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Abstract

The one dimensional Poisson equation governing the electric potential and the

charge distributions in a plasma composed of electrons and one species of fully

ionized ions is reduced to a singular integral equation. We prove an inversion the-

orem which allow us to solve this equation in favour of the distribution function

of one of the particle species, chosen according to need, once the electric potential

and the distribution of the particle of the other species be given. At variance with

previous results, the unknown distribution function is determined over its whole en-

ergy range and it is written as the boundary value of a suitable sectionally analytic

function. This fact allows us to extend the distribution function thus found over the

whole complex energy domain.
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1 Introduction

In this report, we address the problem of solving the Poisson equation, which,

in electrostatic conditions, governs the electric potential and charge distri-

butions in a plasma composed of electrons and one species of fully ionized

ions. Since the very beginning of Plasma Physics, this equation was conceived

as a way to determine the electric potential in the plasma, once the charge

distributions of the electrons and of the ions are given (e.g. [1]).

It was later realized [2] that the reverse approach could also be used: the

Poisson equation was reduced to an Abel equation and solved in favour of the

energy distribution function of one of the particle species (usually electrons,

e.g. [3,4,5]) once the electric potential and the energy distribution of the other

particle species were given.

This latter approach turned out to be very profitable, chiefly in Space plasmas,

where data about electric potential waveforms are more accurate than data

about particle distributions (e.g. [6,7,8,9]). One limitation of this procedure

consists in the fact that the reduction of Poisson equation to an Abel equation

for — say — the electron distribution function, requires that this distribution

be arbitrarily specified over a semi-infinite range of the electron energy. In Ref.

[10], we showed that this constraint induces singularities of the logarithmic and

of the jump type in the solution of the Abel equation.

Our present work aims at removing this limitation. Rather than reducing the

Poisson equation to an Abel equation over a finite range we cast it as an

integral equation over an infinite range. Several such integral equations are

considered, according to the species of the particles whose distribution we
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wish to determine. Once the integral forms of Poisson equations are cast in

this way, we prove an inversion theorem for singular integral equations. This

theorem allows us to completely determine the distribution function of one

of the particle species over its whole energy range and in fact over the whole

complex energy domain.

2 Assumptions, notation and basic equations

We assume that the plasma in the tripolar region be fully ionized and that

the particles in the plasma are electrons and one species of finite mass, mobile

ions. We adopt a standard statistical description of the plasma, which is given

in terms of the electron and ion “one particle” velocity distribution functions

(or simply velocity distribution functions) and of the mean “self consistent”

macroscopic force (cf. e.g. Ref. [11]). We further assume that: (a) the velocities

of the particles be largely non relativistic, so that the mean force is mainly

electrostatic; (b) the plasma be homogeneous along two cartesian coordinates,

so that the distribution functions and the mean force depend on one only space

cartesian coordinate called X. In principle, the distributions and the mean

force may depend on time. However, under assumption (a), time enters the

physical laws introduced below, only as a parameter. Therefore, any mention

of time will be omitted in the following.

Under these conditions, the velocity distribution functions, which, in general,

depend on three velocity coordinates, will first be integrated over the whole

domain of those velocity coordinates orthogonal to X. The resulting integrated

distributions will depend on X and on one velocity coordinate only, called

VeX for the electron distribution, and ViX for the ion distribution. Under
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conditions, the mean force will be electrostatic, directed along X, and it may

be evaluated by taking the X-derivative of a function of position. In particular,

for the electrons, which have electric charge −|e|, this function is |e|Φ(X). The

quantity Φ(X) is to be identified with the observed electric potential in the

plasma.

Next, we proceed to a non dimensional representation of the plasma quan-

tities. To do so, we use Gaussian units and we set the Boltzmann constant

to unity. If the electrons have mass me, if, in the limit X → +∞, they have

boundary number density ne∞ and, in the same limit, they have boundary

kinetic temperature Te∞, then we denote by

λDe =
√{Te∞/[4πe2ne∞]} (2.1)

the electron Debye length, by

x = X/λDe (2.2)

the normalized space coordinate, by

vTe =
√

[Te∞/me] (2.3)

the electrons’ boundary mean thermal speed, by

ve = VeX/vTe (2.4)

the normalized electron velocity coordinate along x and by

ne∞fe(x, ve)dxdve (2.5)
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the probability of finding any one of the electrons having a position within a

distance dx from x and a velocity component parallel to x within a distance dve

from ve, irrespective of its velocity components orthogonal to x, irrespective

of the position and velocity of all the other electrons, and irrespective of the

position and velocity of all the ions.

Likewise, if the ions have mass mi, atomic number Zi and electric charge

+Zi|e|, if charge neutrality is approached as x→∞, so that the ions’ boundary

number density there is

ni∞ = ne∞/Zi , (2.6)

and if, in the same limit, the ions have boundary kinetic temperature

Ti∞ = θZiTe∞ , (2.7)

then we denote by

vTi =
√

[Ti∞/mi] (2.8)

the ions’ boundary mean thermal velocity, by

vi = ViX/vTi (2.9)

the normalized ion velocity coordinate along x and by

[ne∞/Zi]fi(x, vi)dxdvi (2.10)

the probability finding any one of the ions having a position within a distance

dx from x and a velocity component parallel to x within a distance dvi from
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vi, irrespective of its velocity components orthogonal to x, irrespective of the

position and velocity of all the other ions, and irrespective of the position and

velocity of all the electrons.

