

3.5. Macrozoobenthos

Qualitative samples of macrobenthic fauna were collected at the same
time as the chemical sampling in the two lakes along the shore-line to a maxi-
mum depth of 50 cm.

Five sampling sites (2 in L.LPS and 3 in LPI) (Fig. 3) were chosen, with dif-
ferences of substrate and gradient. Sites 2 and 5 are fairly similar: they are
level and consist of gravel and sand with a small amount of terrestrial plant
remains; stations 1 and 4 are on steep slopes, the former with stony substrate
consisting of landslip material and the latter with rocky substrate partly cov-
ered with sand. Station 3 is located along the outflow of LPI and consists of
stony sediment with some coarse sand and sparse aquatic vegetation.

Samples were taken using a 225 um hand collecting net, with the kick
sampling method (Storey et al. 1991); they were fixed in 80% ethanol, sifted
through a 225 um net and sorted from the sediment in the laboratory.

In July 1992 three quantitative core samples (about 20 cm long, 5.6 cm
internal diameter) were taken from the central zone of the lakes at the maxi-
mum depth.

3.6. Sediment core

A short core (about 20 cm) was collected in 1989 in LPS using a gravity
corer. Algal pigments were extracted from ca 1.5 g of wet sediment with 90%
acetone, and total carotenoids were quantified using the equation proposed by
Ziillig (1982). Data on absorbance at 430 and 410 nm were obtained from 90%
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Fig. 3. Bathymetric maps of Lake Paione Inferiore (above) and Lake Paione Superiore
(below) and sampling sites for temperature, water chemistry, plankton, sediment core
(*) and macrobenthic fauna (numbers).

acetone extracts of sediments. Specific algal carotenoids were measured by
TLC (Ziillig 1982) and HPLC, mainly following the method of Mantoura &
Llewellyn (1983) with some modification (Lami et al. 1993).

Pigment concentrations are used as indirect measures of the standing crop
of planktonic communities. The ubiquitous B-carotene represents an estimate
of phytoplanktonic community development (Fig. 10). The specific caroten-
oids are descriptors of the following algal taxa (Ziillig 1982): lutein for chloro-
phytes, fucoxanthin and diadinoxanthin for diatoms and chrysophytes,
alloxanthin for cryptophytes, echinenone and zeaxanthin for cyanobacteria and
dinoxanthin and peridinin for pyrrophytes. Astaxanthin is used here as an indi-
cator of zooplankton community (Guilizzoni & Lami 1988).

Carbonaceous particles were analyzed following the method of Renberg
& Wik (1985) and Rose (1990).



Limnological studies on two acid sensitive lakes 133

4. RESULTS AND DISCUSSION
4.1. Air temperature

The temperatures of the period January 1991-December 1992 were com-
pared with those of the historical period 1951-91 on the basis of the monthly
means of the daily values. In all the stations the summer values of the study
period are 2-3 °C higher than the period 1951-1991; winter 1991-92 was
warmer than the mean, while winter 1990-91 was not significantly different.
Figure 4 shows the values for Lake Toggia, as representative of the six sam-
pling stations.
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Fig. 4. Monthly averages of the daily mean temperature compared with the historical
data (1951-91).

4.2. Atmospheric deposition

The amounts of precipitation during 1991 and 1992 at the station of Lake
Toggia were 682 and 1153 mm, lower than the pluriannual average (1219 mm,
reference period: 1951-91). Comparison of the monthly volume of precipita-
tion with the historical means (Fig. 5) shows the lowest amount of precipitation
in winter and spring 1991, while the highest value of 240 mm was measured in
March 1992.

Comparison of the amounts of precipitation with the historical period at
the other six meteorological stations surrounding the study area (Fig. 1), per-
formed on an annual basis, shows differences comparable to those of Lake
Toggia.
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Fig. 5. Monthly volumes of precipitation compared with the historical (1951-91) means.

