5th Meeting of the Heads of the Laboratories

(17-18 September 2015, Wien)

Again on the Excel sheet for testing water chemical analyses (atmospheric deposition, runoff, soil water)

Aldo Marchetto, Gabriele Tartari and Rosario Mosello C.N.R. Institute of Ecosystem Study, Verbania (Italy) e-mail: a.marchetto@ise.cnr.it http://idrolab.ise.cnr.it

Nils Konig Northwest German Forest Research Station (NW-FVA), Göttingen, Germany

1st Meeting of the Heads of the Laboratories

(9.-10. June 2008, Hamburg, Germany)

An excel sheet for testing water chemical analyses (atmospheric deposition, runoff, soil water)

Life+ FutMon - Working Group on QA/QC in Laboratories Meeting of the Heads of the Laboratories 16-17 June 2011 in Arcachon

Updated Excel sheet for quality check of results of atmospheric deposition and soil water analyses

Perform the analyses

Send the data to a central data base

Next year (usually in February) someone will submit the data to the ICP Forests central database

The on line submission routine will perform the test

He will see if the test fails and (may be) report back to you

Send the data to a central data base

Next year (usually in February) someone will submit the data to the ICP Forests central database

The on line submission routine will perform the test

He will see if the test fails and (may be) report back to you

The same test are performed by the ICP-Forests on-line submission procedure

If you do the test by yourself, you can repeat the analyses and have good results

If you wait for the on-line submission, you can no more perform the analyses, and your data will not be validated for the elaborations

PD = 100 *
$$\frac{(\Sigma \text{ cat} - \Sigma \text{ an})}{0.5 (\Sigma \text{ cat} + \Sigma \text{ an})}$$

Ionic balance

$$\Sigma_{\text{anions}} = [\text{HCO}_3^-] + [\text{SO}_4^-] + [\text{NO}_3^-] + [\text{CI}^-] + [\text{Org}^-]$$

$$\Sigma_{\text{cations}} = [Ca^{++}] + [Mg^{++}] + [Na^{+}] + [K^{+}] + [H^{+}] + [NH_4^{+}]$$

Comparison between measured (CM) and calculated conductivity (CE)

$$CD = 100 * \frac{(CM-CE)}{CM}$$

for conductivity \leq 100 µS cm⁻¹ $CE_{\infty} = \sum \lambda_i c_i$ for conductivity > 100 µS cm⁻¹ $CE = \sum \lambda_i f_i c_i$ λ_i equivalent ionic conductance C_i^i Concentration of the ion i f_i activity coefficient

	Units	Factors to µeq L ⁻¹	Equivalent conductance at 25°C kS cm ² eq ⁻¹
рН		10 ^{6*} 10 ^{-pH}	0.3500
Ammonium	mg N L ⁻¹	71.39	0.0735
Calcium	mg L ⁻¹	49.90	0.0595
Magnesium	mg L ⁻¹	82.29	0.0531
Sodium	mg L ⁻¹	43.50	0.0501
Potassium	mg L ⁻¹	25.58	0.0735
Alkalinity	meq L ⁻¹	1000	0.0445
Sulphate	mg S L ⁻¹	62.37	0.0800
Nitrate	mg N L ⁻¹	71.39	0.0714
Chloride	mg L ⁻¹	28.21	0.0764

Acceptance threshold values in data validation based on the ionic balance and conductivity.