Last, the electric potential will be normalized to the electron boundary kinetic

temperature

φ(x) = |e|Φ(λDex)/Te∞. (2.11)

A typical waveform of the electric potential in the tripolar region is shown in

Fig. 1.

Denoting by x = xmin the position at which the electric potential has its

absolute minimum (cf. Fig. 1), the potential energy of a test electron positioned

at x will be suitably rescaled, normalized to the electrons’ boundary kinetic

temperature, and denoted by

−Ue(φ) = −[φ− φ(xmin)]. (2.12)

Likewise, being the absolute maximum of the electric potential located at

x =∞ (cf. Fig. 1), and being θ the ion to electron temperature ratio there (cf.

Eq. (2.7)), the potential energy of a test ion positioned at x will be suitably

rescaled, normalized to the ions’ boundary kinetic temperature, and denoted

by

−Ui(φ) = −[ lim
x→+∞

φ(x)− φ]/θ. (2.13)

We notice that, in Eqs. (2.12) and (2.13), the electron and ion electric potential

energies Ue and Ui were judiciously defined in such a way that (cf. Fig. 1)
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Ue(φ(x)) ≥ 0 for all values of x, (2.14a)

max
−∞<x<+∞

(−Ue(φ(x))) = −Ue(φ(xmin)) = 0, (2.14b)

and

Ui(φ(x)) ≥ 0 for all values of x, (2.15a)

max
−∞<x<+∞

(−Ui(φ(x))) = −Ui( lim
x→+∞

φ(x)) = 0. (2.15b)

Next, we introduce the electron and ion space charge densities, which we con-

veniently normalize and respectively denote by |e|ne∞%e(x) and |e|ne∞%i(x),

and which, using the normalizations of the velocity distributions introduced

in Eqs. (2.5) and (2.10), we write as

%e(x) = −
∫ ∞

−∞
dv′efe(x, v′e), (2.16)

and

%i(x) = +
∫ ∞

−∞
dv′ifi(x, v′i). (2.17)

Using the assumption that the plasma be in electrostatic conditions, we relate

the space charge distributions to the electric potential by Poisson’s equation,

which we write in the non dimensional form

d2φ(x)

dx2
= −[%e(x) + %i(x)]. (2.18)

Eq. (2.18) relates the electric potential and the particle velocity distribution

functions fe and fi, through the charge densities given in Eqs. (2.16) and
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(2.17). Now, in these latter two equations, we change the integration variable

according to

v′α = ±√{2[W ′
α + Uα(φ)]}, α = e, i, (2.19)

the upper (respectively lower) sign holding in that part of the integrals, ap-

pearing in Eqs. (2.16) and (2.17), extending over the positive (respectively

negative) range of v′α. Given the bivariate distribution function fα(x, vα), and

given the variable Wα, the transformation given in Eq. (2.19) introduces, in

the integrals appearing on the right hand side of Eqs. (2.16) and (2.17), the

functions

Fα(Wα) = fα(x, +
√{2[Wα + Uα(φ(x))]}) +

fα(x,−√{2[Wα + Uα(φ(x))]}), α = e, i . (2.20)

and reduces those integrals to

%e(x) = −ne(φ(x)), (2.21a)

ne(φ) =
∫ ∞

−Ue(φ)
dW ′

e

Fe(W ′
e)√{2[W ′

e + Ue(φ)]} , (2.21b)

and

%i (x) = +ni(φ(x)), (2.22a)

ni(φ) =
∫ ∞

−Ui(φ)
dW ′

i

Fi(W ′
i )√{2[W ′

i + Ui(φ)]} . (2.22b)

Here, it is agreed that, in order for the integrals in Eqs. (2.21b) and (2.22b)

to converge, the functions Fα(Wα) vanish faster than 1/√Wα as Wα → +∞.

These equations reveal that the quantity Fα(Wα)dxdWα amounts to√{2[Wα+
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Uα(φ(x))]} times the probability of finding a particle of species α having po-

sition within distance dx from x and total energy within distance dWα from

Wα, irrespective of the sign of their velocity (cf. Eqs. (2.21b) and (2.22b)). In

the following, the univariate functions Fe and Fi will be respectively known as

the electron and ion bi-directional energy distribution functions.

An important property of the charge distributions written as in Eqs. (2.21)

and (2.22) (rather than as in Eq. (2.16) and (2.17)) is that their values at

position x are specified through the value of the potential φ at x. This is of

course legitimate as long as φ(x) is a monotonic function of x. Wherever this

condition fails, Eqs. (2.21) and (2.22) are still meaningful, in a piecewise sense,

in each of the x-domains where φ(x) is a monotonic function of x (cf. Fig. 1).

