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Abstract

In this work, we invetigate further the singular nature [1] of the nonlinear station-

ary solutions [2] of the one dimensional Vlasov-Poisson system of equations, which

governs a plasma made of electron and one species of fully ionised ions. First, we

propose a new integral formulation of the Poisson equation and we prove two inver-

sion lemmas for such equation. These lemmas allow us to write the solutions of the

Poisson equation in such a way that the energy distribution of either of the particle

species is related, in a straightforward way, to the energy distribution of the other

species. Then, we show that these distribution functions are retrieved as boundary

values of suitable sectionally analytic functions. These latter functions are shown to

be the extension of the particle distributions into their respective complex energy

domain.
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1 Introduction

In this report, we address the problem of solving Poisson’s equation, which, in

electrostatic conditions, relates the electric potential and charge distributions

in a plasma composed of electrons and one species of fully ionised ions. In its

simplest understanding, this equation is used as differential equation for the

electric potential in the plasma and it is used to determine this latter, once

the charge distributions of the electrons and of the ions are given.

The reverse approach may also be used [2]: Poisson’s equation may be con-

ceived as an integral equation for the energy distribution function of one of

the particle species (say species β, usually electrons, e.g. [3]), whereas the

electric potential and the distribution of the other particle species (say species

α) are assumed to be known. In fact, only that fraction of the distribution

corresponding to those particles of species β which are trapped by the electric

field is found in this way, whereas the fraction corresponding to untrapped

particles is assumed to be given.

This approach to Poisson’s equation is appropriate e.g. when the energy dis-

tribution of the untrapped particles of species β, which are free to reach the

plasma boundaries, is constrained by some boundary conditions. The solutions

to Poisson’s equation found in this way are known as BGK waves [2]. Usually,

they are given in terms of the Abel transform of a quantity sometimes known

as the “pseudopotential”.

The BGK technique is used e.g. in Space Plasma Physics [4,5], where accu-
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rate data about electric potential waveforms are available (e.g. [6,7,8,9,10])

and where a judicious Ansätz may be formulated both about the energy dis-

tribution function of particles of species α and about the boundary energy

distribution function of particles of species β.

Recently, in the attempt to interpret the electrostatic tripolar spikes observed

in Refs. [6] as BGK waves, we proved that the smoothness of the waveform of

the electric potential of the tripolar spike and the smoothness of the energy dis-

tributions of the particles are two incompatible requirements [1]: specifically,

assuming that the potential waveform be smooth, we showed that both the

electron and ion distribution functions are singular and that their singularities

are of the jump and of the logarithmic type.

Our present work aims at furthering the understanding of these singularities.

To do so, we first introduce a suitable integral representation of the electric

charge distribution in the plasma and we establish “inversion rules” which

allow us to do so. This representation permits us to write the BGK solutions

of the integral Poisson equation directly in a simple and compact way by

means of Hilbert transforms.

This approach has two advantages over the representation based on the Abel

transform of the pseudopotential, which was used in all the works on BGK

waves so far. On one hand, it allows the computation of the solution of Pois-

son’s equation directly from the distribution function of the other particle

species, without any need to compute the pseudopotential. Most important,

the Hilbert transform representation allows a straightforward extension of the

solution of the integral Poisson equation for complex values of the particle

energy. The remarkable fact about this extended solution is that it is non
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singular: in fact it is a sectionally analytical function [11] of the complex en-

ergy, whose boundary value precisely gives the real-valued BGK solution of

Poisson’s equation.

2 Assumptions, notation and basic equations

According to the standard statistical treatment (cf. e.g. Ref. [12]), a complete

description of the fully ionised plasma considered in our work may be given

in terms of the electron and ion “one particle” velocity distribution functions

and of the mean “self consistent” macroscopic force. Here we also assume

that: (a) the velocities of the particles be largely non relativistic, so that the

mean force is mainly electrostatic; (b) the plasma be homogeneous along two

cartesian coordinates, so that the distribution functions and the mean force

depend on one only space cartesian coordinate called X.

Under these conditions, we integrate the one particle velocity distribution

functions (or velocity distribution functions for short) over the whole domain

of the velocity coordinates orthogonal to X. The resulting integrated distri-

butions will depend on X and on one velocity coordinate only — say VeX for

the electron velocity distribution, and ViX for the ion velocity distribution.

The mean electrostatic force may be evaluated by taking the X-derivative

of a function of position. In particular, for the electrons, which have elec-

tric charge −|e|, this function is |e|Φ(X). The quantity Φ(X) is the observed

electric potential in the plasma.

Now, let the electrons have mass me and, in the limit X → +∞, let them

have boundary number density ne∞ and boundary kinetic temperature Te∞.
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Then, adopting Gaussian units and setting the Boltzmann constant to one,

we denote by

λDe =
√{Te∞/[4πe2ne∞]} (2.1)

the electron Debye length, by

x = X/λDe (2.2)

the normalised space coordinate, by

vTe =
√

[Te∞/me] (2.3)

the electrons’ boundary mean thermal speed, by

ve = VeX/vTe (2.4)

the normalised electron velocity coordinate along x and by

ne∞fe(x, ve)dxdve (2.5)

the probability of finding any one of the electrons having a position within a

distance dx from x and a velocity component parallel to x within a distance dve

from ve, irrespective of its velocity components orthogonal to x, irrespective

of the position and velocity of all the other electrons, and irrespective of the

position and velocity of all the ions.

Likewise, we assume that the ions have mass mi, atomic number Zi and electric

charge +Zi|e|, and that charge neutrality is approached as x → ∞, so that

the ions’ boundary number density there is
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ni∞ = ne∞/Zi (2.6)

and, in the same limit, their boundary kinetic temperature is

Ti∞ = θZiTe∞ . (2.7)

Then, we denote by

vTi =
√

[Ti∞/mi] (2.8)

the ions’ boundary mean thermal velocity, by

vi = ViX/vTi (2.9)

the normalised ion velocity coordinate along x and by

[ne∞/Zi]fi(x, vi)dxdvi (2.10)

the probability finding any one of the ions having a position within a distance

dx from x and a velocity component parallel to x within a distance dvi from

vi, irrespective of its velocity components orthogonal to x, irrespective of the

position and velocity of all the other ions, and irrespective of the position and

velocity of all the electrons.

Last, we denote by

φ(x) = |e|Φ(λDex)/Te∞. (2.11)
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the electric potential normalised to the electron boundary kinetic temperature.

A typical waveform of the electric potential in the is shown in Fig. 1.

Next we denote by x = xmin the position at which the electric potential has

its absolute minimum (cf. Fig. 1) and by

−Ue(φ) = −[φ− φ(xmin)] (2.12)

the rescaled potential energy of a test electron positioned at x to the electrons’

boundary kinetic temperature. Likewise, being the absolute maximum of the

electric potential located at x =∞ (cf. Fig. 1), and being θ the ion to electron

temperature ratio there (cf. Eq. (2.7)), we denote by

−Ui(φ) = −[ lim
x→+∞

φ(x)− φ]/θ (2.13)

the rescaled potential energy of a test ion positioned at x normalised to the

ions’ boundary kinetic temperature.

In this way, the electron and ion electric potential energies Ue and Ui enjoy

the following properties (cf. Eqs. (2.12) and (2.13) and Fig. 1)

Ue(φ(x)) ≥ 0 for all values of x, (2.14a)

max
−∞<x<+∞

(−Ue(φ(x))) = −Ue(φ(xmin)) = 0, (2.14b)

and

Ui(φ(x)) ≥ 0 for all values of x, (2.15a)

max
−∞<x<+∞

(−Ui(φ(x))) = −Ui( lim
x→+∞

φ(x)) = 0. (2.15b)

Next, we introduce the electron and ion space charge densities, which we
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denote by |e|ne∞'e(x) and |e|ne∞'i(x), and which, using the normalisations

of the energy distributions introduced in Eqs. (2.5) and (2.10), we write as

'e(x) = −
∫ ∞

−∞
dv′efe(x, v′e), (2.16)

and

'i(x) = +
∫ ∞

−∞
dv′ifi(x, v′i). (2.17)

Since we assumed that the plasma be in electrostatic conditions, Poisson’s

equation holds, which we write in the non dimensional form

d2φ(x)

dx2
= −['e(x) + 'i(x)]. (2.18)

Jointly with Eqs. (2.16) and (2.17), Eq. (2.18) relates the particle energy

distribution functions fe and fi and the electric potential. Now, in the former

two equations, we change the integration variable according to

v′α = ±√{2[W ′
α + Uα(φ)]}, α = e, i, (2.19)

the upper (respectively lower) sign holding in that part of the integrals, ap-

pearing in Eqs. (2.16) and (2.17), extending over the positive (respectively

negative) range of v′α. Given the bivariate distribution function fα(x, vα), and

given the variable Wα, the transformation given in Eq. (2.19) introduces, in

the integrals appearing on the right hand side of Eqs. (2.16) and (2.17), the

quantities
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Fα(Wα) = fα(x, +
√{2[Wα + Uα(φ(x))]}) +

fα(x,−√{2[Wα + Uα(φ(x))]}), α = e, i , (2.20)

and reduces those integrals to

'e(x) = −ne(φ(x)), (2.21a)

ne(φ) =
∫ ∞

−Ue(φ)
dW ′

e

Fe(W ′
e)√{2[W ′

e + Ue(φ)]} , (2.21b)

and

'i (x) = +ni(φ(x)), (2.22a)

ni(φ) =
∫ ∞

−Ui(φ)
dW ′

i

Fi(W ′
i )√{2[W ′

i + Ui(φ)]} . (2.22b)

Here, it is agreed that, in order for the integrals in Eqs. (2.21b) and (2.22b)

to converge, the functions Fα(Wα) vanish faster than 1/√Wα as Wα → +∞.