Conductivity of the sample 25 °C	lonic balance	Conductivity
<u>≤</u> 10 µS cm⁻¹	± 20%	±30%
< 20 µS cm⁻¹	± 20%	±20%
> 20 µS cm ⁻¹	± 10%	±10%

PD = 100 *
$$\frac{(\Sigma \text{ cat} - \Sigma \text{ an})}{0.5 (\Sigma \text{ cat} + \Sigma \text{ an})}$$

Ionic balance

$$\Sigma_{\text{anions}} = [\text{HCO}_3^-] + [\text{SO}_4^-] + [\text{NO}_3^-] + [\text{CI}^-] + [\text{Org}^-]$$

$$\Sigma_{\text{cations}} = [Ca^{++}] + [Mg^{++}] + [Na^{+}] + [K^{+}] + [H^{+}] + [NH_4^{+}]$$

Evaluation of the contribution of DOC to ion balance

- - IF C23 = "BOF" then no correction to ion balance for DOC
 - IF C23 = "STF" then ion balance corrected using equation 1 (STF is measured only in the case of broad leaves)

IF C23 = "THR" and D23= "BL" then IF C23 = "THR" and D23= "CON" then correction using equation 2 correction using equation 3

```
IF C23 ≠ from "THR", "STF" or D23 ≠ from "BL", "CON"
```

then U23 = "False", i.e. something is wrong!

🛚 Microsoft Excel	- AnalyticalDataValidation_new_2	011.xls													
🕙 Eile Modifica	<u>V</u> isualizza <u>I</u> nserisci F <u>o</u> rmato g	<u>s</u> trumenti <u>D</u> ati S-f	2US Fi <u>n</u> estra Ri	Excel <u>?</u>						Digitare una domand	ja. 🗸 🗕 🕶 🗙				
i 🗋 📂 🛃 🔁	L≥ 금 금 Δ ♡ X ≯ = 12 - 12 √ ⊃ - (□ - 22 ⊗, Σ - 2 ↓ X 12 m → 0 = > ≥ Σ > 2 = 1 2 → 2 = 1 2 → 1 2 = 1 2 → 2 ↓ X ↓ 12 m → 0 = 2 = 1 2 → 1 2 \to 1														
	0 0 1 7 0 1 0 1 1 1 1 1 1 1	Rispondi con modifich	e <u>T</u> ermina revision	ne		2									
Times New Roman	• 12 • G C S =	三国 9 %	000 € *,0 ,00		• A •										
090 🗸	<i>f</i> ∞ µeq (mg C)-1		,00 2,01												
С	D	E	F	G	H	I	J	K	L M	N	0				
1	Estimation of th	e organic	ion charg	e from D	oc										
2	Correction param	eters from	user												
3	Compling traplage	CTE		CON	C 147										
4	Sampling typology	315	IRK	CON	244										
5	Slope	5.04	6.80	4.17	8.64										
6	Intercept	-6.67	-12.32	-5.01	0.00										
7															
8	Correction param	eters from	Mosello et	t al. 2008	from m	anual			Tab 7a – Broa	d-leaves - Statistical	values (nu				
9	Sampling typology	STF	THR	CON	sw				and	significance of the re	gressions 1				
10	Slope	5.04	6.80	4.17	8.64				Type of solution	BROAD LEAVES	Units				
11	Intercept	-6.67	-12.32	-5.01	0.00				BOF	N	-				
12									BOF	pH range	u				
13	REFERENCE								BOF	pH mean± σ	u				
14	Mosello R., T. Amoriell	lo, S. Benham,	N. Clarke, J.	Derome, K.	Derome, G	. Genouw,			BOF	DOC range	mg C f ¹				
15	N. Koenig, A. Orrù, G.	Tartari, A. Th	imonier, E. Ul	rich and A. J	. Lindroos.	2008.			BOF	DOC mean±σ	mg C f ¹				
16	Validation of chemical a	malyses of atm	ospheric dep	osition on fo	rested sites	in Europe:			BOF	∑ cat range	μeq Γ ¹				
17	2. DOC concentration a	s an estimator	of the organic	c ion charge.	J. Limnol.,	67(1): 1-14.			BOF	∑cat mean±σ	μeq Γ ¹				
18	e-mail corres	ponding author:	r.mosello@ise	.cnr.it					BOF	∑ an range	µeq l ¹ ₊				
Results	s 🖌 Sicat - Sian 🖌 Xm-Xc corrected 🧳	(Na-CI) Notes					•								
Disegno 🔹 🔓 🛛 Eol	rme • 🔪 🔌 🗆 🔿 🚵 🦣 🖏	🗵 🖾 🚺 🕶 🚄	• <u>A</u> • = = :	f 🛯 🖉 🖡											
Pronto				1		1					NUM				
🍠 Start 🛛 🏉 🥹) 🖸 🔁 🕼 🧿 🛆 📦 🧏 🤤	🍪 🔛 2_F	aper DOC Ion Balanc	: 🕙 ExcelSheel	tMarchetto_Ar	QLsMarchett	o_Arcachon	🛛 🛛 Microsoft E	cel - Anal	i 🚴 🕼 😌 🗳 🖸 🆓 🗞 🗞	🏂 🕕 11:14 AM				