An analogous transformation of the space variable from x to φ(x) may be

conceived for the quantity d2φ(x)/dx2, appearing on the left hand side of

Poisson’s equation (cf. Eq. (2.18)). To do so, we assume that the electric

potential φ(x) be a continuous function of the position x. Then, in each of the

domains of the tripolar region where φ(x) is a monotonic function of position

(cf. Fig. 1), the inverse function φ−1 of φ certainly exists and the quantity

d2φ(x)/dx2 may well be conceived as a function of φ itself, which we call

φxx(φ):

φxx(ψ) = [d2φ(ξ)/dξ2]|ξ=φ−1(ψ). (2.23)

Practical ways of extracting φxx from d2φ(x)/dx2 may rely on Lagrange’s

inversion formula (cf. e.g. [12]), which applies if the electric potential φ(x) is

an analytic function of x.

In conclusion, the above transformations of the space charge densities %e(x)
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(cf. Eqs. (2.21)) and %i (x) (cf. Eqs. (2.22)) and of d2φ(x)/dx2 (cf. Eq. (2.23))

allow us to rewrite Poisson’s equation (cf. Eq. (2.18)) in the form

φxx(φ) = ne (φ)− ni (φ). (2.24)

3 The inversion theorem

The relation between the electric potential and the ion and electron distribu-

tion functions established in Section 2 (cf. Eqs. (2.21b), (2.22b) and (2.24))

amounts to a fully fledged integro-differential equation, a fact already appreci-

ated in Ref. [13]. As anticipated in Section 1, we need solve this set of equations

for either the electron or the ion energy distribution functions over their own

whole complex energy domain.

We divide this task into two parts. In the first part (cf. Section 4), Poisson’s

equation will be transformed from its fractional integral formulation (cf. Eqs.

(2.21b), (2.22b) and (2.24)) to a pair of new, entirely equivalent fractional

integral equations. In the second part (cf. Section 5), these fractional equations

will be solved in favour of the electron or ion energy distribution functions

and these latter will be extended over their whole respective complex energy

planes.

To carry out the above task, we need two important theorems, to which we

devote this section.

Theorem 3.1 Let a and b be real constants, such that a < b and let f(w) and

g(w) be two functions which are Hölder continuous over the interval a < w <

b. Provided all the integrals converge, we have the following results.
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(i) For a < w < b, the identity

∫ w

a
du

f(u)
√[w − u]

=
∫ b

w
du

g(u)
√[u− w]

(3.1)

holds if and only if, denoting by P the Cauchy principal value of an inte-

gral,

f(w) =
1

π
P

∫ b

a
dt
√[t− a]
√[w − a]

g(t)

t− w
. (3.2)

(ii) For a < w < b, Eq. (3.2) is equivalent to

f(w) =
1

π

A
√[w − a]

+
1

π
P

∫ b

a
dt
√[w − a]
√[t− a]

g(t)

t− w
, (3.3a)

where A =
∫ b

a
du

g(u)
√[u− a]

. (3.3b)

(iii) The results in points (i)–(ii) hold also for b → +∞; they hold also for

a→ −∞.

Proof. To carry out the proof of the theorem, we introduce the function

λ(ζ, ξ, η) =
∫ ξ

ζ
dξ′

1
√[ξ − ξ′]√[η − ξ′]

,

for η > ξ > ζ, (3.4)

whose properties we establish beforehand. Specifically, since in the integral on

the right hand side of Eq. (3.4), η > ξ, we set ξ′ = ξ − [η − ξ]s2. In this way,

Eq. (3.4) gives
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λ(ζ, ξ, η) =
∫ √[ξ−ζ]
√[η−ξ]

0
ds

1
√[1 + s2]

=

2 arcsinh




√[ξ − ζ]
√[η − ξ]



 , for η > ξ > ζ. (3.5)

We now revert to the proof of the theorem and we show first that Eq. (3.2)

necessarily follows from Eq. (3.1). Specifically, we regard Eq. (3.1) as an Abel

equation for f(w), whose solution is (cf. e.g. [14]))

f(w) =
1

π

d

dw

∫ w

a
du

1
√[w − u]

∫ b

u
dt

g(t)
√[t− u]

. (3.6)

Since, by assumption, w < b, our idea is to split the inner t-integral, on the

right hand side of Eq. (3.6), into the sum of an integral running from u to w

and an integral running from w to b. Actually, this step must be taken with

some care. To do so, we introduce a real number ε and we let the first of those

two latter integrals run from u up to w− ε, and the second one run from w+ ε

to b. Then, we develop our proof for ε &= 0 and we recover our final results by

taking the limit for ε → 0. According to the above instructions, the double

integral appearing on the right hand side of Eq. (3.6) splits as follows:

f(w) =

1

π
lim
ε→0

d

dw






∫ w−ε

a
du

1
√[w − u]

∫ w−ε

u
dt

g(t)
√[t− u]

+

∫ w

w−ε
du

1
√[w − u]

∫ w−ε

u
dt

g(t)
√[t− u]

+

∫ w

a
du

1
√[w − u]

∫ b

w+ε
dt

g(t)
√[t− u]




 . (3.7)
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In the first two integrals appearing on the right hand side of Eq. (3.7), we

interchange the order of the t- and u-integration according to Fubini’s theorem;

in the third integral, such interchange is achieved in a straightforward way.