These equations reveal that the quantity Fα(Wα)dxdWα amounts to√{2[Wα+

Uα(φ(x))]} times the probability of finding a particle of species α having po-

sition within distance dx from x and total energy within distance dWα from

Wα, irrespective of the sign of their velocity (cf. Eqs. (2.21b) and (2.22b)). In

the following, the univariate functions Fe and Fi will be respectively known as

the electron and ion bi-directional energy distribution functions.

An important property of the charge distributions written as in Eqs. (2.21)

and (2.22) (rather than as in Eq. (2.16) and (2.17)) is that their values at

position x are specified through the value of the potential φ at x. This is of

course legitimate as long as φ(x) is a monotonic function of x. Wherever this

condition fails, Eqs. (2.21) and (2.22) are still meaningful, in a piecewise sense,

9



in each of the x-domains where φ(x) is a monotonic function of x (cf. Fig. 1).

If we also assume that, in these domains φ(x) is a be a continuous function

of the position x, then, the inverse function φ−1 of φ certainly exists and the

quantity d2φ(x)/dx2 may well be conceived as a function of φ itself, which we

call

φxx(ψ) = [d2φ(ξ)/dξ2]|ξ=φ−1(ψ), (2.23)

and which may be calculated by Lagrange’s inversion formula (cf. e.g. [13]),

provided the electric potential φ(x) is an analytic function of x.

In conclusion, the above transformations of the space charge densities 'e(x)

(cf. Eqs. (2.21)) and 'i (x) (cf. Eqs. (2.22)) and of d2φ(x)/dx2 (cf. Eq. (2.23))

allow us to rewrite Poisson’s equation (cf. Eq. (2.18)) in the form

φxx(φ) = ne (φ)− ni (φ). (2.24)

3 The inversion lemmas

The relation between the electron and ion distribution functions and the elec-

tric potential established in Section 2 (cf. Eqs. (2.21b), (2.22b) and (2.24))

amounts to a fully fledged integral equation which we need solve for the en-

ergy distribution function of one species subject to the following conditions:

(a) the electric potential and the distribution function of the other species

are given; (b) the distribution function to be determined is specified over the

positive energy domain. Given these conditions, we wish to determine the

distribution function over its own whole complex energy domain.
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We divide this task into three parts. In the first part (cf. Section 4), Poisson’s

equation will be transformed from its fractional integral formulation (cf. Eqs.

(2.21b), (2.22b) and (2.24)) to a pair of new, entirely equivalent fractional

integral equations. In the second part (cf. Section 5), these fractional equations

will be solved in favour of the electron or ion energy distribution functions.

In the third part (cf. Section 6) these functions will be analytically continued

over their whole respective complex energy planes.

To carry out the above tasks, we need two important lemmas, to which we

devote this section.

Lemma 3.1 Let a and b be real constants, such that a < b and let f(w) and

g(w) be two functions which are Hölder continuous over the interval a < w <

b. Provided all the integrals converge, we have the following results.

(i) For a < w < b, the identity

∫ w

a
du

f(u)
√[w − u]

=
∫ b

w
du

g(u)
√[u− w]

(3.1)

holds if and only if, denoting by P the Cauchy principal value of an inte-

gral,

f(w) =
1

π
P

∫ b

a
dt
√[t− a]
√[w − a]

g(t)

t− w
. (3.2)

(ii) For a < w < b, Eq. (3.2) is equivalent to

f(w) =
1

π

A
√[w − a]

+
1

π
P

∫ b

a
dt
√[w − a]
√[t− a]

g(t)

t− w
, (3.3a)

where A =
∫ b

a
du

g(u)
√[u− a]

. (3.3b)
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(iii) The results in points (i)–(ii) hold also for b → +∞; they hold also for

a→ −∞.

Proof. To carry out the proof of the lemma, we introduce the function

λ(ζ, ξ, η) =
∫ ξ

ζ
dξ′

1
√[ξ − ξ′]√[η − ξ′]

,

for η > ξ > ζ, (3.4)

whose properties we establish beforehand. Specifically, since in the integral on

the right hand side of Eq. (3.4), η > ξ, we set ξ′ = ξ − [η − ξ]s2. In this way,

Eq. (3.4) gives

λ(ζ, ξ, η) =
∫ √[ξ−ζ]
√[η−ξ]

0
ds

1
√[1 + s2]

=

2 arcsinh




√[ξ − ζ]
√[η − ξ]



 , for η > ξ > ζ. (3.5)

We now revert to the proof of the lemma and we show first that Eq. (3.2)

necessarily follows from Eq. (3.1). Specifically, we regard Eq. (3.1) as an Abel

equation for f(w), whose solution is (cf. e.g. [14]))

f(w) =
1

π

d

dw

∫ w

a
du

1
√[w − u]

∫ b

u
dt

g(t)
√[t− u]

. (3.6)

Since, by assumption, w < b, our idea is to split the inner t-integral, on the

right hand side of Eq. (3.6), into the sum of an integral running from u to w

and an integral running from w to b. Actually, this step must be taken with

some care. To do so, we introduce a real number ε and we let the first of those

two latter integrals run from u up to w− ε, and the second one run from w+ ε
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to b. Then, we develop our proof for ε &= 0 and we recover our final results by

taking the limit for ε → 0. According to the above instructions, the double

integral appearing on the right hand side of Eq. (3.6) splits as follows:

f(w) =

1

π
lim
ε→0

d

dw






∫ w−ε

a
du

1
√[w − u]

∫ w−ε

u
dt

g(t)
√[t− u]

+

∫ w

w−ε
du

1
√[w − u]

∫ w−ε

u
dt

g(t)
√[t− u]

+

∫ w

a
du

1
√[w − u]

∫ b

w+ε
dt

g(t)
√[t− u]




 . (3.7)

In the first two integrals appearing on the right hand side of Eq. (3.7), we

interchange the order of the t- and u-integration according to Fubini’s theorem;

in the third integral, such interchange is achieved in a straightforward way.

Then, using the function λ, defined in Eq. (3.4), Eq. (3.7) reduces to

f(w) =
1

π
lim
ε→0

d

dw

{∫ w−ε

a
dt g(t)λ(a, t, w)+

∫ w

w−ε
dt g(t)λ(w, t, w) +

∫ b

w+ε
dt g(t)λ(a, w, t)

}

. (3.8)

In the second integral appearing on the right hand side of Eq. (3.8), the third

argument of the function λ always exceeds its second argument, and the value

of λ given by Eq. (3.5) may be used, according to which λ(w, t, w) = jπ. Thus,

since, by assumption, the function g is continuous, the contribution given by

that integral to f(w) is

1

π
lim
ε→0

d

dw

∫ w

w−ε
dt g(t)λ(w, t, w) = j lim

ε→0
[g(w)− g(w − ε)] = 0. (3.9)
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On the other hand, taking the w-derivative of the first and third term on the

right hand side of Eq. (3.8), we find

f(w) =
1

π
lim
ε→0

{∫ w−ε

a
dt g(t)

d

dw
λ(a, t, w)+

g(w − ε)λ(a, w − ε, w)− g(w + ε)λ(a, w,w + ε)+

∫ b

w+ε
dt g(t)

d

dw
λ(a, w, t)

}

. (3.10)

Now, in the second and third term appearing on the right hand side of Eq.