Validation of chemical analyses of atmospheric deposition on forested sites in Europe: 2. DOC concentration as an estimator of the organic ion charge

Rosario MOSELLO*, Tiziana AMORIELLO¹), Sue BENHAM²), Nicholas Clarke³), John DEROME⁴), Kirsti DEROME⁴), Gerrit GENOUW⁵), Nils KOENIG⁶), Arianna ORRÙ, Gabriele TARTARI, Anne THIMONIER⁷), Erwin ULRICH⁸) and Antti-Jussi LINDROOS⁴)

CNR Institute of Ecosystem Study, L.go Tonolli 50, 28922 Verbania, Italy ¹⁾CRA Experimental Institute for Plant Nutrition, Via della Navicella 2/4, 00184 Roma, Italy ²⁾Forest Research Laboratory, Farnham Surrey, UK ³⁾Norwegian Forest and Landscape Institute, Hogskolevein 12, 1432 Ås, Norway ⁴⁾Finnish Forest Research Institute, P.O. Box 16, 96301 Rovaniemi, Finland ⁵⁾Research Institute for Nature and Forest, Geraardsbergen, Belgium ⁶⁾Nordwestdeutsche Forstliche Versuchsanstalt, Graetzelstr. 2, 37079 Goettingen, Germany ⁷⁾WSL, Birmensdorf, Switzerland ⁸⁾Office National des Forests, Boulevard de Constance, 77300 Fontainebleau, France * e-mail corresponding author: r.mosello@ise.cnr.it

About 6000 analyses of deposition samples done from 8 different laboratories

Samples were representative of different geographic and climatic situations

Evaluation of the formal charge of organic carbon

 Σ cations – Σ anions = $\beta_1 * DOC + \beta_0$

 $[Org^-] = \beta_1 * DOC + \beta_0$

where [Org⁻] and β_0 units are μ eq 1-1, DOC and β_1 units are mg C 1⁻¹ and μ eq (mg C)⁻¹.

		Broad Leaves		Conifers
	units	THR	STF	THR
Ν	-	1454	597	1657
pH range	u	4.0 - 7.9	3.8 - 8.1	4.1 - 7.0
pH mean $\pm \sigma$	u	5.8±0.6	5.6±0.6	5.3±0.5
DOC range	mg C L^{-1}	0-37	14246	0-40
DOC mean $\pm \sigma$	mg C L^{-1}	8±6	11±7	10±7
\sum cat range	$\mu eq L^{-1}$	37-2736	30-5287	13-2601
\sum cat mean $\pm \sigma$	$\mu eq L^{-1}$	418±321	593±539	316±278
\sum an range	$\mu eq L^{-1}$	29-2606	22-5303	250102
\sum an mean± σ	$\mu eq L^{-1}$	377±304	545±523	279±265
\sum ca t- \sum an range	$\mu eq L^{-1}$	258	263	225
cat - \sum an mean± σ	$\mu eq L^{-1}$	41±59	48±58	37±41
Slope β1	$\mu eq (mg C)^{-1}$	6,80±0,16	5.04±0.25	4.17±0.11
Intercept β0	$\mu eq L^{-1}$	-12,32±1,63	-6.67±3.29	-5.01±1.32
P-value		<0,0001	< 0.0001	<0,0001
\mathbf{R}^2		0.56	0.4	0.47