Then, using the function λ, defined in Eq. (3.4), Eq. (3.7) reduces to

f(w) =
1

π
lim
ε→0

d

dw

{∫ w−ε

a
dt g(t)λ(a, t, w)+

∫ w

w−ε
dt g(t)λ(w, t, w) +

∫ b

w+ε
dt g(t)λ(a, w, t)

}

. (3.8)

In the second integral appearing on the right hand side of Eq. (3.8), the third

argument of the function λ always exceeds its second argument, and the value

of λ given by Eq. (3.5) may be used, according to which λ(w, t, w) = jπ. Thus,

since, by assumption, the function g is continuous, the contribution given by

that integral to f(w) is

1

π
lim
ε→0

d

dw

∫ w

w−ε
dt g(t)λ(w, t, w) = j lim

ε→0
[g(w)− g(w − ε)] = 0. (3.9)

On the other hand, taking the w-derivative of the first and third term on the

right hand side of Eq. (3.8), we find

f(w) =
1

π
lim
ε→0

{∫ w−ε

a
dt g(t)

d

dw
λ(a, t, w)+

g(w − ε)λ(a, w − ε, w)− g(w + ε)λ(a, w,w + ε)+

∫ b

w+ε
dt g(t)

d

dw
λ(a, w, t)

}

. (3.10)

Now, in the second and third term appearing on the right hand side of Eq.

(3.10), the third argument of the function λ also exceeds its second argument,
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and the value of λ given by Eq. (3.5) may again be used. Also, since ε > 0, we

have

λ(a, w − ε, w) = − ln(ε) + ln(2[w − a]) + O(ε),

λ(a, w,w + ε) = − ln(ε) + ln(2[w − a]) + O(ε),

for ε ' 0, ε > 0. (3.11)

We thus see that, since, by assumption, the function g is continuous, the

contribution given by the second and third term appearing on the right hand

side of Eq. (3.10) to f(w) is

1

π
lim
ε→0

[g(w − ε)λ(a, w − ε, w)− g(w + ε)λ(a, w,w + ε)] = 0. (3.12)

Furthermore, in both integrals appearing on the right hand side of Eq. (3.10)

the third argument of the function λ also exceeds its second argument. Then,

again using Eq. (3.5), the two w-derivatives of λ, appearing in those integrals,

turn out to be

d

dw
λ(a, t, w) =

d

dw
2 arcsinh




√[t− a]
√[w − t]



 =

2
√[w − t]
√[w − a]

√
[t− a]

−1/2

[w − t]3/2
=

√[t− a]
√[w − a]

1

t− w
(3.13)

and
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d

dw
λ(a, w, t) =

d

dw
2 arcsinh




√[w − a]
√[t− w]



 =

2
√[t− w]
√[t− a]

1

2

√[t− w]
√[w − a]

t− a

[t− w]2
=

√[t− a]
√[w − a]

1

t− w
. (3.14)

Finally, substituting Eqs. (3.12), (3.13) and (3.14) into the right hand side of

Eq. (3.10), we recover Eq. (3.2), as desired:

f(w) =
1

π
lim
ε→0






∫ w−ε

a
dt g(t)

√[t− a]
√[w − a]

1

t− w
+

∫ b

w+ε
dt g(t)

√[t− a]
√[w − a]

1

t− w




 =

1

π
P

∫ b

a
dt
√[t− a]
√[w − a]

g(t)

t− w
. (3.15)

This concludes the proof of the first part of point (i) of the theorem. The proof

of the second part of that point consists in showing that Eq. (3.1) necessarily

follows from Eq. (3.2). To do so, we substitute the right hand side of Eq.

(3.2) directly into the left hand side of Eq. (3.1) and interchange the order of

integration, which we can do, provided the integrals be understood as Cauchy’s

principal value integrals. In this way, we get
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∫ w

a
du

1
√[w − u]

1

π
P

∫ b

a
dt
√[t− a]
√[u− a]

g(t)

t− u
=

∫ b

a
dt
√

[t− a]g(t)
1

π
P

∫ w

a
du

1
√[w − u]√[u− a]

1

t− u
. (3.16)

In the inner integral appearing on the right hand side of Eq. (3.16), we change

the integration variable according to u = [w + as2]/[1 + s2], to get

1

π
P

∫ w

a
du

1
√[w − u]

1
√[u− a]

1

t− u
=

1

π
P

∫ ∞

0
ds

2

[t− w] + [t− a]s2
. (3.17)

In the integral on the right hand side of Eq. (3.17), we must take into account

that the quantity t is the integration variable of the outer integral on the right

hand side of Eq. (3.16), and thus t exceeds a, the lower limit of integration

there. Therefore, in the denominator of the integrand in the integral on the

right hand side of Eq. (3.17), two cases arise: if t < w, the signs of the two

terms in the denominator disagree and the principal part of the integral itself

obviously vanishes; if t > w, the two signs agree and the integral reduces

to 1/{√[t − w]√[t − a]}. Substituting this result into Eq. (3.16), only the

contribution

∫ b

w
dt
√

[t− a]g(t)
1

√[t− w]√[t− a]
(3.18)

survives, which coincides with the right hand side of Eq. (3.1), as desired.