Volume weighted pH of atmospheric deposition at Lake Toggia for 1991
and 1992 (Tab. 2) was 5.21 and 5.60, respectively, with median values of 4.92
and 5.51. Sulphate and nitrate were the most important anions, while calcium
and ammonium presented the highest concentrations among the cations.

Ionic fluxes (Tab. 2) in 1992 were about 50% higher than in 1991,
because of the higher volume of precipitation.

Tab. 2. Volume weighted mean concentrations (A) and fluxes of ions (B) of atmos-
pheric deposition at Lake Toggia. Conductivity puS cm™! at 20°C, concentrations eq 1,
fluxes meq m2 y'!, pH recalculated from means [H*].

1991 1991 1992 1992

A B A B
pH 5.2 - 5.6 -
Conductivity 9.7 - 9.6 =
Hydrogen ion 6 4 3 3
Ammonium 13 9 15 17
Calcium 24 16 16 19
Magnesium 3 2 3 4
Sodium 5 4 9 11
Potassium 2 1 3 4
Bicarbonate 6 4 9 10
Sulphate 24 16 20 23
Nitrate 15 10 14 16
Chloride 5 3 7 8
Sum cations 53 36 49 58

Sum anions 50 33 50 57
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4.3. Lake temperature

Lake Paione Superiore was ice-free from August to September 1991 and
from July to October 1992, while the ice-free periods for LPI were July-Octo-
ber 1991 and June-October 1992,

Temperature under the ice cover in March 1992 in LPS ranged from 0.8
(surface) to 4.1 °C (bottom). The lowest values of 0.6-1.2 °C were measured
in the 0-7 m water layer in May 1992, during the snowmelt, while the tempera-
ture near the bottom was 3.1 °C. In July, a weak stratification occurred: the
temperature was 12.8 at the surface and 8.2 °C at the bottom, while in August
and September the values were homogeneous on the whole water column (14.5
and 8.2 °C, respectively).

In LPI the temperature ranged from 1.5 (surface) to 4.5 °C (bottom) under
the ice cover in March 1992. The lake did not show a permanent thermal strat-
ification during the summer. The highest temperature of 16 °C was measured
in August 1992 in the 0-5 m layer.

4.4. Lake chemistry

Volume weighted mean concentrations of the main chemical variables and
temperature are shown in table 3.

Tab. 3. Volume weighted mean concentrations in the lakes in 1991 and 1992.

LPS LPI

Range Mean Range Mean
Temperature °C) 1.0-15.0 6.6 3.4-14.9 7.8
Diss. oxygen (mg I’ 8.2-11.4 9.8 9.1-11.4 10.2
Diss. oxygen (% sat.) 76-108 88 79-119 94
pH 5.48-6.20 5.66 6.10-6.75 6.44
Conductivity (at 18°C uS cm'™!) 8.0-9.8 9.2 10.7-13.2 12.2
Calcium (ueg I') 33-48 43 66-87 77
Magnesium (ueq I' 5-9 8 10-13 12
Sodium (ueq 1) 6-12 9 11-17 14
Potassium (ueq 1" 5-9 7 8-10 9
Ammonium (ueq 1) 0-6 3 0-2 1
3. cations (ueq I’ 55-82 73 99-124 113
Alkalinity (ueq I'H (-2)-2 0 15-34 27
Sulphate (ueq 1) 35-48 41 46-60 53
Nitrate (ueq 1) 19-27 23 22-34 27
Chloride (eq 1 3-5 4 3-6 4
< anions (Heq 1) 64-74 70 99-125 111
Total Al (ugI'h 23-63 42 7-35 17
Fluoride (uglh 7.0-7.7 73 10.6-15.7 12.3

Reactive Si (mg 1" 0.34-0.51 0.43 0.77-0.89 0.3
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Oxygen concentration ranges between 8 and 11 mg I'' in both lakes; as in
the case of temperature and of the other chemical variables, no stratification
was recorded.

The ion concentrations in LPS range between 120 and 160 peq 1! (con-
ductivity values of 8.0-9.8 uS cm™"); sulphate and nitrate are the main anions,
In a ratio of 1.5 to 2.0.