Σ

🛚 Microsoft Excel	- AnalyticalDataValidation_new_2	011.xls													
🕙 Eile Modifica	<u>V</u> isualizza <u>I</u> nserisci F <u>o</u> rmato g	<u>s</u> trumenti <u>D</u> ati S-f	2US Fi <u>n</u> estra Ri	Excel <u>?</u>						Digitare una domand	ja. 🗸 🗕 🕶 🗙				
i 🗋 📂 🛃 🔁	L≥ 금 금 Δ ♡ X ≯ = 12 - 12 √ ⊃ - (□ - 22 ⊗, Σ - 2 ↓ X 12 m → 0 = > ≥ Σ > 2 = 1 2 → 2 = 1 2 → 1 2 = 1 2 → 2 ↓ X ↓ 12 m → 0 = 2 = 1 2 → 1 2 \to 1														
	00000000000	Rispondi con modifich	e <u>T</u> ermina revision	ne		2									
Times New Roman	• 12 • G C S =	三國 國 %	000 € *,0 ,00		• A •										
090 🗸	<i>f</i> ∞ µeq (mg C)-1		,00 ,00												
С	D	E	F	G	H	I	J	K	L M	N	0				
1	Estimation of th	e organic	ion charg	e from D	oc										
2	Correction param	eters from	user												
3	Compling traplage	CTE		CON	C 147										
4	Sampling typology	315	IRK	CON	244										
5	Slope	5.04	6.80	4.17	8.64										
6	Intercept	-6.67	-12.32	-5.01	0.00										
7															
8	Correction param	eters from	Mosello et	t al. 2008	from m	anual			Tab 7a – Broa	d-leaves - Statistical	values (nu				
9	Sampling typology	STF	THR	CON	sw				and	significance of the re	gressions 1				
10	Slope	5.04	6.80	4.17	8.64				Type of solution	BROAD LEAVES	Units				
11	Intercept	-6.67	-12.32	-5.01	0.00				BOF	N	-				
12									BOF	pH range	u				
13	REFERENCE								BOF	pH mean± σ	u				
14	Mosello R., T. Amoriell	lo, S. Benham,	N. Clarke, J.	Derome, K.	Derome, G	. Genouw,			BOF	DOC range	mg C f ¹				
15	N. Koenig, A. Orrù, G.	Tartari, A. Th	imonier, E. Ul	rich and A. J	. Lindroos.	2008.			BOF	DOC mean±σ	mg C f ¹				
16	Validation of chemical a	malyses of atm	ospheric dep	osition on fo	rested sites	in Europe:			BOF	∑ cat range	μeq Γ ¹				
17	2. DOC concentration a	s an estimator	of the organic	c ion charge.	J. Limnol.,	67(1): 1-14.			BOF	∑cat mean±σ	μeq Γ ¹				
18	e-mail corres	ponding author:	r.mosello@ise	.cnr.it					BOF	∑ an range	µeq l ¹ ₊				
Results	s 🖌 S cat - S an 🖌 Xm-Xc corrected 🧳	(Na-CI)Notes					•								
Disegno 🔹 🔓 🛛 Eol	rme • 🔪 🔌 🗆 🔿 🚵 🦣 🖏	🗵 🖾 🚺 🕶 🚄	• <u>A</u> • = = :	f 🛯 🖉 🖡											
Pronto				1		1					NUM				
🍠 Start 🛛 🏉 🥹) 🖸 🔁 🕼 🧿 🛆 📦 🧏 🤤	🍪 🔛 2_F	aper DOC Ion Balanc	: 🕙 ExcelSheel	tMarchetto_Ar	QLsMarchett	o_Arcachon	🛛 🛛 Microsoft E	cel - Anal	i 🚴 🕼 😌 🗳 🖸 🆓 🗞 🗞	🏂 🕕 11:14 AM				