This concludes the proof of point (i) of the theorem. The proof of point (ii)

consists in reducing Eq. (3.2) to Eq. (3.3), which we do by means of the obvious
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identity

√[u− a]
√[w − a]

1

u− w
=

1
√[u− a]





1

√[w − a]
+
√w − a]

u− w




 . (3.19)

To prove point (iii), we work out the above arguments using finite values for

the constants a and b and then let them take arbitrarily large values in Eqs.

(3.1), (3.2) and (3.3a). In so doing, we must ensure that, as |w| → +∞, the

functions f(w) and g(w) vanish faster than a suitable negative power of |w|,

in such a way that the integrals in the above formulæ converge, as assumed

in the theorem.

!

Theorem 3.1 provide a practical means to extract the function f out of Eq.

(3.1) once the function g is known. The following corollary precisely allows

the reverse operation.

Corollary 3.1 Let a and b be real constants, such that a < b and let f(w)

and g(w) be two functions which are Hölder continuous over the interval a <

w < b. Then, provided all the integrals converge, we have the following results.

(i) For a < w < b, the identity

∫ w

a
du

f(u)
√[w − u]

=
∫ b

w
du

g(u)
√[u− w]

(3.20)

holds if and only if, denoting by P the Cauchy principal value of an inte-

gral,

g(w) = − 1

π
P

∫ b

a
dt
√[b− t]
√[b− w]

f(t)

t− w
. (3.21)

17



(ii) For a < w < b, Eq. (3.21) is equivalent to

g(w) =
1

π

B
√[b− w]

− 1

π
P

∫ b

a
dt
√[b− w]
√[b− t]

f(t)

t− w
, (3.22a)

where B =
∫ b

a
du

f(u)
√[b− u]

. (3.22b)

(iii) The statements in points (i)–(ii) hold also if b→ +∞.

Proof.

The proof of the first part of point (i) consist in showing that Eq. (3.21)

necessarily follows from Eq. (3.20). To do so, in the integrals appearing on

each side of Eq. (3.20), we set w = b + a − y and we change the integration

variable according to u = b + a− s. In this way, Eq. (3.20) reduces to

∫ y

a
ds

g(b + a− s)
√[y − s]

=
∫ b

y
ds

f(b + a− s)
√[s− y]

. (3.23)

Now, this relation between the functions g(b + a− y) and f(b + a− y) has the

same structure of the relation between f(w) and g(w) given in Theorem 3.1

(cf. Eq. (3.20)), provided the role of f and g be interchanged. Therefore, Eq.

(3.23) directly leads to (cf. Eq. (3.2))

g(b + a− y) =
1

π
P

∫ b

a
du
√[u− a]
√[y − a]

f(b + a− u)

u− y
. (3.24)

If, in the integral on the right hand side of Eq. (3.24), we set y = b + a − w

and if we change the integration variable according to u = b+a− t, we recover

Eq. (3.21), as desired.

This concludes the proof of the first part of point (i) of the theorem. The proof

of the second part of that point consists in showing that Eq. (3.20) necessarily
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follows from Eq. (3.21). But this is entirely equivalent to showing that Eq.

(3.23) necessarily follows from Eq. (3.24), a task which is accomplished by the

same procedure used in Theorem 3.1 to show that Eq. (3.1) follows from Eq.

(3.2).

This concludes the proof of point (i) of the theorem. The proof of point (ii)

consists in reducing Eq. (3.21) to Eq. (3.22), which we do by means of the

obvious identity

√[b− u]
√[b− w]

1

u− w
=

1
√[b− u]





1

√[b− w]
−
√[b− w]

u− w




 . (3.25)

To prove point (iii), we work out the above arguments using finite values for

the constants a and b and then let them take arbitrarily large values in Eqs.

(3.20), (3.21) and (3.22a). In so doing, we must ensure that, as |w|→ +∞, the

functions f(w) and g(w) vanish faster than a suitable negative power of |w|,

in such a way that the integrals in the above formulæ converge, as assumed

in the theorem.

!