(3.10), the third argument of the function λ also exceeds its second argument,

and the value of λ given by Eq. (3.5) may again be used. Also, since ε > 0, we

have

λ(a, w − ε, w) = − ln(ε) + ln(2[w − a]) + O(ε),

λ(a, w,w + ε) = − ln(ε) + ln(2[w − a]) + O(ε),

for ε ' 0, ε > 0. (3.11)

We thus see that, since, by assumption, the function g is continuous, the

contribution given by the second and third term appearing on the right hand

side of Eq. (3.10) to f(w) is

1

π
lim
ε→0

[g(w − ε)λ(a, w − ε, w)− g(w + ε)λ(a, w,w + ε)] = 0. (3.12)

Furthermore, in both integrals appearing on the right hand side of Eq. (3.10)

the third argument of the function λ also exceeds its second argument. Then,

again using Eq. (3.5), the two w-derivatives of λ, appearing in those integrals,

turn out to be
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d

dw
λ(a, t, w) =

d

dw
2 arcsinh




√[t− a]
√[w − t]



 =

2
√[w − t]
√[w − a]

√
[t− a]

−1/2

[w − t]3/2
=

√[t− a]
√[w − a]

1

t− w
(3.13)

and

d

dw
λ(a, w, t) =

d

dw
2 arcsinh




√[w − a]
√[t− w]



 =

2
√[t− w]
√[t− a]

1

2

√[t− w]
√[w − a]

t− a

[t− w]2
=

√[t− a]
√[w − a]

1

t− w
. (3.14)

Finally, substituting Eqs. (3.12), (3.13) and (3.14) into the right hand side of

Eq. (3.10), we recover Eq. (3.2), as desired:

f(w) =
1

π
lim
ε→0






∫ w−ε

a
dt g(t)

√[t− a]
√[w − a]

1

t− w
+

∫ b

w+ε
dt g(t)

√[t− a]
√[w − a]

1

t− w




 =

1

π
P

∫ b

a
dt
√[t− a]
√[w − a]

g(t)

t− w
. (3.15)

This concludes the proof of the first part of point (i) of the lemma. The proof

of the second part of that point consists in showing that Eq. (3.1) necessarily

follows from Eq. (3.2). To do so, we substitute the right hand side of Eq.
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(3.2) directly into the left hand side of Eq. (3.1) and interchange the order of

integration, which we can do, provided the integrals be understood as Cauchy’s

principal value integrals. In this way, we get

∫ w

a
du

1
√[w − u]

1

π
P

∫ b

a
dt
√[t− a]
√[u− a]

g(t)

t− u
=

∫ b

a
dt
√

[t− a]g(t)
1

π
P

∫ w

a
du

1
√[w − u]√[u− a]

1

t− u
. (3.16)

In the inner integral appearing on the right hand side of Eq. (3.16), we change

the integration variable according to u = [w + as2]/[1 + s2], to get

1

π
P

∫ w

a
du

1
√[w − u]

1
√[u− a]

1

t− u
=

1

π
P

∫ ∞

0
ds

2

[t− w] + [t− a]s2
. (3.17)

In the integral on the right hand side of Eq. (3.17), we must take into account

that the quantity t is the integration variable of the outer integral on the right

hand side of Eq. (3.16), and thus t exceeds a, the lower limit of integration

there. Therefore, in the denominator of the integrand in the integral on the

right hand side of Eq. (3.17), two cases arise: if t < w, the signs of the two

terms in the denominator disagree and the principal part of the integral itself

obviously vanishes; if t > w, the two signs agree and the integral reduces

to 1/{√[t − w]√[t − a]}. Substituting this result into Eq. (3.16), only the

contribution

∫ b

w
dt
√

[t− a]g(t)
1

√[t− w]√[t− a]
(3.18)
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survives, which coincides with the right hand side of Eq. (3.1), as desired.

This concludes the proof of point (i) of the lemma. The proof of point (ii)

consists in reducing Eq. (3.2) to Eq. (3.3), which we do by means of the

obvious identity

√[u− a]
√[w − a]

1

u− w
=

1
√[u− a]





1

√[w − a]
+
√w − a]

u− w




 . (3.19)

To prove point (iii), we work out the above arguments using finite values for

the constants a and b and then let them take arbitrarily large values in Eqs.

(3.1), (3.2) and (3.3a). In so doing, we must ensure that, as |w| → +∞, the

functions f(w) and g(w) vanish faster than a suitable negative power of |w|,

in such a way that the integrals in the above formulæ converge, as assumed

in the lemma.

!

Lemma 3.1 provide a practical means to extract the function f out of Eq.

(3.1) once the function g is known. The following corollary precisely allows

the reverse operation.

Corollary 3.1 Let a and b be real constants, such that a < b and let f(w)

and g(w) be two functions which are Hölder continuous over the interval a <

w < b. Then, provided all the integrals converge, we have the following results.

(i) For a < w < b, the identity

∫ w

a
du

f(u)
√[w − u]

=
∫ b

w
du

g(u)
√[u− w]

(3.20)

holds if and only if, denoting by P the Cauchy principal value of an inte-
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gral,

g(w) = − 1

π
P

∫ b

a
dt
√[b− t]
√[b− w]

f(t)

t− w
. (3.21)

(ii) For a < w < b, Eq. (3.21) is equivalent to

g(w) =
1

π

B
√[b− w]

− 1

π
P

∫ b

a
dt
√[b− w]
√[b− t]

f(t)

t− w
, (3.22a)

where B =
∫ b

a
du

f(u)
√[b− u]

. (3.22b)

(iii) The statements in points (i)–(ii) also hold if a → −∞; they also hold if

b→ +∞.

Proof.

The proof of the first part of point (i) consist in showing that Eq. (3.21)

necessarily follows from Eq. (3.20). To do so, in the integrals appearing on

each side of Eq. (3.20), we set w = b + a − y and we change the integration

variable according to u = b + a− s. In this way, Eq. (3.20) reduces to

∫ y

a
ds

g(b + a− s)
√[y − s]

=
∫ b

y
ds

f(b + a− s)
√[s− y]

. (3.23)

Now, this relation between the functions g(b + a − y) and f(b + a − y) has

the same structure of the relation between f(w) and g(w) given in Lemma 3.1

(cf. Eq. (3.20)), provided the role of f and g be interchanged. Therefore, Eq.

(3.23) directly leads to (cf. Eq. (3.2))

g(b + a− y) =
1

π
P

∫ b

a
du
√[u− a]
√[y − a]

f(b + a− u)

u− y
. (3.24)
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If, in the integral on the right hand side of Eq. (3.24), we set y = b + a − w

and if we change the integration variable according to u = b+a− t, we recover

Eq. (3.21), as desired.

This concludes the proof of the first part of point (i) of the lemma. The proof

of the second part of that point consists in showing that Eq. (3.20) necessarily

follows from Eq. (3.21). But this is entirely equivalent to showing that Eq.

(3.23) necessarily follows from Eq. (3.24), a task which is accomplished by the

same procedure used in Lemma 3.1 to show that Eq. (3.1) follows from Eq.

(3.2).

This concludes the proof of point (i) of the lemma. The proof of point (ii)

consists in reducing Eq. (3.21) to Eq. (3.22), which we do by means of the

obvious identity

√[b− u]
√[b− w]

1

u− w
=

1
√[b− u]





1

√[b− w]
−
√[b− w]

u− w




 . (3.25)

To prove point (iii), we work out the above arguments using finite values for

the constants a and b and then let them take arbitrarily large values in Eqs.

(3.20), (3.21) and (3.22a). In so doing, we must ensure that, as |w|→ +∞, the

functions f(w) and g(w) vanish faster than a suitable negative power of |w|,

in such a way that the integrals in the above formulæ converge, as assumed

in the lemma.

!

Our next lemma is the following

Lemma 3.2 Let a, b and c be real constants, such that −c < a < b. Let
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the function f(w) be integrable for −a < w < c and let the function g(w) be

integrable for −c < w < b. Provided the integrals in Eq. (3.26) below converge,

we have the following results.

(i) For −a < w < c, the identity

∫ w

−a
du

f(u)
√[w − u]

=
∫ b

−w
du

g(u)
√[w + u]

(3.26)

holds if and only if

f(w) = g(−w) +
1

π

∫ b

a
du
√[u− a]
√[w + a]

g(u)

u + w
. (3.27)

(ii) For −a < w < c, Eq. (3.27) is equivalent to

f(w) =
1

π

C
√[w + a]

+ g(−w)− 1

π

∫ b

a
du
√[w + a]
√[u− a]

g(u)

u + w
, (3.28a)

where C =
∫ b

a
du

g(u)
√[u− a]

. (3.28b)

(iii) The results in points (i)–(ii) also hold if b → +∞; they hold also if

c→ +∞.

