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a b s t r a c t

The motion of a vortex ring generated by gradually varied flows through a thin-edged orifice has
been investigated experimentally using particle image velocimetry. This flow reproduces the primary
characteristics of many biological flows, such as cardiac flows through valves or jellyfish and squid
propulsion. Even though vortex ring formation has been extensively studied, there is still interest in
gradually varying inflows, i.e. the ones that are mostly found in previous conditions. The main purpose
of this paper is to extend the time scaling already proposed in the literature to the entire cycle of
vortex ring formation, pinch-off and free motion. To this end, eight inflow time laws have been tested,
with different acceleration and deceleration phases. They have been selected in relation to practical
applications by their resemblance to the main characteristics of cardiovascular and pulsed locomotion
flows. Analysis of measured velocity and vorticity fields suggested a general criterion to establish the
instant of vortex pinch-off directly from the imposed velocity program. This allows the proper scaling of
the entire time evolution of the vortex ring for all tested inflows. Since it is quite easy to identify this
instant experimentally, these results give a simple, practical rule for the computation of scales in vortex
ring formation and development in the case of gradual inflows. The ‘‘slug model’’ has been used to test
the proposed scaling and to obtain predictions for the vortex position, circulation and vorticity which are
in agreement with experimental data.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

The sudden onset of a jet in a fluid at rest generates a vortex
ring that begins to travel in the direction of the jet axis. Typically,
the vortex ring grows up to a limiting value and, if the flow
continues further, it detaches from the trailing jet which no
longer contributes to the increase of its circulation but rather
produces a vorticity layer in its wake. Understanding this type
of phenomenon is of fundamental importance for a wide range
of applications, such as intraventricular flows and the propulsion
of aquatic animals. The link between the characteristics of the
jet flow and the features of the resulting vortex ring has been
investigated extensively in the past [1,2]. Theoretical analysis and
modelling, such as those of Tung and Ting [3] and Saffman [4],
predicting the travel velocity of a viscous vortex ring, and the study
byPullin [5], using similarity theory to predict themainparameters
of vortex rings originated both by tubes and orifices have been
also carried out. On the basis of experimental observations [6],
Mohseni and Gharib [7] suggested an analytical model predicting
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a parameter limiting their growth, i.e. a limiting value for the
circulation around the vortex ring. Kaplanski andRudi [8] proposed
a model that also accounted for the viscosity, while Krueger [9]
included the pressure field by showing that this correction is
important only in the presence of sudden temporal variations.
Experimental investigations were initially based on visualisations
[10,11], revealing that the details of the forcing used to push
the flow through the orifice are important. With the advent of
digital imaging, many investigators began to use particle image
velocimetry (PIV) to measure velocity and vorticity fields [12–15].
In particular, Gharib et al. [6] determined the time of pinch-off
and introduced the idea of a limiting non-dimensional time in the
development of the vortex rings. Krueger and Gharib [16] used
PIV and hot film anemometry to explore the relation between the
velocity field originated by a starting jet and the resulting thrust.
Though it is well known that this phenomenon is affected by

the so-called velocity program, i.e. the variation of the flow rate
with time, most investigators have focused their work on the
development of vortex rings using very simple laws of motion:
namely, constant flow rate (‘‘impulsive program’’), flow rate
increasing in a linear way over time, or a combination of them
in a ‘‘trapezoidal program’’. Glezer [10] reported results from
different velocity programs and proposed a factor that should
account for all the variations of the flow rate in time. In particular,

0997-7546/$ – see front matter© 2010 Elsevier Masson SAS. All rights reserved.
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Fig. 1. Experimental set-up. Details of the orifice and piston are given in the inset.

this velocity program factor (defined as the normalised mean
square value of the forcing signal) allowed for the proper scaling of
vortex circulation for a wide range of velocity programs. Rosenfeld
et al. [17], in a numerical simulation, noticed that pinch-off can be
meaningfully delayed by using a constantly increasing flow rate.
Krueger and Gharib [16] observed experimentally that negative-
slope velocity programs determine earlier non-dimensional pinch-
off times than positive-slope ones. Recently, Shusser et al. [18]
discussed the effect of the time variation of the exit flow rate in
terms of impulsive, linear and trapezoidal velocity programs.
Despite the fact that such schematic programs are conceptually

easier to deal with, in nature there are cases in which the flow rate
increases gradually over time and then decreases again, without
any abrupt change in the slope of the curve, leading to very high
(indeed, potentially infinite) peaks in acceleration [19,20]. For
instance, this characteristic is typical of biological flows – such as
in jellyfish [21] and squid [22] locomotion – and cardiovascular
flows, such as the intraventricular flow through the mitral valve
[23,24]. In such flows, the exit velocity is characterised by non-
monotonic variations over time, which are expected to affect the
formation of the vortex ring in a non-trivial way. In any case,
there is no unequivocal event that triggers the end of that process,
such as a sudden stop of the flow rate or a sharp change in the
slope of the velocity program. In a recent paper, Danaila and
Helie [25], following Maxworthy [26], tested the time scaling of
vortex velocity and circulation at intermediate Reynolds numbers.
They considered the whole process of vortex formation, pinch-off
and free motion. However, it is important to note that, in this case
as well, the velocity program driving the flow was impulsive with
short acceleration and deceleration phases.
The purpose of this study is to reproduce the salient character-