4 The fractional distributions of the electric charge density of elec-

trons and ions

In this section we carry out the first part of the task, set at the beginning of

Section 3, of solving Poisson’s equation (cf. (2.24)) in favour of the electron

and ion distribution functions. This part consists in casting that equation into

a pair of new, entirely equivalent and more convenient fractional equations.
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To do so, we need reformulate the electron and ion number densities, given in

Eqs. (2.21b) and (2.22b), in a more convenient form. In each of the following

two pairs of transformations of these quantities, the first transformation con-

cerns the electron number density, and the second one concerns the ion number

density. A first pair of transformations is worked out using the obvious identity

(cf. Eqs. (2.12) and (2.13))

Ue(φ) = [ lim
x→+∞

φ(x)− φ(xmin)]− θUi(φ), (4.1)

and the change of the integration variable W ′
e = θW ′ − [limx→+∞ φ(x) −

φ(xmin)], in the integral on the right hand side of Eq. (2.21b). These relations

reduce the the electron number density to

ne(φ) =
∫ ∞

Ui(φ)
dW ′Fe(θW ′ − [limx→+∞ φ(x)− φ(xmin)])

√θ
√{2[W ′ − Ui(φ)]} . (4.2)

Likewise, the obvious identity (cf. Eqs. (2.12) and (2.13))

Ui(φ) = {[ lim
x→+∞

φ(x)− φ(xmin)]− Ue(φ)}/θ, (4.3)

and the change of the integration variable W ′
i = {W ′ − [limx→+∞ φ(x) −

φ(xmin)]}/θ in the integral on the right hand side of Eq. (2.22b), reduce the

ion number density to

ni(φ) =
∫ ∞

Ue(φ)
dW ′Fi({W ′ − [limx→+∞ φ(x)− φ(xmin)]}/θ)/√θ

√{2[W ′ − Ue(φ)]} . (4.4)

The second pair of transformation has the electron number density written as
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ne(φ) =
∫ ∞

−Ui(φ)
dW ′ Ke(W ′)

√{2[W ′ + Ui(φ)]} =

∫ Ui(φ)

−∞
dW ′′ Ke(−W ′′)

√{2[Ui(φ)−W ′′]} . (4.5)

Then, Theorem 3.1, which we proved in Section 3, prescribe that, for both Eqs.

(4.2) and (4.5) to hold, the functions Ke(−W ) and Fe(θW − [limx→+∞ φ(x)−

φ(xmin)])
√θ must be related according to Eq. (3.2 (now with a → −∞ and

b→ +∞)

Ke(−W ) =
1

π
P

∫ +∞

−∞
dW ′ ×

Fe(θW ′ − [limx→+∞ φ(x)− φ(xmin)])
√θ

W ′ −W
. (4.6)

Here, the symbol P prescribes that the integral on the right hand side of Eq.

(4.7) must be understood as a Cauchy principal value. In the integral appear-

ing on the right hand side of Eq. (4.6), we change the integration variable

according to θW ′ = W ′′, and, upon setting W → −W/θ, we finally write

Ke(W/θ)/
√

θ =
1

π
P

∫ +∞

−∞
dW ′ ×

Fe(W ′ − [limx→+∞ φ(x)− φ(xmin)])

W ′ + W
. (4.7)

Likewise, if we write the ion density as

ni(φ) =
∫ ∞

−Ue(φ)
dW ′ Ki(W ′)

√{2[W ′ + Ue(φ)]} =

∫ Ue(φ)

−∞
dW ′ Ki(−W ′)

√{2[Ue(φ)−W ′]} (4.8)
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then, the same Theorem 3.1 prescribe that, for both Eqs. (4.4) and (4.8) to

hold, the functions Ki(−W ) and Fi({W − [limx→+∞ φ(x) − φ(xmin)]}/θ)/√θ

must be related according to Eq. (3.2) (now with a → −∞ and b → +∞).

Upon changing the sign of the argument of the function Ki, this relation reads

Ki(W ) =
1

π
P

∫ +∞

−∞
dW ′ ×

Fi({W ′ − [limx→+∞ φ(x)− φ(xmin)]}/θ)/√θ

W ′ + W
. (4.9)

Having performed the anticipated two pairs of transformations of the electron

and ion number densities, we now use these quantities to rearrange Poisson’s

equation (cf. Eq. 2.24), as announced at the beginning of this section. Specifi-

cally, if, instead of the Eq. (2.22b) for the ion number density, we use Eq. (4.8),

then, taking the electron number density from Eq. (2.21b), and introducing

the function

H(W ) = Fe(W )−Ki (W ), (4.10)

Poisson’s equation (cf. Eq. (2.24)) takes the form

φxx(φ) =
∫ ∞

−Ue(φ)
dW ′ H(W ′)

√{2[W ′ + Ue(φ)]} . (4.11)

Likewise, if, instead of the Eq. (2.21b) for the electron number density, we

use Eq. (4.5), then, taking the ion number density from Eq. (2.22b), and

introducing the function

K(W ) = Fi(W )−Ke(W ), (4.12)
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Poisson’s equation (cf. Eq. (2.24)) takes the form

φxx(φ) = −
∫ ∞

−Ui(φ)
dW ′ K(W ′)

√{2[W ′ + Ui(φ)]} . (4.13)

Eqs. (4.11) and (4.13) are the pair of fractional forms of Poisson’s equation,

announced at the beginning of this section.

In conclusion, the above analysis showed that, based on Poisson equation, it

is always possible to write the second derivative of the electric potential φxx

as a fractional Weil transform (cf. e.g. [15]) of a suitable single function and

that this function may be constructively related to the electron and ion energy

distribution functions. The convenience of writing the quantity φxx in this way

will be made clear in Section 5.