In LPI the ion concentration is slightly higher (200-250 peq 1'") than in the
upper lake, with corresponding conductivity values of 10.7-13.2 uS cm-'. The
main difference in the chemistry of the two lakes is in the alkalinity value,
which is positive in all the samples in the case of LPI (range 15-34 peq I,
while it is close to zero for LPS. The difference is due both to the higher
watershed/lake surface ratio of LPI compared with LPS and to the presence of
a small amount of calcareous schists in the watershed of LPI. As a conse-
quence, pH is higher than 6 in the LPI samples, with a minimum of 6.1 during
snowmelt. On the other hand the values are between 5.5 and 5.8 for the major
part of the year in the case of LPS with a single value of 6.2 in September
1992. Alkalinity also explains the different aluminium concentrations, which
range between 23-63 and 7-35 ug Al "' in LPS and LPI, respectively. Nitrate
shows high concentrations (23 and 27 peq ' in LPS and LPI, respectively) in
comparison with values reported for remote lakes; in LPS ammonium also
shows high levels, reaching a maximum value of 6 Lleq I'. Reactive and total
phosphorus is always below the detection limit of 3 pug P 1.

4.5. Phytoplankton

Two groups of algae are quantitatively important (Fig. 6), the Chrysophy-
ceae and the Peridineae. In LPS three taxa make up the entire biomass: Chrom-
ulina sp., Mallomonas alveolata and Gymnodinium spp. These species are
present throughout the year, but the Chrysophyceae are more important under
the ice, and Gymnodiniwm in summer. In LPI the alternance between Chry-
sophyceae and Peridineae is more evident: some chrysophycean species (Dino-
bryon sertularia, Uroglena sp., Chromulina sp. and Mallomonas alveolata)
coexist under the ice, while the biomass peak in summer (about 4 times higher
than in LPS) is mainly caused by Peridinium cf pusillum.

The phytoplankton growing season in LPS occurs in the colder part of the
year, with the highest biomass and density in winter under the ice-cover (Fig.
6); this well known phenomenon (Rodhe 1962; Wright 1964; Lecewicz et al.
1973; Maeda & Ichimura 1973; Nebaeus 1984) indicates a physiological adap-
tation of the phytoplankton community to a low energy regime. The biomass
decline from March to May-June could be related to a more severe reduction in
the underwater light, due to the deposition of a thick snow cover. The summer
peak occurs just after the ice-melt and the algae tend to accumulate near the
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Fig. 6. Seasonal variations of phytoplankton biomass. Dotted area: Chrysophyceae.
Dashed area: Dinophyceae.

bottom, where less light and lower temperature are found. The early decline of
phytoplankton in summer corresponds to the beginning of the growing season
of macro-filter-feeder zooplankton.

In LPI the highest phytoplankton biomass is observed in summer: the peak
occurs one (1991) or two months (1992) later than in LPS, when the tempera-
ture reaches its highest values of the year; it is likely that the higher flushing
rate of LPI limits phytoplankton growth during the early summer.

In both lakes the occurrence of the summer biomass peak is related to the
earliness or lateness of the ice-melt: in 1992, when the ice melted one month
earlier than in 1991, the biomass peak also occurred earlier (Fig. 6).

4.6. Zooplankton

In LPI two phases are observed, during which the total density of zoo-
plankton is almost the same; the first when the lake is ice-covered, and the sec-
ond in August (Fig. 7). Low density values are observed at the beginning of
July, but we must take into account the fact that the late-July sampling was not
performed, so that the data might be non-representative for the early summer
phase. Under the ice cover only rotifers and copepods (mainly nauplii) are
found; most copepods are cyclopoid nauplii, with very few copepodites or
adults. Cladocera dominate in May, with Bosmina longirostris and Daphnia
longispina. During August copepods represent more than 50% of the total pop-
ulation density, with Cyclops abyssorum and Eucyclops serrulatus. Among
Cladocera, only Chydoridae Aloninae are present, with Acroperus harpae as
dominant species.