Proof. To carry out the proof of the lemma, we introduce the function

µ(w, u) =
∫ w

−a
dt

1
√[w − t]√[u + t]

,

for w > −a, u > a, (3.29)

whose properties we establish beforehand. Specifically, since in the integral

appearing on the right hand side of Eq. (3.29) w + u > 0, we change the

integration variable according to t = w − [w + u]s2, to get
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µ(w, u) = 2
∫ √[w+a]
√[w+u]

0
ds

1
√[1− s2]

=

2 arcsin




√[w + a]
√[w + u]



 , for w > −a, u > a. (3.30)

In the following, the w-derivative of µ(w, u) will be needed, which turns out

to be

d

dw
µ(w, u) =

d

dw
2 arcsin




√[w + a]
√[w + u]



 =

2
√[w + u]
√[u− a]

1

2

√w + u]
√[w + a]

u− a

[w + u]2
=
√[u− a]
√[w + a]

1

w + u
. (3.31)

We now revert to the proof of the lemma and we show first that Eq. (3.27)

necessarily follows from Eq. (3.26). Specifically, since, by assumption, b > a, we

write the integral on the right hand side of Eq. (3.26) as the sum of an integral

running from −w to a and an integral running from a to b. After changing

the integration variable in the first of these two latter integrals, according to

u (→ −u, we subtract it from both sides of Eq. (3.26) itself, to get

∫ w

−a
du

f(u)− g(−u)
√[w − u]

=
∫ b

a
du

g(u)
√[w + u]

. (3.32)

Eq. (3.32) is an Abel equation for the quantity f(w)− g(−w) and its solution

is (cf. e.g. [14]))

f(w)− g(−w) =
1

π

d

dw

∫ w

−a
dt

1
√[w − t]

∫ b

a
du

g(u)
√[t + u]

. (3.33)
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Since, by assumption, w > −a, in the outer integral appearing on the right

hand side of Eq. (3.33), t exceeds −a, the lower limit of integration there; also,

the assumption b > a, implies that, in the inner integral, u exceeds a, the lower

limit of integration there: thus we have t + u > 0, and, in the double integral

appearing on the right hand side of Eq. (3.33) we may interchange the order

of the t- and u-integration. Further using the function µ(w, u) defined in Eq.

(3.29), and interchanging the order of the w-differentiation and u-integration

operations, Eq. (3.33) reduces to

f(w)− g(−w) =
1

π

∫ b

a
du g(u)

d

dw
µ(w, u). (3.34)

In the integral appearing on the right hand side of Eq. (3.34), the assumption

b > a implies that u > a, and since, also by assumption, w > −a, the value

of dµ(w, u)/dw given by Eq. (3.31) can be used. Substituting this value in

the right hand side of Eq. (3.34), this latter equation precisely reduces to Eq.

(3.27), as desired.

This concludes the proof of the first part of point (i) of the lemma. The proof

of the second part of that point consists in showing that Eq. (3.26) necessarily

follows from Eq. (3.27). To do so, we substitute the quantity f(w), given by

Eq. (3.27), in the left hand side of Eq. (3.26)), to get

∫ w

−a
du

f(u)
√[w − u]

=
∫ w

−a
du

g(−u)
√[w − u]

+

1

π

∫ w

−a
du

1
√[w − u]

∫ b

a
dt
√[t− a]
√[u + a]

g(t)

t + u
. (3.35)

In the second double integral on the right hand side of Eq. (3.35), the assump-

tions w > −a and b > a respectively imply that u > −a and t > a, so that
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t+u > 0: thus we may interchange the order of the t- and u-integration, which

reduces Eq. (3.35) to

1

π

∫ w

−a
du

1
√[w − u]

∫ b

a
dt
√[t− a]
√[u + a]

g(t)

t + u
=

1

π

∫ b

a
dt g(t)

√
[t− a]

∫ w

−a
du

1
√[w − u]

1
√[u + a]

1

t + u
. (3.36)

In the inner u-integral on the right hand side of Eq. (3.36), we change the

integration variable according to u = [w − as2]/[1 + s2], to get

∫ w

−a
du

1
√[w − u]

1
√[u + a]

1

t + u
=

∫ ∞

0
ds

2

[t + w] + [t− a]s2
. (3.37)

In the integral appearing on the right hand side of Eq. (3.37), we must take

into account that the quantity t is the integration variable of the outer integral

appearing on the right hand side of Eq. (3.36) and thus t exceeds a, the lower

integration bound there; also, since, by assumption, w > −a, we have t+w > 0,

and the signs of the two terms in the denominator of the integrand in the

integral appearing on the right hand side of Eq. (3.37) agree: that integral

thus reduces to π/{√[t + w]√[t − a]}. Substituting this result into the right

hand side of Eq. (3.36), and this latter into Eq. (3.35), we find

∫ w

−a
du

f(u)
√[w − u]

=
∫ w

−a
du

g(−u)
√[w − u]

+

∫ b

a
dt

g(t)
√[t + w]

=
∫ b

−w
dt

g(t)
√[t + w]

, (3.38)

which precisely reproduces Eq. (3.26), as desired.
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This concludes the proof of point (i) of the lemma. The proof of point (ii)

consists in reducing Eq. (3.27) to Eq. (3.28), which we do by means of the

obvious identity

√[u− a]
√[w + a]

1

u + w
=

1
√[u− a]





1

√[w + a]
−
√[w + a]

u + w




 . (3.39)

To prove point (iii), we work out the above arguments using finite values for

the constants b and c and then let them take arbitrarily large values in Eqs.

(3.26), (3.27) and (3.28a). In so doing, we must ensure that, as |w|→ +∞, the

functions f(w) and g(w) vanish faster than a suitable negative power of |w|,

in such a way that the integrals in the above formulæ converge, as assumed

in the lemma.

!

We further notice that an immediate consequence of point (ii) of Lemma 3.2

is that

f(w) ∼ C
√[w + a]

, for w ' −a,

if C =
∫ b

a
du

g(u)
√[u− a]

&= 0. (3.40)

Indeed, the assumption that the integral on the right hand side of Eq. (3.28a)

converge, implies that the function g(−w) may diverge at most as 1/|w + a|p,

for w ' −a, with p < 1/2. This ensures that, on the right hand side of that

equation, the first term is the leading one for w ' −a.

Lemma 3.2 provides a practical means to extract the function f out of Eq.
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(3.26) once the function g is known. The following corollary allows the reverse

operation.

Corollary 3.2 Let a, b and c be real constants, such that −c < a < b. Let

the function f(w) be integrable for −b < w < c and let the function g(w) be

integrable for −c < w < b. Provided the integrals in Eq. (3.41) below converge,

we have the following results.

(i) For −w < b, The identity

∫ w

−a
du

f(u)
√[w − u]

=
∫ b

−w
du

g(u)
√[w + u]

(3.41)

holds if and only if, denoting by j the imaginary unit,

g(w) = −f(−w) +
1

jπ

∫ −a

−b
du
√[u + b]
√[b− w]

f(u)

u + w
,

for − c < w < a, (3.42a)

g(w) =
1

jπ
P

∫ −a

−b
du
√[u + b]
√[b− w]

f(u)

u + w
,

for a < w < b. (3.42b)

(ii) Eq. (3.42) is equivalent to

g(w) =
1

π

D
√[b− w]

− f(−w) +
1

jπ

∫ −a

−b
du
√[b− w]
√[u + b]

f(u)

u + w
,

for − c < w < a, (3.43a)

g(w) =
1

π

D
√[b− w]

+
1

jπ
P

∫ −a

−b
du
√[b− w]
√[u + b]

f(u)

u + w
,

for a < w < b, (3.43b)

where D =
1

j

∫ −a

−b
du

f(u)
√[u + b]

. (3.43c)
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(iii) The results in points (i)–(ii) hold also if b → +∞; they hold also if

c→ +∞.

Proof. We preliminary rearrange Eq. (3.41) as follows. In the integral ap-

pearing on its left hand side, we change the integration variable according

to the Möbius transformation u = −[b + at]/[t + 1]; likewise in the integral

appearing on its right hand side, we change the integration variable according

to u = −[b− at]/[t− 1]; we also introduce the quantity

y =
w + b

w + a
. (3.44)

In this way, denoting by j the imaginary unit, Eq. (3.41) takes the form

∫ y

0
dt

g(−[b− at]/[t− 1])√[t− 1]

j[t− 1]2√[y − t]
=

∫ +∞

−y
dt

f(−[b + at]/[t + 1])√[t + 1]

[t + 1]2√[t + y]
. (3.45)

In Eq. (3.45), two cases arise, according to the sign of y. If y > 0, Eq. (3.45)

precisely appears in the form considered in Lemma 3.2 (cf. Eq. (3.26), now with

a = 0 and b = +∞), provided, of course, the role of f and g be interchanged.

Its solution is (cf. Eq. (3.27))
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g([−[b− ay]/[y − 1])√[y − 1]

j[y − 1]2
−

f(−[b− ay]/[−y + 1])√[−y + 1]

[−y + 1]2
=

1

π

∫ ∞

0
dt
√t
√y

f(−[b + at]/[t + 1])√[t + 1]

[t + 1]2
1

t + y
,

for y > 0. (3.46)

In the integral appearing on the right hand side of Eq. (3.46), we change

the integration variable according to t = −[u + b]/[u + a] and we take into

account that: (i) y = [w + b]/[w + a] (cf. Eq. (3.44)); (ii) Eq. (3.46) holds

only for y > 0; (iii) since, by assumption, −c < a < b and −w < b, then

y > 0⇔ −c < −w < a < b. In this way, Eq. (3.46) reduces to

g(−w) + f(w) =
1

jπ

∫ −a

−b
du
√[b + u]
√[b + w]

f(u)

u− w
,

for − c < −w < a. (3.47)

This shows that Eq. (3.42a), which we recover from Eq. (3.47) by simply letting

w (→ −w, necessarily follows from Eq. (3.46) and in turn from Eq. (3.41), as

desired.