🔀 Mic	rosoft Excel - El	PD_analytical_da	ata_validati	ion 03_2008	8 new.xls																_ 8	×
: 📳 i	<u>File M</u> odifica <u>V</u>	įsualizza <u>I</u> nseris	ci F <u>o</u> rmato	<u>S</u> trumenti	<u>D</u> ati Fi	i <u>n</u> estra <u>?</u>	Ado <u>b</u> e P	DF										Di	gitare una (domanda.	B	×
1	🞽 🛃 🛃 🍰	🖪 🖪 🗛 🖆	t 💞 🛍	🔏 🗈 🛍	L - 🛷 🛙	9 - (°' -	- 🕃 🔍	Σ - Δ	Z I I 🛍	1089	% 🔹 🕜		ta ta C	2 🗠 🖄	133		0 🖂 🛛 🖘	<u>R</u> ispondi co	n modifiche	e <u>T</u> ermir	a revisione	
Times	s New Roman	• 14 • G (c s 🗐	= = =	e 📑 %	000 €	€,0 ,00 €		🛛 + 🖄 -	• <u>A</u> •]		🔁 🖈	_									
	▼ C2 ▼	f∡ Examp	le																			
	A	B	С	D	E	F	G	H	I	J		Sar	npli	na	tvn	oloc	iv: E	BL 8	C C	DN	U	
1	ICP Fores	sts																				
2	Sampling s	station:	Exam	le									10/5	-				0				
3				•									VVE	:1 -	BOI	1	HR	- 2	16			
4	Please fill in o	nly groon colle																				
- ¥	riease ini ni o	iny green cens																				ſ
5																						
6						pH	λ25°C	Ca ⁺⁺	Mg ⁺⁺	Na ⁺	K+	N-NH4 ⁺	S-SO4	N-NO3	Cľ	T. Alk.	PO4	DTN	DOC	DON	Org	
7	Starting day	End day	Sampling	g typology	mm		µS cm ⁻¹	mg L ⁻¹	μeq L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	μeq L ⁻¹	L							
9	23/01/2007	30/01/2007	BOF	BL	49.0	5.65	51.8	0.78	0.72	6.28	0.23	0.328	0.84	0.449	11.00	5	0.066	0.82	0.74	0.04	FALSO	İ.
10	20/02/2007	28/02/2007	BOF	BL	66,9	5,02	15,1	0,26	0,13	0,96	0,08	0,257	0,42	0,292	1,53	0	0,005	0,57	0,64	0,02	FALSO	Ĩ.
11	06/03/2007	15/03/2007	BOF	BL	36,8	5,26	17,6	1,11	0,07	0,31	0,18	0,499	1,04	0,433	0,51	0	0,010	1,02	1,01	0,09	FALSO	Î.
12	20/03/2007	03/04/2007	BOF	BL	73,6	5,50	14,5	0,39	0,15	1,10	0,08	0,176	0,30	0,217	1,83	б	0,014	0,43	0,55	0,04	FALSO	Ĩ.
13	10/04/2007	17/04/2007	BOF	BL	13,4	5,68	20,8	1,48	0,14	0,24	0,20	0,735	1,04	0,628	0,49	14	0,019	1,37	1,65	0,01	FALSO	Ï
14	24/04/2007	02/05/2007	BOF	BL	73,6	5,67	8,7	0,21	0,06	0,17	0,16	0,360	0,31	0,166	0,27	б	0,050	0,79	0,98	0,26	FALSO	Ï
15	02/05/2007	09/05/2007	BOF	BL	13,4	6,98	32,7	4,12	0,28	0,97	0,14	0,260	1,29	0,362	1,37	139	0,007	0,78	1,91	0,16	FALSO	
16	15/05/2007	22/05/2007	BOF	BL	18,4	6,73	30,9	1,49	0,42	2,27	0,45	0,723	0,55	0,209	3,95	98	0,075	1,67	3,74	0,74	FALSO	
