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FIG. 1. An instantaneous configuration.

Granular materials are athermal systems, neverthe-
less they can be excited by periodic or stochastic
macroscopic mechanical drivings, reaching very pecu-
liar non-equilibrium steady states. A typical setup is
constituted by one or more horizontal layers of spher-
ical grains on a vertically vibrating surface: under pe-
riodical vibration this system displays a wide variety
of ordering behaviors [1–4], sensitive to covering frac-
tion, number of layers, vibration parameters, material
properties, boundary conditions, etc.

In this communication we report about recent ex-
periments on a quasi-2D monolayer made of ∼ 2000
glass beads, 4mm of diameters, close to the hexagonal
packing, as exemplified by Fig. 1. The vibrating con-
tainer is made of a horizontal teflon-covered rigid alu-
minum circular plate, of diameter ∼ 20cm, delimited
by slowly rising boundaries to prevent highly dissi-
pating frontal collisions between beads and borders.
The teflon covering provides a finely rough surface
which efficiently transfers vertical energy into hori-
zontal motion. The energy input is provided by a
shaker which vibrates the system vertically with a si-
nusoidal law at frequency f . We focus on the range
of frequencies f ∈ [75, 200] and on amplitudes A such
that Γ = A(2πf)2/g ∈ [3, 5]. In this range a granu-
lar regime is observed, similar to a thermally vibrat-
ing crystal: most of the grains show rapidly fluctuat-
ing displacement with respect to an averagely stable
hexagonal lattice, with few sparse fractures and de-
fects due to the overall inconsistency of the boundary
with the lattice. Superimposed to this thermal solid-
like behavior, we observe a remarkably stable rigid
rotation of the whole lattice at constant angular ve-
locity Ω. The period of rotation T = 2π/Ω is several
orders of magnitude larger than 1/f . We find that
Ω increases with the amplitude of the vibration, but
changes in a non-monotonic fashion when f is varied
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FIG. 2. From top-left, going anti-clockwise: 1) position
x(t), y(t) of few particles during a 2000 seconds trajectory
(f = 75Hz, Γ = 3.5); 2) angle tan−1(y/x) of the tracers
as a function of time (f = 75Hz, Γ = 3.5); 3) the same for
a different frequency (f = 100Hz, Γ = 4); 4) the same for
f = 125Hz and Γ = 3, where the “breathing” mechanism
can be identified.

from 75Hz to 200Hz [5]. In particular at least two
inversions of the sign of Ω are observed, increasing
f . A careful study of the container reveals small im-
perfections which account for the rotational symme-
try breaking. The comparison with known granular
ratchet models is discussed [6]. At small amplitudes,
i.e. at the onset of the vibrating crystal regime, we
also observe a very slow breathing mechanism, where
energy cyclically disappears and comes back into the
system, while the rigid rotation slows down and accel-
erates: the breathing period is much larger than 1/f
but lower than T . This seems to be the cyclical repro-
duction of a front propagating “ignition” mechanism
already observed in previous experiments [7].
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