On the other hand, if y < 0, we again use Eq. (3.45) and, on its right hand

side, we change the integration variable according to t (→ −t to get
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−
∫ 0

y
dt

g(−[b− at]/[t− 1])√[t− 1]

[t− 1]2√[t− y]
=

∫ y

−∞
dt

f(−[b− at]/[1− t])/√[1− t]

[1− t]2√[y − t]
. (3.48)

This equation appears exactly in the form considered in Corollary 3.1 (cf. Eq.

(3.20), now with a→ −∞ and b = 0). Its solution is (cf. Eq. (3.21))

−
g(−[b− ay]/[y − 1])√[y − 1]

[y − 1]2
=

− 1

π
P

∫ 0

−∞
dt
√t
√y

f(−[b− at]/[1− t])√[1− t]

[1− t]2
1

t− y
,

for y < 0. (3.49)

In the integral appearing on the right hand side of Eq. (3.49), we change

the integration variable according to t = [u + b]/[u + a] and we take into

account that: (i) y = [w + b]/[w + a] (cf. Eq. (3.44)); (ii) Eq. (3.49) holds

only for y < 0; (iii) since, by assumption, −c < a < b and −w < b, then

y < 0⇔ −c < a < −w < b. In this way, Eq. (3.49) reduces to

g(−w) =
1

jπ
P

∫ −a

−b
du
√[u + b]
√[b + w]

f(u)

u− w
,

for a < −w < b. (3.50)

This shows that Eq. (3.42b), which we recover from Eq. (3.50) by simply

letting w (→ −w, necessarily follows from Eq. (3.48) and in turn from Eq.

(3.41), as desired.

This concludes the proof of the first part of point (i) of the corollary. The proof
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of the second part of that point consists in showing that Eq. (3.41) necessarily

follows from Eq. (3.42). But this is entirely equivalent to showing that: (i) for

y > 0, Eq. (3.45) necessarily follows from Eq. (3.46); (ii) for y < 0, Eq. (3.48)

necessarily follows from Eq. (3.49). Part (i) of this task is accomplished by

the same procedure used in Lemma 3.2 to show that Eq. (3.26) follows from

Eq. (3.27); part (ii) of the task is accomplished by the same procedure used

in Corollary 3.1 to show that Eq. (3.20) follows from Eq. (3.21).

This concludes the proof of point (i) of the corollary. The proof of point (ii)

consists in reducing Eq. (3.42) to Eq. (3.43), which we do by means of the

obvious identity

√[u + b]
√[b− w]

1

u + w
=

1
√[u + b]





1

√[b− w]
+
√[b− w]

u + w




 . (3.51)

To prove point (iii) of the corollary, we work out the above arguments using

finite values for the constants b and c and then let them take arbitrarily large

values in Eqs. (3.41), (3.42a), (3.42b), (3.43a) and (3.43b). In so doing, we

must ensure that, as |w| → +∞, the functions f(w) and g(w) vanish faster

than a suitable negative power of |w|, in such a way that the integrals in the

above formulæ converge, as assumed in the corollary. !

We notice notice that an immediate consequence of point (ii) of Corollary 3.2

is that, provided b be finite, then

g(w) ∼ D
√[b− w]

, for w ' b <∞,

if D =
1

j

∫ −a

−b
du

f(u)
√[u + b]

&= 0. (3.52)
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Indeed, the assumptions that b that the integral on the right hand sides of

Eq. (3.43a) converge, implies that the function f(−w) may diverge at most as

1/|b−w|q, for w ' b, with q < 1/2. This ensures that, on the right hand side

of that equation, the first term is the leading one for w ' b.

We now show that the two expressions given in Eqs. (3.42a) and (3.42b) for the

function g(w) may be recovered as limit values of a suitable complex-valued

function. To do so, we introduce the complex variable z and, in the complex z-

plane cut along the line b < +z < +∞, we consider the double-valued function

√[b− z], which has the following boundary values

for z = w ± jε,

lim
ε→0+

[b− z]1/2 =
√

[b− w], if w < b, (3.53a)

lim
ε→0+

[b− z]1/2 = ±j
√

[w − b], if w > b. (3.53b)

Next we consider the function

g(z) = −f(−z) +
1

jπ

∫ −a

−b
du
√[u + b]

[b− z]1/2

f(u)

u− (−z)
, (3.54)

Now, in the above introduced complex z-plane, a complex number z approach-

ing a real number w, with w < a, definitively lies outside the branch cut of the

function [b − z]1/2, because, by assumption, in Corollary 3.2, a < b; also, the

number (−z), appearing in the denominator of the integrand of the integral on

the right hand sides of Eqs. (3.54), definitively lies outside the integration path

of that integral, which, therefore, is non singular. Then, using Eq. (3.53b), and

taking the boundary value of both sides of Eq. (3.54), we precisely recover Eq.

(3.42a):
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lim
ε→0+

g(w − jε) = −f(−w) +
1

jπ

∫ −a

−b
du
√[u + b]
√[b− w]

f(u)

u + w
,

for − c < w < a. (3.55)

On the other hand, a complex number z approaching a real number w, with

a < w < b, definitively lies outside the branch cut of the function [b − z]1/2;

also, the number (−z), appearing in the denominator of the integrand of the

integral on the right hand sides of Eqs. (3.54), lies arbitrarily close to the

integration path of that integral, which, therefore, is singular. Because of Eq.

(3.53b) and of the Sokhotskyi-Plemelj formulæ (e.g. [11]), denoting by the

symbols P
ξ and δ(ξ) respectively Cauchy’s principal value and Dirac’s delta

distributions, the following identity may be used in that integral:

lim
ε=0+

1

[b− (w ± jε)]1/2

1

u− [−(w ± jε)]
=

1
√[b− w]

[
P

u + w
∓ jπδ(u + w)

]
,

for − b < u < −a and a < w < b. (3.56)

Then, taking the boundary values of both sides of Eq. (3.54), we precisely

recover Eq. (3.42b):

lim
ε→0+

g(w − jε) =
1

jπ
P

∫ −a

−b
du
√[u + b]
√[b− w]

f(u)

u + w
,

for a < w < b. (3.57)

In conclusion, Eqs. (3.55) and (3.57) show that the complex-valued function g,

defined in Eq. (3.54), is the solution of Eq. (3.41) in the whole complex plane:
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the solution to that equation, evaluated at real values of its argument, may

be recovered as the boundary value of the complex-valued function g as its

complex argument approaches the real axis in the lower half of the complex

plane.

4 The fractional distributions of the electric charge density of elec-

trons and ions

In this section we carry out the first part of the task, set at the beginning of

Section 3, of solving Poisson’s equation (cf. (2.24)) in favour of the electron

and ion distribution functions. This part consists in casting that equation into

two pairs of new, entirely equivalent and more convenient fractional equations.

To do so, we need reformulate the electron and ion number densities, given in

Eqs. (2.21b) and (2.22b), in a more convenient form. In each of the following

two pairs of transformations of these quantities, the first transformation con-

cerns the electron number density, and the second one concerns the ion number

density. A first pair of transformations is worked out using the obvious identity

(cf. Eqs. (2.12) and (2.13))

Ue(φ) = [ lim
x→+∞

φ(x)− φ(xmin)]− θUi(φ), (4.1)

and the change of the integration variable W ′
e = θW ′ − [limx→+∞ φ(x) −

φ(xmin)], in the integral on the right hand side of Eq. (2.21b). These relations

reduce the the electron number density to
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ne(φ) =
∫ ∞

Ui(φ)
dW ′Fe(θW ′ − [limx→+∞ φ(x)− φ(xmin)])

√θ
√{2[W ′ − Ui(φ)]} . (4.2)

Likewise, the obvious identity (cf. Eqs. (2.12) and (2.13))

Ui(φ) = {[ lim
x→+∞

φ(x)− φ(xmin)]− Ue(φ)}/θ, (4.3)

and the change of the integration variable W ′
i = {W ′ − [limx→+∞ φ(x) −

φ(xmin)]}/θ in the integral on the right hand side of Eq. (2.22b), reduce the

ion number density to

ni(φ) =
∫ ∞

Ue(φ)
dW ′Fi({W ′ − [limx→+∞ φ(x)− φ(xmin)]}/θ)/√θ

√{2[W ′ − Ue(φ)]} . (4.4)

To work out the second pair of transformations, we need the quantities

Ue0 = max
x∈domain j

(−Ue(φ(x))) =

min
x∈domain j

(Ue(φ(x))), (4.5)

and

Ui 0 = max
x∈domain j

(−Ui(φ(x))) =

min
x∈domain j

(Ui(φ(x))), (4.6)

i.e. the maximum respectively of the electron and ion potential energy in

each of the domains where φ(x) is monotonic (cf. Fig. (1)). We also need the

quantity
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U0 = [ lim
x→+∞

φ(x)− θUi 0]− [Ue0 + φ(xmin)] =

max
x∈domain j

(φ(x))− min
x∈domain j

(φ(x)) > 0, (4.7)

i.e. the strictly positive, maximum electric potential difference in each of those

domains. Using these quantities, we represent the electron number density ne

(cf. Eq. (2.21b)) in the form

ne(φ) =
∫ Ue(φ)