5 The Hilbert solutions of the integral Poisson equation

In this section we carry out the second part of the task, set at the beginning of

Section 3, of solving Poisson’s equation (cf. (2.24)) in favour of the electron and

ion distribution functions. First, using the definition of the electron potential

energy Ue (cf. Eq. (2.12)), we cast Eq. (4.11)) as an Abel equation (cf. e.g.

[14]) for the quantity H(W )

φxx(Ue + φ(xmin)) =
∫ Ue

−∞
dW ′ H(−W ′)

√{2[Ue −W ′]} , (5.1)

whose solution is
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H(−W ) =

√2

π

d

dW

∫ W

−∞
dW ′φxx(W ′ + φ(xmin))

√[W −W ′]
. (5.2)

In the integral appearing on the right hand side of Eq. (5.2), we change the

integration variable according to W ′ = −W ′′ and then we change the sign of

the argument of the function H, to get

H(W ) =

−
√2

π

d

dW

∫ +∞

W
dW ′′φxx(−W ′′ + φ(xmin))

√[W ′′ −W ]
. (5.3)

Following an analogous procedure, Eq. (4.13) may be cast as an Abel equation

for the quantity K(W )

φxx( lim
x→+∞

φ(x)− θUi) = −
∫ Ui

−∞
dW ′ K(−W ′)

√{2[Ui −W ′]} , (5.4)

whose solution is

K(W ) =

√2

π

d

dW

∫ +∞

W
dW ′φxx(limx→+∞ φ(x) + θW ′)

√[W ′ −W ]
. (5.5)

In this way, Eqs. (4.11) and (5.3) on one hand, or Eqs. (4.13) and (5.5) on the

other, respectively establish a complete equivalence between the knowledge of

the electric potential φ and that of the functions H(W ) or K(W ).

Because of this equivalence, Eqs. (4.10) may be used to extract the electron

energy distribution function once the function φxx (i.e. F ) and the ion distri-

bution are given: specifically, using Eq. (4.9), we rewrite Eq. (4.10) as
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Fe(W ) =
1

π
P

∫ +∞

−∞
dW ′ ×

Fi({W ′ − [limx→+∞ φ(x)− φ(xmin)]}/θ)/√θ

W ′ + W
+

H(W ), (5.6)

Likewise,Eqs. (4.12) may be used to extract the ion energy distribution func-

tion once the function φxx (i.e. K) and the electron distribution are given:

specifically, using Eq. (4.7), we rewrite Eq. (4.12) as

Fi(W/θ)/
√

θ =
1

π
P

∫ +∞

−∞
dW ′ ×

Fe(W ′ − [limx→+∞ φ(x)− φ(xmin)])

W ′ + W
+

K(W/θ)/
√

θ. (5.7)

Eqs. (5.6) and (5.7) are the solutions of Poisson’s equation announced at the

beginning of this section.

We now proceed to rearranging the solutions to Poisson’s equation given in

Eqs. (5.6) and (5.7) in an equivalent form. To do so, in the integral appear-

ing on the right hand side of Eq. (4.11), we change the integration variable

according to W ′ = φ(xmin) −W ′′, and, writing the electron potential energy

Ue(φ) as in Eq. (2.12), we get

φxx(φ) =
∫ φ

−∞
dW ′′H(φ(xmin)−W ′′)

√[2(φ−W ′′)]
. (5.8)

Likewise, in the integral appearing on the right hand side of Eq. (4.13), we

change the integration variable according to W ′ = [W ′′ − limx→+∞ φ(x)]/θ,
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and, writing the ion potential energy Ui(φ) as in Eq. (2.13), we get

φxx(φ) = −
∫ ∞

φ
dW ′′K([W ′′ − limx→+∞ φ(x)]/θ)/√θ

√{2[W ′′ − φ]} . (5.9)

Subtracting the respective sides of Eqs. (5.8) and (5.9), an integral relation is

obtained between the functions H(φ(xmin)−W ) and K([W−limx→+∞ φ(x)]/θ)/√θ,

which is of the kind shown in Eq. (3.1) and in Eq. (3.20): there now, a→ −∞

and b→∞ and a < b, in such a way that the hypotheses of Theorem 3.1 and

of Corollary 3.1 apply. Then, after rearranging the arguments of the functions

F and K, Theorem 3.1 prescribes that (cf. Eq. (3.2))

H(W ) = − 1

π
P

∫ +∞

−∞
dW ′ ×

K({W ′ − [limx→+∞ φ(x)− φ(xmin)]}/θ)/√θ

W ′ + W
, (5.10)

whereas Corollary 3.1 gives (cf. Eq. (3.21))

K(W/θ)/
√

θ = − 1

π
P

∫ +∞

−∞
dW ′ ×

H(W ′ − [limx→+∞ φ(x)− φ(xmin)])

W ′ + W
. (5.11)