17	30/05/2007	05/06/2007	BOF	BL	25,1	6,86	31,6	1,27	0,30	1,38	0,55	1,515	0,70	0,457	2,20	114	0,210	2,99	2,93	1,02	FALSO	
18	02/10/2007	09/10/2007	BOF	BL	50,2	6,62	23,1	2,04	0,23	1,20	0,12	0,317	0,61	0,189	2,07	70	0,070	0,85	1,10	0,34	FALSO	
19	30/10/2007	06/11/2007	BOF	BL	73,6	6,22	15,1	1,35	0,16	0,69	0,07	0,179	0,61	0,299	1,15	23	0,003	0,50	0,46	0,02	FALSO	
20	06/11/2007	13/11/2007	BOF	BL	33,4	6,05	66,1	0,82	0,90	8,46	0,51	0,349	1,07	0,440	14,30	11	0,000	1,04	1,10	0,25	FALSO	
21	13/11/2007	22/11/2007	BOF	BL	73,6	4,83	20,0	0,17	0,26	2,19	0,11	0,064	0,31	0,203	3,34	0	0,005	0,31	0,39	0,04	FALSO	L.
22	22/11/2007	11/12/2007	BOF	BL	73,6	4,79	37,5	0,31	0,55	4,37	0,13	0,071	0,58	0,209	7,77	0	0,006	0,31	0,54	0,03	FALSO	
23	30/10/2007	06/11/2007	STF	BL	2,5	6,26	29,7	0,66	0,29	1,97	2,88	0,341	0,68	0,084	3,18	74	0,041	0,92	6,22	0,50	25	ŀ.
24	06/11/2007	13/11/2007	STF	BL	1,7	5,90	89,9	1,77	0,88	9,95	4,69	0,027	1,68	0,555	17,60	33	0,001	0,90	6,31	0,32	25	ŀ.
25	22/11/2007	11/12/2007	STF	BL	2,5	5,41	133,5	1,66	1,99	19,30	2,01	0,000	1,75	0,080	35,10	б	0,006	0,19	2,04	0,11	4	ŀ
26	16/01/2007	23/01/2007	THR	BL	17,3	4,62	77,6	2,07	0,88	5,06	1,93	0,909	1,98	2,502	7,67	0	0,023	3,46	5,11	0,05	22	
27	23/01/2007	30/01/2007	THR	BL	36,8	5,27	85,8	1,54	1,34	10,40	0,73	0,319	1,24	0,637	18,70	2	0,016	1,02	1,72	0,06	-1	ŀ
28	06/02/2007	14/02/2007	THR	BL	58,4	5,38	76,3	1,54	1,09	8,90	1,19	0,208	1,18	0,739	15,70	5	0,023	1,07	3,46	0,12	11	ŀ
29	14/02/2007	20/02/2007	THR	BL.	21,6	5,63	56,6	1,25	0,75	6,67	1,30	0,110	0,98	0,735	10,70	7	0,031	1,00	4,01	0,16	15	ŀ
30	20/02/2007	28/02/2007	THR	BL	49,9	5,45	18,0	0,55	0,22	1,51	0,50	0,169	0,50	0,428	1,96	3	0,011	0,69	2,16	0,09	2	ŀ
31	06/03/2007	15/03/2007	THR	BL	27,7	5,65	29,9	1,39	0,36	1,92	0,97	0,438	1,41	0,680	2,45	9	0,021	1,34	4,33	0,22	17	ŀ
32	20/03/2007	03/04/2007	THR	BL	73,6	5,61	18,8	0,56	0,24	1,82	0,22	0,131	0,33	0,276	3,11	7	0,014	0,47	1,14	0,06	-5	ŀ
33	03/04/2007	10/04/2007	THR	BL	22,7	5,61	12,5	0,52	0,17	0,83	0,70	0,032	0,29	0,287	1,10		0,013	0,47	3,56	0,15	12	ŀ
34	10/04/2007	17/04/2007	THR	BL	8,8	5,44	47,9	2,91	0,69	1,01	3,34	0,691	1,38	1,994	1,88	34	0,017	3,11	12,37	0,43	72	
I -	▶ ▶ \Results /	Scat-San / Xn	n-Xc correcte	d / Na-Cl /	Notes /							•									•	