Ue0

dW ′ He(W ′)
√{2[Ue(φ)−W ′]} . (4.8)

We notice that, because of the definition of Ue0 (cf. Eq (4.5)), the upper limit

of integration in the integral appearing in Eq. (4.8) always exceeds the lower

limit. Therefore, Lemma 3.2, which we proved in Section 3, prescribes that,

for both Eqs. (4.8) and (2.21b) to hold, the function He must be related to

the electron energy distribution function Fe according to (cf. Eq. (3.27))

He(W + Ue0) = Fe(−[W + Ue0]) +

1

π

∫ ∞

0
dW ′

√W ′

√W

Fe(W ′ − Ue0)

W ′ + W
,

for W ≥ 0. (4.9)

Given that the quantity ne(φ) is the normalised electron electric charge density

distribution (cf. Eq. 2.21a), and given that the integral appearing on the right

hand side of Eq. (4.8) is fractional, we call the function He(W ) the “Ue0-based

fractional distribution of the electron electric charge density”.

Likewise, given the same real number Ue0, we wish to represent the ion number

density (cf. Eq. (4.4)) in the form
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ni(φ) =
∫ Ue(φ)

Ue0

dW ′ Ki (W ′)
√{2[Ue(φ)−W ′]} . (4.10)

Now, Lemma 3.1 prescribes that, for both Eqs. (4.10) and (4.4) to hold, the

function Ki must be related to the ion energy distribution Fi according to (cf.

Eq. (3.2)):

Ki (W + Ue0) =
1

π
P

∫ ∞

0
dW ′

√W ′

√W
×

Fi([W ′/θ + Ui 0]− U0/θ)/
√θ

W ′ −W
,

for W ≥ 0. (4.11)

Given that the quantity −ni(φ) is the normalised ion electric charge density

distribution (cf. Eq. 2.22a), we call the function −Ki (W ), appearing on the

right hand side of Eq. (4.10), the “Ue0-based fractional distribution of the ion

electric charge density”.

To work out the second pair of transformations, we represent the electron

number density ne (cf. Eq. (4.2)) in the form

ne(φ) =
∫ Ui(φ)

Ui 0

dW ′ Ke(W ′)
√{2[Ui(φ)−W ′]} . (4.12)

Using the same terminology as for Eq. (4.8), we call the function −Ke(W )

the “Ui 0-based fractional distribution of the electron electric charge density”.

Lemma 3.1 (cf. Section 3) ensures that both representations of the quantity

ne(φ) given in Eqs. (4.12) and (4.2) are legitimate, provided the function Ke

be related to the electron energy distribution function Fe according to (cf. Eq.
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(3.2))

Ke(W/θ + Ui 0)/
√

θ =

1

π
P

∫ ∞

0
dW ′

√W ′

√W

Fe([W ′ + Ue0]− U0)

W ′ −W
,

for W ≥ 0. (4.13)

Likewise, given the same real number Ui 0, we wish to represent the ion number

density (cf. Eq. (2.22b)) in the form

ni(φ) =
∫ Ui(φ)

Ui 0

dW ′ Hi (W ′)
√{2[Ui(φ)−W ′]} . (4.14)

Using the same terminology as for Eq. (4.14), we call the function Hi (W ) the

“Ui 0-based fractional distribution of the ion electric charge density”. Lemma

3.2 (cf. Section 3) ensures that both representations of the quantity ni(φ) given

in Eqs. (4.14) and (2.22b) are legitimate, provided the function Hi be related

to the electron energy distribution function Fi according to (cf. Eq. (3.27))

Hi (W/θ + Ui 0)/
√

θ = Fi (−[W/θ + Ui 0])/
√

θ +

1

π

∫ ∞

0
dW ′

√W ′

√W

Fi (W ′/θ − Ui 0)/
√θ

W ′ + W
,

for W ≥ 0. (4.15)

Having performed the anticipated two pairs of transformations of the electron

and ion number densities, we now use these quantities to rearrange Poisson’s

equation (cf. Eq. 2.24), as announced at the beginning of this section. To

work out the second pair of rearrangements, we respectively use Eqs. (4.8)
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and (4.10) in place of Eqs. (2.21b) and (2.22b) and we introduce the function

H(W ) = He(W )−Ki (W ). (4.16)

Then Poisson’s equation (cf. Eq. (2.24)) takes the form

φxx(φ) =
∫ Ue(φ)

Ue0

dW ′ H(W ′)
√{2[Ue(φ)−W ′]} . (4.17)

Likewise, if we respectively take the electron and ion number densities from

Eqs. (4.12) and (4.14), and if we introduce the function

K(W ) = Hi (W )−Ke(W ), (4.18)

then Poisson’s equation takes the form

φxx(φ) = −
∫ Ui(φ)

Ui 0

dW ′ K(W ′)
√{2[Ui(φ)−W ′]} . (4.19)

Eqs. (4.17) and (4.19) are the second pair of fractional forms of Poisson’s

equation, announced at the beginning of this section. Given that the quantity

φxx(φ) equals the normalised charge density in the plasma (cf. Eqs. (2.18) and

(2.23)), and given that the integral appearing on the right hand side of Eq.

(4.17) is fractional, we call the function H(W ) the “Ue0-based fractional dis-

tribution of the total electric charge density”. Likewise, the function −K(W )

will be known as the “Ui 0-based fractional distribution of the total electric

charge density”.

In conclusion, the above analysis showed that, based on Poisson equation, it is

always possible to write the second derivative of the electric potential φxx as
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an Abel transform of a suitable single function and that this function may be

constructively related to the electron and ion energy distribution functions.

The convenience of writing the quantity φxx in this way will be made clear in

Section 5.

5 The Hilbert form of the Solutions of the Integral Poisson Equa-

tion

In this section we carry out the second part of the task, set at the beginning of

Section 3, of solving Poisson’s equation (cf. (2.24)) in favour of the electron and

ion distribution functions. First, using the definition of the electron potential

energy Ue (cf. Eq. (2.12)), we cast Eq. (4.19)) as an Abel equation (cf. e.g.

[14]) for the quantity H(W )

φxx(Ue + φ(xmin)) =
∫ Ue

Ue0

dW ′ H(W ′)
√{2[Ue −W ′]} , (5.1)

whose solution we conveniently write as

H(W + Ue0) =

√2

π

d

dW

∫ W

0
dW ′φxx(W ′ + [φ(xmin) + Ue0])

√[W −W ′]
,

for W ≥ 0. (5.2)

Following an analogous procedure, Eq. (4.19) may be solved in favour of

K(W ), thus giving
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−K(W/θ + Ui 0)/
√

θ =

√2

π

d

dW

∫ W

0
dW ′φxx([limx→+∞ φ(x)− θUi 0]−W ′)

√[W −W ′]
,

for W ≥ 0. (5.3)

In this way, Eqs. (4.17) and (5.2) on one hand, or Eqs. (4.19) and (5.3) on the

other, respectively establish a complete equivalence between the knowledge of

the electric potential φ and that of the function H(W ) or K(W ).

Because of this equivalence, Eqs. (4.16) and (4.18) may be regarded as the

first pair of equivalent forms of Poisson’s equation (cf. Eq. (2.24)) announced

at the beginning of this section: specifically, using Eqs. (4.9) and (4.11), we

rewrite Eq. (4.16) as

Fe(−[W + Ue0]) =

− 1

π

∫ ∞

0
dW ′

√W ′

√W

Fe(W ′ − Ue0)

W ′ + W
+

1

π
P

∫ ∞

0
dW ′

√W ′

√W

Fi ([W ′/θ − Ui 0]− U0/θ)/
√θ

W ′ −W
+

H(W + Ue0),

for W ≥ 0. (5.4)

Likewise, using Eqs. (4.13), (4.15) and (4.7), we rewrite Eq. (4.18) as
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Fi (−[W/θ + Ui 0])/
√

θ =

− 1

π

∫ ∞

0
dW ′

√W ′

√W

Fi (W ′/θ − Ui 0)/
√θ

W ′ + W
+

1

π
P

∫ ∞

0
dW ′

√W ′

√W

Fe([W ′ − Ue0]− U0)

W ′ −W
+

K(W/θ + Ui 0)/
√

θ,

for W ≥ 0. (5.5)

Eqs. (5.5) and Eq. (5.4) are the solutions of Poisson’s equation announced

at the beginning of this section. We call them the “BGK solutions”. Indeed,

according to the approach adopted by Bernstein, Greene and Kruskal (cf. Ref.