Finally, substituting Eq. (5.10) into Eq. (5.6) and Eq. (5.11) into Eq. (5.7),

we respectively get

Fe(W ) =
1

π
P

∫ +∞

−∞
dW ′ 1

W + W ′ ×

[Fi({W ′ − [ lim
x→+∞

φ(x)− φ(xmin)]}/θ)−

K(W ′ − [ lim
x→+∞

φ(x)− φ(xmin)]/θ)]/
√

θ (5.12)
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and

Fi(W/θ)/
√

θ =
1

π
P

∫ +∞

−∞
dW ′ 1

W + W ′ ×

[Fe(W
′ − [ lim

x→+∞
φ(x)− φ(xmin)])−

H(W ′ − [ lim
x→+∞

φ(x)− φ(xmin)])]. (5.13)

To demonstrate the advantages of writing the solutions of Poisson’s equation

as in Eqs. (5.12) and (5.13), We introduce the complex variable z and, in the

z-plane cut along the real axis, we define the two functions

Fe(z) =
1

2π

∫ +∞

−∞
dz′

1

z′ + z
×

{Fe(z
′ − [ lim

x→+∞
φ(x)− φ(xmin)])−

H(z′ − [ lim
x→+∞

φ(x)− φ(xmin)])} (5.14)

and

Fi(z) =
1

2π

∫ +∞

−∞
dz′

1

z′ + z
×

{Fi(z
′ − [ lim

x→+∞
φ(x)− φ(xmin)])−

K(z′ − [ lim
x→+∞

φ(x)− φ(xmin)])}. (5.15)

Then, because of the Sokhotskyi-Plemelj formulæ (cf. e.g. [16]), denoting by j

the imaginary unit, Eqs. (5.6) and (5.7) can be rewritten as

Fe(W ) = lim
ε→0+

[Fe(W + jε) + Fe(W − jε)] (5.16)

and
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Fi (W/θ)/
√

θ = lim
ε→0+

[Fi(W + jε) + Fi(W − jε)]. (5.17)

Eqs. (5.16) and (5.17) show that the electron and ion energy distribution

functions may be recovered as the boundary value of two suitable sectionally

analytical functions (cf. e.g. [16]). Conversely, given the positive quantity y,

the functions Fe(w+jy) and Fe(w−jy) are the extension of the electron energy

distribution function in the upper and lower complex energy plane. Likewise,

the functions Fi(w + jy) and Fi(w − jy) are the extensions of the ion energy

distribution function.

6 Conclusions

In the present work, we consider a plasma made of electrons and one species

of fully ionized ions in electrostatic conditions. The distributions of the elec-

tron and ion charge density and of the electric potential they generate are

governed by Poisson’s equation. This equation may be written as an inte-

gral relation between the energy distribution functions of the particle species

and the electric potential in the plasma. Our aim is to determine the energy

distribution function of one of the particle species — say the α-distribution

function of species α, with α=electron or ion — once the electric potential and

the energy distribution function of the other species — say the β-distribution

function of species β, with β=ion or electron — are known.

In this framework, Poisson’s integral equation has been extensively investi-

gated for over half a century. In Ref. [2], this equation was reduced to an Abel

equation for the α-distribution function over a finite energy domain, subject

28



to the condition that the same α-distribution function be known over the re-

maining energy domain. Recently, in Ref. [10] we showed that, if the electric

potential waveform is a skew function of the space coordinate, the solution

of the integral Poisson equation proposed in Ref. [2] necessarily leads to a

singular α-distribution function.

In our present treatment, we refrain from assigning the distribution function

over a portion of its energy domain. Rather, our aim is to determine the α-

distribution function ‘en bloc’, i.e. over its whole energy domain, starting only

from the knowledge of the electric potential and of the β-energy distribution

function of the other species. To do so, we still cast Poisson’s equation as an

integral equation, but different from the mentioned Abel equation considered

so far.

To solve the integral Poisson equation in favour of the α-distribution function,

in Section 3 we prove an inversion theorem. In so doing, we use basic notions of

Calculus, without reverting to the theory of integral transforms. This theorem,

gives the α-distribution function over its whole energy domain, directly from

the distribution function of species β. Specifically, the α-distribution function

is found as the boundary value of a suitable sectionally analytical function.

This latter function precisely extends the α-distribution function over its com-

plex energy domain.
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Figure caption

(1) Right and top axes: the observed (Φ) and normalized potential (φ) vs.

the coordinate (X) and normalized coordinate (x). H, h, Y, y are poten-

tial jumps. The horizontal dash-dotted lines Ue = 0 and Ui = 0 denote

the reference zero values of the electron and ion potential energies. The

broad- and fine-hatched areas denote the position and energy values of the

negative energy electrons and ions respectively. Also shown is the scheme

for the electron and ion distributions fe and fi. Subscripts (1), (2) and

(3) denote the domains where the potential is a monotonic function of

position.

32



0 25 50 75
x

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

!
/!

0

0 100 200 300 400 500
X (m)

-4

-3

-2

-1

0

"
 (

m
V

)

Ue=0

Ui=0

xminxmax

h

Yy

H

fi(1) fi(2)=fi(3)fe(1)=fe(2) fe(3)

domain 1 domain 2 domain 3

Fig. 1.

33