istics of biological flows in a laboratory in order to expand knowl-
edge about vortex ring behaviours. To this end, the flow generated
by gradually varying velocity programs downstream of a thin-
edge orifice was investigated in the laboratory using PIV. The main
question we are going to address is whether there is any simple
rule which permits the reliable estimation of the scales describing
all the phases of the phenomenon, including inflow acceleration
and deceleration, for a large set of forcing signals. To answer this

question, the velocity and vorticity fields resulting from different
gradually varied velocity programs with different acceleration and
deceleration behaviours have been examined. A criterion for deter-
mination of pinch-off and proper time scaling of the phenomenon
is proposed by considering the instantwhen the inflow through the
orifice does not influence the behaviour of the vortex ring anymore.
The observed results are compared with predictions obtained us-
ing the so-called ‘‘slug model’’ [10,2]. In the next section, we will
briefly describe the methods and equipment we used, whereas in
Section 3 we will present the flow behaviour, model predictions,
proposed scaling and experimental results. Comments and conclu-
sions will be given at the end of the paper.

2. Materials and methods

The test section was designed to duplicate some of the
remarkable characteristics of the aforementioned biological flows.
In these conditions, the fluid flows from a relatively large chamber
through an orifice. As a consequence, the fluid accelerates suddenly
and does not develop a significant boundary layer at the walls. In
addition, streamlines rapidly contract at the exit section and a vena
contracta is found immediately after the orifice. In these ways, real
biological flows differ from those generated by means of pipes or
piston/cylinder arrangements widely used for the study of vortex
ring development.
A sketch of the experimental set-up is shown in Fig. 1. As a

result of the reciprocatingmotion of the piston, driven by the linear
motor, the water flowed into the working tank from the inlet to
the chamber (cubic, side-length: 40 cm), through a small chamber
(cubic, side-length: 20 cm). The investigated flowwas generated by
a thin-edgedorifice (the edgewasmade sharp all over the border as
sketched in the inset of Fig. 1), with diameter D0 = 3.0 cm, located
at the centre of an aluminium plate, and was allowed to develop
in a 60 cm long and 40 cm × 40 cm wide chamber. Finally, the
fluid flowed out from a large, circular, opening (20 cm in diameter)
made on a Plexiglas plate. The walls of the tank were made of 2 cm
thick Plexiglas. Both the water inlet and outlet were connected to
a constant-head reservoir through two one-way in and out valves.
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As a consequence, the water flowed though the orifice during the
forwardmotion of the piston and into the chamberwhen thepiston
was moving backwards. The linear motor driving the piston was
controlled by a PC so that the velocity program could be arbitrarily
assigned.
The vertical mid-plane of the wide chamber was illuminated

with a Nd-YAG laser, producing pairs of impulses, 50mJ each, with
a 3.5 ms interframe interval. The light sheet thickness was about
2 mm. The water was seeded with calibrated hollow glass non-
buoyant particles (10µm in diameter). A cross-correlation camera,
orthogonal to the light sheet, obtained pairs of 1376×1040×12 bit
images following a trigger signal synchronised with the motion
of the motor. The resulting maximum spatial resolution was 8 ×
103 m−1 (the entire investigated region was 12 cm large). More
than 20phases per cyclewere considered (therefore, the resolution
over time was about 25 s−1). Considering that the frequency of
oscillation of the piston was 1 Hz, these choices ensured good
resolutions for the description of the whole process of vortex
formation and subsequent evolution in space and time, which is
themain focus of this investigation. Fifty image pairs were taken at
each phase of the periodic motion of the piston; consequently, the
results presented in this paper are phase averaged over 50 samples.
Velocity fields were obtained using a PIV recursive cross-

correlation algorithm with window shift, deformation and
Gaussian sub-pixel approximation (LaVisionGmbH), using final in-
terrogation areas of 32 × 32 pixels, with 75% overlap (the vector
spacing equals 8 pixels, so the spatial resolution in the velocity field
is 1/8th of the maximum resolution, i.e. equal to about 103 m−1)
and the set of fields measured at the same phase was averaged.
The laser timing was controlled very precisely (about ±1µs), so
the relative error in the PIV velocity is dependent on the minimum
measurable distance (±0.1 pixel), and is around 1%.
The piston displacement was feedback controlled by computer,

so that if there were a difference between the input signal and
the real displacement larger than 0.2 mm the piston motion was
modified accordingly. Therefore, since the average piston stroke
length was 5 cm, the resulting error with regard to piston position
was around 0.4%.
Eight different piston programs, all with a time period of T =