[2]),Eq. (5.4) gives the the electron energy distribution functions for values

of its argument less than Ue0 (cf. the left hand side of Eq. (5.4)), provided

it be given at all the other values of its argument (cf. the first term on the

right hand side of Eq. (5.4)) and provided the ion energy distribution function

and the electric potential be given. The same task is accomplished for the ion

energy distribution function by Eq. (5.5).

We now proceed to rearranging Eqs. (5.4) and (5.5) in yet another pair of

equivalent forms. First, we notice that, since the Ue0-based fractional distri-

bution H, appearing in Eq. (4.17), and the Ui 0-based fractional distribution

K, appearing in Eq. (4.19), represent the same quantity (i.e. the total charge),

they must be related. To find this relation, in the integral appearing on the

right hand side of Eq. (4.17), we change the integration variable according to

W ′ = W ′′−φ(xmin), and, writing the electron potential energy Ue(φ) as in Eq.

(2.12), we get
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φxx(φ) =
∫ φ

Ue0+φ(xmin)
dW ′′G(W ′′ − φ(xmin))

√[2(φ−W ′′)]
. (5.6)

Likewise, in the integral appearing on the right hand side of Eq. (4.19), we

change the integration variable according to W ′ = [limx→+∞ φ(x) − W ′′]/θ,

and, writing the ion potential energy Ui(φ) as in Eq. (2.13), we get

φxx(φ) = −
∫ limx→+∞ φ(x)−θUi 0

φ
dW ′′ ×

K([limx→+∞ φ(x)−W ′′]/θ)/√θ
√[2(W ′′ − φ)]

. (5.7)

Subtracting the respective sides of Eqs. (5.6) and (5.7), an integral relation is

obtained between the functions H and K, which is of the kind shown in Eq.

(3.1) and in Eq. (3.20): there now, a = Ue0 +φ(xmin) and b = limx→+∞ φ(x)−

θUi 0 and, due to Eq. (4.7), a < b, in such a way that the hypotheses of Lemma

3.1 and of Corollary 3.1 apply. Then, Lemma 3.1 prescribes that (cf. Eq. (3.2))

H(W + Ue0) =

− 1

π
P

∫ U0

0
dW ′

√W ′

√W

K(U0/θ − [W ′/θ − Ui 0])/
√θ

W ′ −W
,

for W ≥ 0, (5.8)

whereas Corollary 3.1 prescribes that (cf. Eq. (3.21))

K(W/θ + Ui 0)/
√

θ =

1

π
P

∫ U0

0
dW ′

√W ′

√W

H(U0 − [W ′ − Ue0])

W ′ −W
,

for W ≥ 0. (5.9)
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Finally, substituting Eq. (5.8) into Eq. (5.4) and Eq. (5.9) into Eq. (5.5), we

respectively get

Fe(−[W + Ue0]) +
1

π

∫ ∞

0
dW ′

√W ′

√W

Fe(W ′ − Ue0)

W ′ + W
=

1

π
P

∫ ∞

0
dW ′

√W ′

√W

Fi ([W ′/θ − Ui 0]− U0/θ)/
√θ

W ′ −W
−

1

π
P

∫ U0

0
dW ′

√W ′

√W

K(U0/θ − [W ′/θ − Ui 0])/
√θ

W ′ −W
,

for W ≥ 0. (5.10)

and

Fi (−[W/θ + Ui 0])/
√

θ +
1

π

∫ ∞

0
dW ′

√W ′

√W

Fi (W ′/θ − Ui 0)/
√θ

W ′ + W
=

1

π
P

∫ ∞

0
dW ′

√W ′

√W

Fe([W ′ − Ue0]− U0)

W ′ −W
+

1

π
P

∫ U0

0
dW ′

√W ′

√W

H(U0 − [W ′ − Ue0])

W ′ −W
,

for W ≥ 0. (5.11)

Eqs. (5.10) and Eq. (5.11) are the solutions of Poisson’s equation announced

at the beginning of this section. Both of these equations relate K or H, i.e.

suitable transforms of φxx (cf. Eqs. (5.3) or (5.2)), to suitable transforms of

the electron and ion energy distribution functions Fe and Fi. The advantages

of writing Poisson’s equation in its formulation given in Eqs. (5.10) and (5.11)

will be demonstrated in detail in Section 6.
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6 The Sectionally Analytic Form of the Solutions of the Integral

Poisson Equation

In this section we carry out the third part of the task, set at the beginning

Section 3, of solving Poisson’s equation in favour of the electron and ion energy

distribution functions. This task consists in extending these functions in the

whole complex plane of their respective arguments.

To do so, we use the forms of Poisson’s equation given in Eqs. (5.10) and

(5.11). We begin by introducing the complex variable z and, in the complex

z-plane cut along the positive real axis, we introduce the two-valued function

z1/2. Specifically, let j denote the imaginary unit, and let z = w ± jε; then, if

the real number w does not belong to the cut, i.e. if w < 0, we set

lim
ε=0+

[w ± jε]1/2 =
√

[|w|ejπ] = +j
√|w|,

for w < 0. (6.1)

If the real number w belongs to the cut, i.e. if w > 0, we set

lim
ε=0+

[w ± jε]1/2 = ±√w.

for w > 0. (6.2)

Next, we assume that the energy distribution functions Fe and Fi are integrable

over their respective domain and, in the above introduced complex z-plane,

cut along the positive real axis, we define the sectionally analytic functions

(cf. e.g. [11])
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Fe(u, z) =
1

2jπ

∫ ∞

0
dt
√t

z1/2

Fe(t− u− Ue0)

t− (−z)
, (6.3)

Fi (u, z) =
1

2jπ

∫ ∞

0
dt
√t

z1/2

Fi ([t− u]/θ − Ui 0)/
√θ

t− (−z)
. (6.4)

In Eqs. (6.3) and (6.4), the values of the real parameter u are such that, as

the integration in t runs in the complex z-plane along the cut, and for all

the appropriate values of Ue0 and Ui 0 (cf. Eqs. (4.5) and (4.6)), the argument

t−u−Ue0 lies within the domain of the electron energy distribution function

Fe, and the argument [t− u]/θ−Ui 0 lies within the domain of the ion energy

distribution function Fi.

Now, in the above introduced complex z-plane cut along the positive real axis,

a complex number z approaching a negative real number w definitively lies

outside the branch cut of the function z1/2; also, the number −z, appearing

in the integrals on the right hand sides of Eqs. (6.3) and (6.4), lies arbitrarily

close to the integration path of those integrals, which, therefore, are singular.

Then, because of Eq. (6.1) and of the Sokhotskyi-Plemelj formulæ (e.g. [11]),

denoting by the symbols P
ξ and δ(ξ) respectively Cauchy’s principal value

and Dirac’s delta distributions, the following identity may be used in those

integrals, as z = w ± jε approaches the negative real axis, provided both

[√t]Fe(t − u − Ue0)) and [√t]Fi ([t − u]/θ − Ui 0)) be Hölder continuous at

t = −w:

44



lim
ε=0+

1

[w ± jε]1/2{t− [−(w ± jε)]} =

1

j

1
√|w|

[
P

t + w
∓ jπδ(t + w)

]
,

for t > 0 and w < 0. (6.5)

On the other hand, a complex number z approaching a positive real number w

lies arbitrarily close to the cut; also, the number −z, appearing in the integrals

on the right hand sides of Eqs. (6.3) and (6.4), definitively lies outside the

integration path of those integrals, which, therefore, are not singular. Then,

because of Eq. (6.2), the following obvious identity holds in those integrals, as

z = w ± jε approaches the positive real axis:

lim
ε=0+

1

[w ± jε]1/2{t− [−(w ± jε)]} = ± 1
√w

1

t + w
,

for t > 0 and w > 0. (6.6)

As an application of Eq. (6.5), its use in Eq. (6.3) and (6.4) leads to the

identities

−j lim
ε=0+

{Fe(u, w + jε)− Fe(u, w − jε)} =

Fe(−[w + u + Ue0]), (6.7a)

lim
ε=0+

{Fe(u, w + jε) + Fe(u, w − jε)} =

− 1

π

∫ ∞

0
dt
√t
√|w|

Fe(t− u− Ue0)

t + w
, (6.7b)

for w < 0, (6.7c)
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−j lim
ε=0+

{Fi (u, w + jε)− Fi (u, w − jε)} =

Fi (−{[w + u]/θ + Ui 0})/
√

θ,

for w < 0, (6.8a)

whereas the application of Eq. (6.6) into the same equations immediately gives

−j lim
ε=0+

{Fe(u, w + jε)− Fe(u, w − jε)} =

− 1

π

∫ ∞

0
dt
√t
√w

Fe(t− u− Ue0)

t + w
,

for w > 0, (6.9)

−j lim
ε=0+

{F+
i (u, w + jε)− F−i (u, w − jε)} =

− 1

π

∫ ∞

0
dt
√t
√w

Fi ([t− u]/θ − Ui 0)/
√θ

t + w
,

for w > 0. (6.10)