 $\begin{bmatrix} \mathbf{A} + \mathbf{Y} \\ \mathbf{Results} & \mathbf{S} \text{ cat - S an } \\ \mathbf{X}

Conductivity:

Anions higher than cations

Anions lower than cations higher than calculated

One or more cation(s) underestimated

One or more anion(s) underestimated

lower than calculated

One or more anion(s) overestimated

One or more cation(s) overestimated

 $TN = N-NO_3^{-} + N-NH_4^{+} + (N-NO_2^{-}) + Org_N$

$$Org_N = TN - N - NO_3^{-} - N - NH_4^{+}$$

The concentration of organic nitrogen can not be negative

 $TN - N - NO_3^{-} - N - NH_4^{+} >= 0$

Ionic balance (version 2011)

PD = 100 *
$$\frac{(\Sigma \text{ cat } - \Sigma \text{ an})}{0.5 (\Sigma \text{ cat } + \Sigma \text{ an})}$$

$$\Sigma_{\text{anions}} = \text{Alk} + [\text{SO}_4^{=}] + [\text{NO}_3^{-}] + [\text{Cl}^{-}] + [\text{Org}^{-}]$$

 $\Sigma_{\text{cations}} = [Ca^{++}] + [Mg^{++}] + [Na^{+}] + [K^{+}] + [H^{+}] + [NH_{4}^{+}] + [AI^{+++}] + [Fe^{+++}] + [Mg^{++}]$

Applicability of validation tests to different type of solutions

	ion balance	conductivity	Na/CI	nitrogen
wet-only	yes	yes	yes	yes
bulk open field	yes	yes	yes	yes
throughfall	no	yes	yes	yes
stemflow	no	yes	yes	yes
runoff	yes	yes	no	yes
soil water	yes	yes	no	yes

http://idrolab.ise.cnr.it

1 Start

_ 8 ×

 \mathbf{P} ♠

Analytical Quality Control - Mozilla	illa Firefox	
<u>File M</u> odifica <u>V</u> isualizza <u>C</u> ronologia	gia Segnalibri Strumenti Ajuto	
🖏 Analytical Quality Control	+	
← → Link http://idrolab.ise.cnr.it/i	.it/index.php?option=com_content&view=article&id=60&Itemid=62&Jang=en	🚖 🗝 🤁 🚼 🛛 Google 🛛 🔎 🚹
Home Menu		
Home	Analytical Quality Control	
Contacts		
Useful Web links	Since the seventies the laboratory has worked on perfecting a sys	stem of rigorous quality control of all the analytical
Water Chemistry	ry Lab quantity of data, has inevitably led to greater focus on the qual	ity of these data. In addition, the existence of
The Laboratory – hist	istory monitoring networks active both nationally and internationally, ir question of the comparability of the results. Lastly, environmental	nvolving many different laboratories, raise the monitoring performed to comply with national and
The Laboratory - toda	day European legislation makes it essential for participating laboratorie	s to reach common quality standards.
Analytical methods	However, analytical activity is only one phase of the measuring pro impact on the significance of the end results, i.e. on their repres-	entativity and the descriptive value of the system
Analytical Quality Cor	under examination. The most frequent errors are the non-re	presentativity of the samples and the risk of
Internal AQC	contamination.The ultimate quality of the data is also affected by t	the methods of preservation and treatment of the
External AQC	samples (filtration, vial collection, homogenization, dilution, etc),	the structure of the laboratory, the analytical staff
Research topics	and a number of other variables.	cern in the Institute from its incention with great
Surface water	care being taken with the organisation of analyses in aspects relat	ing to the structure of the laboratory as well as to
Atmospheric deposition	ition Since the 80s repeatability control charts have been applied to b	lanks, calibration standards, natural and synthetic
Projects	samples, with comparison and optimisation of different analytical regular participation in proficiency tests at national and internatio	techniques and their limits of detection, and with nal level. All this has made it possible to further
CONECOFOR	optimise the analytical methods used in studying the tempora	l evolution of surface waters and atmospheric
FutMon	deposition	
ICP Waters	Currently, internal and external AQC are performed reg	ularly in the water chemistry laboratory
Other projects	of the CNR-ISE of Ver	bania.
🏄 Start 🛛 🏉 🥹 📀 🗾 🚱 📀	🕽 🛆 🔀 🦪 🎓 🦓 🛛 🔯 Microsoft PowerPoint - [🛛 🕹 Analytical Quality Con	🔟 🞯 😌 💁 🗞 🗞 🏷 🕕 2:35 PM