In LPS zooplankton attain higher population density values (Fig. 7).
Copepods dominate under the ice cover, reaching approximately the same den-
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Fig. 7. Seasonal variations of zooplankton density in LPI and LPS. Light dotied area:
copepods. Dashed area: cladocerans. Dark dotted area: rotifers.

sities as in LPI, but with copepodites much more abundant than nauplii and
some adults also present. The July increase in density is due to copepods,
mainly Cyclops abyssorum, and, to a lesser extent, to chydorid (Chydorus
sphaericus, followed by Acroperus harpae). Copepods increase until August,
when they attain their maximum density. Nauplii stages dominate with, in
addition to C. abyssorum, Eucyclops serrulatus (whose adults are mainly found
in the bottom sediments). The sharp August increase in population density is
largely due to Daphnia longispina. Some chydorids are also present, mainly
Alona quadrangularis, Chydorus sphaericus and Acroperus harpae. Rotifers
are in general very scarce, with Keratella quadrata as dominant species.

The two lakes are quite different. In LPI rotifers and copepods dominate,
whereas copepods and Cladocera are the most important groups in LPS. Spe-
cies composition is also different: LPI is characterized by the considerable
presence of Bosmina longirostris - not present in LPS - and by the relatively
minor importance of Daphnia longispina. The summer growth phase is sus-
tained in LPI by chydorids (with Acroperus harpae as a major species, fol-
lowed by Alona quadrangularis), whereas in LPS Daphnia dominates.

Some important changes have occurred in the two lakes since the time of
Tonolli’s investigation (1947). Arctodiaptomus bacillifer, which was the domi-
nant species together with Daphnia longispina, has apparently disappeared
from both lakes. On the other hand, Bosmina longirostris, not found before,
has become at least as abundant as Daphnia longispina during spring in LPI,
where Acroperus harpae is also found.

The differences between the two lakes and between the past and present
situations cannot be explained in terms of acidification. The lower pH cannot
be responsible for the much higher population density of Daphnia longispina
in LPS, nor can the development of Bosmina population in LPI be explained
by the higher pH. It is more realistic to attribute both the differences in the
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structure of the zooplankton population of the two lakes and the differences
with respect to the past to the presence of fish in LPI.

4.7. Macrozoobenthos

The littoral macrobenthic community of the two lakes is predominantly com-
posed of Insecta, especially Diptera Chironomidae, followed by Oligochaeta. Acari
and Turbellaria made up only a minor fraction of the community, while Mollusca
Lamellibranchia of the genus Pisidium are present in small numbers in LPI only.

In LPS chironomids are mostly represented by Hererotrissocladius
(Orthocladiinae), Zavrelimyia (Tanypodinae) and Micropsectra and Paratany-
tarsus (Tanytarsini), while in LPI Psectrocladius and Corynoneura among
Orthocladiinae are also present in large amounts. Probably due to emergences,
their numbers are relatively low at the snowmelt (Tab. 4), but increase consid-
erably during summer and early autumn because of the presence of young indi-
viduals of the new generation. Other Insecta groups such as Diptera Culicidae
and Limoniidae, Trichoptera Limnephilidae, Coleoptera Dytiscidae are well
represented in LPS, but fairly scarce in LPI where Diptera Simulidae and Cera-
topogonidae, Megaloptera Sialidae and Plecoptera Nemouridae can also be
found. In both lakes the greatest proportion of Oligochaeta consisted of Enchy-
traeidae, but large numbers of Naididae together with a few individuals of
Tubificidae and Lumbriculidae are also found in LPI.

Animals restricted to the deepest bottom are very scarce and are preval-
ently Diptera Chironomidae (Procladius and Tanytarsus), with Oligochacta
Tubificidae in LPI.