Next, in the same complex z-plane cut along the positive real axis, as intro-

duced above, we consider the properties of the functions defined in Eqs. (6.3)

and in Eq. (6.4) evaluated at ejπz:

Fe(u, ejπz) =
1

2jπ

∫ ∞

0
dt

√t

ejπ/2z1/2

Fe(t− u− Ue0)

t− z
, (6.11)

and

Fi (u, ejπz) =
1

2jπ

∫ ∞

0
dt

√t

ejπ/2z1/2

Fi ([t− u]/θ − Ui 0)/
√θ

t− z
. (6.12)
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The situation encountered by the functions Fe(u, ejπz) (cf. Eq. (6.11)) and

Fi (u, ejπz) (cf. Eq. (6.12)), as z approaches the real axis, is significantly dif-

ferent from the one encountered by the functions Fe(u, z) (cf. Eq. (6.3)) and

Fi (u, z) (cf. Eq. (6.4)). Indeed, consider first a complex number z approaching

a negative real number w: in so doing, it definitively lies outside the branch

cut of the function z1/2 and outside the integration path of the integrals on

the right hand sides of Eqs. (6.11) and (6.12), which, therefore, are not singu-

lar. Then, because of Eq. (6.1), the following obvious identity holds in those

integrals, as z = w ± jε approaches the negative real axis:

lim
ε=0+

1

[w ± jε]1/2{t− [w ± jε]} =
1

j

1
√|w|

1

t− w
,

for t > 0 and w < 0. (6.13)

On the other hand, a complex number z approaching a positive real number w

lies arbitrarily close to both the cut and the integration path of the integrals

on the right hand sides of Eqs. (6.11) and (6.12), which, therefore, are sin-

gular. Then, because of Eq. (6.2) and of the Sokhotskyi-Plemelj formulæ, the

following identity may be used in those integrals, as z = w± jε approaches the

positive real axis, provided both [√t]Fe(t−u−Ue0)) and [√t]Fi ([t−u]/θ−Ui 0))

be Hölder continuous at t = w:

lim
ε=0+

1

[w ± jε]1/2{t− [w ± jε]} =

± 1
√w

[
P

t− w
± jπδ(t− w)

]
,

for t > 0 and w > 0. (6.14)
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As an application of Eq. (6.13), its use in Eq. (6.11) and (6.12) immediately

gives

lim
ε=0+

{Fe(u, ejπ[w + jε])− Fe(u, ejπ[w − jε])} = 0,

for w < 0, (6.15)

lim
ε=0+

{Fi (u, ejπ[w + jε])− Fi (u, ejπ[w − jε])} = 0,

for w < 0, (6.16)

whereas the application of Eq. (6.14) into the same equations leads to the

identities

lim
ε=0+

{Fe(u, ejπ[w + jε])− Fe(u, ejπ[w − jε])} =

1

π
P

∫ ∞

0
dt
√t
√w

Fe(t− u− Ue0)

t− w
,

for w > 0, (6.17)

lim
ε=0+

{Fi (u, ejπ[w + jε])− Fi (u, ejπ[w − jε])} =

1

π
P

∫ ∞

0
dt
√t
√w

Fi ([t− u]/θ − Ui 0)/
√θ

t− w
,

for w > 0. (6.18)

Finally, given the positive real number U0 (cf. Eq. (4.7)), in the same complex

z-plane cut along the positive real axis, as introduced above, we consider the

sectionally analytic functions
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G(z) =
1

2jπ

∫ U0

0
dt
√t

z1/2

H([U0 − t] + Ue0])

t− z
, (6.19)

H(z) =
1

2jπ

∫ U0

0
dt
√t

z1/2

K([U0 − t]/θ + Ui 0)/
√θ

t− z
. (6.20)

The situation encountered by the functions G(z) (cf. Eq. (6.19)) and H(z)

(cf. Eq. (6.20)), as z approaches the real axis, is akin to the one encountered

by the functions Fe(u, eiπz) (cf. Eq. (6.11)) and Fi (u, eiπz) (cf. Eq. (6.12)). In

particular, in the integrals appearing on the right hand side of Eqs. (6.19) and

(6.20), Eq. (6.13) holds as z = w ± jε approaches the negative real axis, thus

giving

j lim
ε=0+

{G(w + jε)− G(w − jε)} = 0,

for w < 0, (6.21)

j lim
ε=0+

{H(w + jε)− H(w − jε)} = 0,

for w < 0. (6.22)

On the other hand, in those same integrals, Eq. (6.14) holds as z = w ±

jε approaches the positive real axis, provided w < U0 and provided both

[√t]H([U0 − t] + Ue0) and [√t]K([U0 − t]/θ + Ui 0) be Hölder continuous at

t = w, thus giving
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j lim
ε=0+

{G(w + jε)− G(w − jε)} =

1

π
P

∫ U0

0
dt
√t
√w

H([U0 − t] + Ue0)

t− w
,

for 0 < w < U0, (6.23)

j lim
ε=0+

{H(w + jε)− H(w − jε)} =

1

π
P

∫ U0

0
dt
√t
√w

K([U0 − t]/θ + Ui 0])/
√θ

t− w
.

for 0 < w < U0. (6.24)

Now, adding the right hand sides of Eqs. (6.7a), (6.16) and (6.22), all of

which apply for w < 0, we simply get Fe(−[w + Ue0]). Also, adding the right

hand sides of Eqs. (6.9), (6.18) and (6.24), all of which apply for w > 0, we

precisely get the right hand side of Eq. (5.10), which obviously equals the

quantity Fe(−[w + Ue0]), appearing on the left hand side of Eq. (5.10) itself.

These results may be conveniently summarised, irrespective of the sign of w,

in terms of the sectionally analytic function

Fe(z) = −jFe(0, z) + Fi (U0, e
jπz)− jH(z), (6.25)

as follows:

Fe(−[W + Ue0]) = lim
ε=0+

[Fe(W + jε)− Fe(W − jε)], (6.26)

A similar result may be established by manipulating Eqs. (6.10), (6.15), (6.21)

and Eqs. (5.10), (6.10), (6.17), (6.23), and, introducing the sectionally analytic
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function

Fi (z) = −jFi (0, z) + Fe(U0, e
jπz) + jG(z), (6.27)

we have

Fi (−[W + Ui 0]) = lim
ε=0+

[Fi (W + jε)− Fi (W − jε)], (6.28)

In conclusion, in the above analysis, we showed that the electron energy dis-

tribution function Fe may be found as the boundary value of a suitable sec-

tionally analytic function (cf. 6.26)): this latter function Fe (cf. Eq. (6.25))

precisely gives, through Eqs. (6.3), (6.12), (6.20) and (5.3), the continuation

of the electron energy distribution function Fe in the whole complex electron

energy plane. An analogous boundary value relation (cf. Eq. (6.28)) holds for

the ion energy distribution function Fi, whose continuation in the complex

ion energy plane is provided by the sectionally analytic function Fi (cf. Eq.

(6.27)), through Eqs. (6.4), (6.11), (6.19) and (5.2).

7 Conclusions

In this report, we investigated the distribution functions of the electrons and of

the ions which, in stationary, collisionless conditions, self-consistently sustain

an unsymmetrically distributed (skewed) electrostatic potential (cf. Fig. 1).

These distribution functions of both particle species are governed by the in-

tegral Poisson equation (cf. Eqs. (2.21b), (2.22b) and (2.24)). We determine

the distribution function of one particle species (either electron or ion, accord-
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ing to need), once the electric potential and the distribution function of the

other species are known. To do so we propose a new procedure which provides

the sought distribution function directly from the distribution function of the

other particle species, and from a suitable integral transform of the second

derivative of the potential (cf. Eqs. (5.4) and (5.5), without the calculation of

the pseudopotential used in the standard BGK approach. This procedure is

based on two inversion lemmas whose proof is also an important and novel

part of this report (cf. Section 3).

The main advantage of this procedure is the possibility to extend the solu-

tion of the integral Poisson equation thus found for any complex value of the

particle energy (cf. Eqs. (6.25) and (6.27)). We show that such extended distri-

butions are sectionally analytic functions of their argument, whose boundary

value precisely gives the real-valued BGK solution of Poisson’s equation (cf.

Eqs. (6.26) and (6.26)).
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Figure caption

(1) Left and bottom axes: the electrostatic potential Φ vs. coordinate X as

observed by WIND on February 2nd 1996 at 12:04:36.6 UT (.’s). Right

and top axes: the normalised potential φ vs. the normalised coordinate

x. H, h, Y, y are the potential jumps. The horizontal dash-dotted lines

Ue = 0 and Ui = 0 denote the reference zero values of the electron and ion

potential energies. The broad- and fine-hatched areas denote the position

and energy values of the negative energy electrons and ions respectively.

Also shown is the scheme for for the electron and ion distributions fe and

fi. Subscripts (1), (2) and (3) denote the domains where the potential is

a monotonic function of position.
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