ど AQC int	ernal quality control - Mozilla Firefo	אנ			리 ×
<u>File M</u> od	lifica <u>V</u> isualizza <u>C</u> ronologia S <u>e</u> gnali	bri <u>S</u> trumenti <u>A</u> iuto			
👶 AQC int	ernal quality control	+			~
(+) >	http://idrolab.ise.cnr.it/index.php	?option=com_content&view=article&id=61&Itemid=64&Jang=en	😭 👻 😋 🚷 🗸 Google	\sim	
Ú	Home Menu				
	Home	AQC internal quality control			
	Contacts				
	Useful Web links	Chemical analyses of surface freshwater have been or Baldi's study of 1949 (Baldi 1949) which was a critical	e of the major areas of activity since the earliest years of existence of the Institute examination of over a decade of limnological and hydrochemical research on Lak	е. <е	
	Water Chemistry Lab	Orta, and Vollenweider's 1965 study (Vollenweider 19 were incontestably in advance of their time as regards a	65) entitled "Materials and methods for the water chemistry of the Insubrian waters inalytical activity, both in Italy and internationally. In addition, the study of Lake Orta an	s", id	
	The Laboratory – history	the other large subalpine lakes, whose size means that the necessity for precision and accuracy in the chemical	their monthly and annual hydrochemical variations are relatively small, led inevitably t determinations if the analytical data were to remain comparable over time.	to	
	The Laboratory - today	This demand for high quality analyses, which goes back	to the origins of the Institute, meant that analytical activity has always been organise	ed	
	Analytical methods	with the greatest care, both as regards the structure of th	e laboratory and analytical practice.		
	Analytical Quality Control	Quality controls used in the water chemistry laborator	y of the CNR-ISE of Verbania are the following:		
	Internal AQC	 Control charts of blanks and repeatability 			
	 Control charts 	 Limits of detection (LOD) and of quantification 	(LOQ)		
	 LOD & LOQ Calibrations comparison 	 Comparison of each calibration with the histori 	cal data of previous calibrations		
	 Calibrations companison Ion balance & conductivity 	 Check of the ion balance, comparison of meas Comparison for each variable analyzed with the 	sured and calculated conductivity, nitrogen and phosphorous balance		
	 Check with historical data 	 Comparison between analytical techniques. 	e historical series for the large subalphile lakes and thers		
	 Methods comparison 				
	 External AQC 				
	Research topics				
	Surface water	•			
	Atmospheric deposition	_			
	Projects				
🍂 Start	🥖 🔮 💽 🔁 🚱 🙆 🎲	🕺 😌 🤹 🛛 🔯 Microsoft PowerPoint - [🛛 🕲 AQC internal quality c	- Tu 🐨 🗢 🖬 🕄 🖓 🐨	🏂 🕕 2:36	PM

http://idrolab.ise.cnr.it/images/doc/analytical_data_validation_2011.xls