The extreme physico-chemical conditions (short ice-free period, low tem-
peratures, low ionic concentration) and the oligotrophy of both lakes are the
main cause of the qualitatively poor macrobenthic community. Nevertheless
the possibility that the moderately acid water, associated with low alkalinity
values, has a negative influence on the structure of the community, above all in
LPS where lower values of pH were recorded, cannot be excluded (Okland &
Okland 1986). In particular, the composition of the zoobenthos of both lakes
seems to be strongly affected by minima of pH, usually reached at the snow-
melt in a lake, especially along the shoreline (Merilainen & Hynynen 1990).
Particularly significant from this point of view is the extreme scarcity in LPI,
and the absence in LPS, of Mollusca, which are more sensitive to acidification
(Okland & Okland 1986).

Morcover, the dominant groups present are those more tolerant of acidity:
Chironomidae, Limnephilidae, Nemouridae, Sialidac and Dityscidae among
Insecta (Hendrey & Wright 1975; Wiederholm & Eriksson 1977; Mossberg &
Nyberg 1979; Raddum & Fjellheim 1984; Kenttamies et al. 1985), Enchytraei-
dae among Oligochaeta (Merilainen & Hynynen 1990).
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Tab. 4. Percentages of abundance of some selected benthos taxa in LPI and LPS.
Tri=Trichoptera; Col=Coleoptera; Cul=Culicidi; Lim=Limoniidae; Chi=Chronomidae;
Ins=Other Insecta; Oli=Oligocheta; Tur=Turbellaria; Aca=Acari.

LPI
Date Chi Ins
Station 1
16/07/91 763 17.6
20/08/91  90.0 1.6
17/09/91 97.9 0.1
16/06/92 785 8.4
Station 2
18/06/91 732 3.8
16/07/91 51,5 5.5
20/08/91 54.1 0.9
17/09/91 91.2 1.0
18/05/92 184 2.2
16/06/92  43.5 1.3
Station 3
16/07/91 7377 138
20/08/91 629 17.1
17/09/91 850 3.3
18/05/92 182 22.7
16/06/92 624 17.8
LPS
Date Chi  Lim
Station 4
16/07/91 364 0.0
20/08/91 463 0.0
17/09/91 81.7 0.0
16/06/92 0.0 0.0
07/07/92  66.7 0.0
28/07/92 26.5 0.0
14/09/92 3.8 31.7
Station 5
16/07/91 0.0 0.0
20/08/91 124 0.0
17/09/91  79.8 0.0
07/07/92 29 00
28/07/92  37.1 0.0
14/09/92 195 539

Oli

0.0
0.0
0.1
53

19.9
36.6
28.0

33
76.9
48.0

5.0
8.6
5.8
50.0
19.2

Cul

27.3
0.0
0.0
0.0
0.0
53
0.0

16.1
21.2
3.9
14.3
3.1
0.0

Tur

0.0
3.6
1.2
0.0

0.0
0.5
10.5
23
0.0
0.0

3.7
57
4.2
0.0
0.0

Tri

9.1
17.1
0.8
0.0
79
48.3
12.2

48.4
17.7

0.5
28.6
26.3

120

Aca

6.1
4.8
0.7
7.6

0.7
5.7
5.5
1.5
25
6.5

3.8
5.7
1.7
9.1
0.6

Col

18.2
73
2.3
2.8
3.2
4.0
0.0

226
17.7
0.8
17.1
2.6
3.0

Mol Tot. No
0.0 114
0.0 250
0.0 2242
0.2 584
2.4 419
0.2 440
1.0 724
0.7 1143
0.0 489
0.7 448
0.0 80
0.0 70
0.0 120
0.0 23
0.0 338
Oli Tur
9.1 0.0
0.0 0.0
0.8 4.6
69.4 0.0
1.6 0.0
1.3 0.0
49.3 0.0
12.9 0.0
6.2 0.0
13.4 1.3
17.1 0.0
14.9 0.0
8.2 0.0

Aca

0.0
29.3
9.9
27.8
20.6
14.6
3.0

0.0
24.8
03
20.0
16.0
34

Tot. No

11
86
131
39
69
151
370

31
118
381

38
195
267
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4.8. Sediment core

We found that the 430:410 absorbance ratio is significantly correlated
with lake water pH and that it can be considered as a new index for recon-
structing pH history (Guilizzoni et al. 1992). The reduction of the 430:410
ratio at the top of the core (Fig. 8) shows the existence of an acidification pro-
cess in LPS. PH curves inferred from this ratio show that LPS began to acidify
at around 5-6 cm sediment depth, i.e., about 1950 A.D., as the mean sedimen-
tation rate is 0.15 cm y-'.

Year 430nm:410nm Inferred pH Carb. particles

1990 0

1950

W

1920

sediment depth (cm)
3

1890 15

20

0.6 0.8 1.0 5 7 9 0 5 10
x 10°

Fig. 8. Profile of the 430:410 nm absorbance ratio, inferred pH based on the absorbance
ratio and carbonaceous particles (No g'! d.w.) in a sediment core of LPS.

These changes in pH are related to the increase in carbonaceous particles
deriving from fossil-fuel combustion (Lami et al. 1993). The reconstructed
lake-water pH based on this ratio is in accordance with those based on chryso-
phyte and diatom remains (Guilizzoni et al. 1992; Marchetto & Lami 1993;
Marchetto & Schimdt 1993).

According to hydrochemistry studies carried out during the 80s, absolute
data on plant pigment concentrations (Fig. 9) confirm the oligotrophic condi-
tion of LPS, although wide variations in algal biomass have occurred over the
sample time (130 years). The levels of lutein, fucoxanthin, and echinenone
(with zeaxanthin) reflect the occurrence of organisms belonging to chlorophy-
ceae, diatoms and cyanobacteria, respectively. As these algal groups are absent
from the water column, the pigments indicate the presence of benthic forms.
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Unlike other pigments, fucoxanthin and diadinoxanthin concentrations
increase sharply in the upper three sediment layers, in accordance with diatom
counts (Cameron, pers. comm.) and biogenic silica profiles (data not shown).

Finally, the zooplankton community of LPS, as traced by astaxanthin,
does not show any particular trend through time.

5. CONCLUSIONS

The Paione lakes are ultraoligotrophic, slightly acid lakes; small but per-
sistent chemical differences between the two lakes have been found in all the
samplings. Notwithstanding the relatively low atmospheric acid load, diatom
remains, carbonaceous particle and pigment profiles in the sediments all indi-
cate that the two lakes have undergone acidification since the fifties.

The biological communities are simplified, in consequence of the extreme
physical and chemical conditions. The phytoplankton of the Paione lakes fits
quite well with the general characteristics of the community in ultraoligo-
trophic high mountain lakes (Pechlaner 1971; Capblancq & Laville 1983), i.e.,
low number of species, dominance of nannoplanktonic flagellates and low bio-
mass. The quantitative variations of phytoplankton and the differences between
the two lakes would appear to be mainly determined by physical (hydrology,
duration of ice-cover and underwater climate) and biological (zooplankton)
factors. As for the effect of acidification on phytoplankton, the dominance of
Chrysophyceae and Peridineae is quite typical of lakes with low pH (Bleiwas
et al. 1984; Siegfried et al. 1987); however, the Peridineae seem to be the most
acid-resistant group, increasing their biomass when pH decreases (Stokes
1986; Baker & Christensen 1990), while in the Paione lakes the reverse pattern
is observed. The zooplankton differences between the two lakes can hardly be
explained in terms of pH, because the most notable changes reported seem to
occur at pH <5 (Locke 1991); moreover, Bosmina, one of the most acid-toler-
ant species (Keller & Yan 1991), is important in LPI but absent in the more
acid LPS. The introduction of fish into LPI seems to be the factor most likely
to explain the differences between the two lakes and some of the changes
which have occurred. The littoral macrozoobenthos shows some indications of
a pH effect, especially in LPS where the community is characterized by the
absence of mussels, normally present in fair amounts in oligotrophic lakes but
more sensitive to acidification (Raddum 1980), and by the presence of the
more acid-tolerant groups among insects and oligochaetes.
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