1.0 s, but characterised by different acceleration and deceleration
phases, were tested (all ensuring continuity of functions and their
derivatives within each cycle and from one cycle to the next one).
The selection of these signalswas performed by considering awide
class of applications to biological flows (in particular cardiovascu-
lar flows, [27–30] and small aquatic animal locomotion, [31,16].
The time laws of the displacement of the piston, s(t), were
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i.e. power laws (s1, s2, s3), polynomial splines (s4, s5) and sinu-
soidal functions (s6, s7, s8), where the amplitudes A1,2,...,8 were re-
lated to the stroke volumes ejected through the orifice. Usually a

physiological value equal to 70 ml was used except for sinusoidal
signals s6 and s8, for which 50 ml and 90 ml were selected; see
Table 1. The quantity t0 represents, in terms of the entire period T ,
the time at which the maximum upward displacement is attained
for these signals, i.e. the time when the piston stops and starts to
move backward; t0 is equal to 0.3, 0.5, and 0.7 for programs s1, s2,
and s3, respectively. The coefficients α, β, . . . , ε were computed
by requiring zero values of the functions’ first two derivatives at
the origin, and at one intermediate point which for s4 and s5 were
respectively t/T = 0.3 and t/T = 0.5 when an equivalent (same
order with different coefficients) polynomial spline started the de-
scending part. The coefficients α, β, . . . , ε were also related to in-
verse power exponents – up to fifth order – of the time at which
the maximum upward displacement was attained with programs
s4 and s5. Each input signalwas given in the formof 200 data points.
The eight tested displacement and velocity programs are shown in
Fig. 2a, b. It should be noted that programs s1 and s4 were selected
because they have the typical features of the flow rate through the
cardiac valves (rapid acceleration and subsequent slower deceler-
ation). Programs s2, s3 and s5mimic the effects of time delaying the
maximumvalue, and this is relevant in aquatic locomotion applica-
tions. Velocity programs s6, s7 and s8 are sinusoidal functions with
different amplitudes which were selected to investigate the effect
of different stroke volumes on the evolution of the generated vor-
tex ring. Thus, the different velocity programs cover a rather wide
variety of continuously varying forcing.
Preliminary investigations ensured that before starting the

pistonmotion the velocity and vorticity levels upstream the orifice
were almost zero. The mean velocity measured at the orifice as
resulting from the eight programs is also plotted in Fig. 2c as
a function of time. The time interval between the investigated
phases was 50 ms. Comparing these curves with those imposed at
the piston, it can be noted that the essential features of the imposed
piston movement were recovered, except for a limited backflow,
which is also observed in cardiovascular applications.
The resulting Reynolds numbers, Re = UmaxD0/ν (Umax is the

peak velocity at the orifice and ν is the kinematic viscosity) range
from 5×103 to 1.5×104 depending on the specific program (sim-
ilar values are obtained by using the limiting value of circulation,
Γ , in Reynolds number computation, ReΓ = Γ /ν). The Strouhal
numbers, St = D0/TUmax, range from 0.06 to 0.19. These values are
typical of applications to small aquatic animal pulsed jet locomo-
tion and cardiac flows [27,28,16]. The specific values used for each
velocity program, together with the stroke volume and effective
stroke length, Lmax/D0, where Lmax is the stroke volume divided by
the orifice area, are listed in Table 1.

3. Results

3.1. Global flow behaviour

The four plots in Fig. 3 give an overview of the overall flow
development for velocity program s5. This specific program was
chosen since the behaviour looks qualitatively the same for all
sets of PIV measurements. The figure shows the velocity and
vorticity fields at four significant times during the piston cycle.
On the whole, the snapshots describe the formation (first two
plotted lines) and pinch-off (last plotted line) of the vortex ring.
The evolution of the phenomenon suggests that the modulation of
the flow rate at the orifice plays a fundamental role: for example,
the vortex ring formation takes place when the acceleration is
a maximum (at about 0.15 s; see also Fig. 2). In particular, it is
worth noting that the vorticity layer connecting the orifice to the
vortex ring becomes unstable as soon as the acceleration begins to
diminish, during the last phase of the accelerated ejection (third
plotted line). As a consequence it generates a series of small,
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a b

c

Fig. 2. Piston displacements (a) and velocities (b) for the tested programs (s1, s2, . . . , s8). Measured mean exit velocities at the orifice (c). The relative error on velocity
is 1%.

Table 1
Experimental conditions for the different tests.

Velocity program Stroke volume (ml) Effective stroke length Lmax/D0 Reynolds number Strouhal number

s1 70 2.57 1.2× 104 0.075
s2 70 3.25 8.9× 103 0.10
s3 70 3.16 7.9× 103 0.11
s4 70 3.73 1.5× 104 0.060
s5 70 4.78 1.2× 104 0.075
s6 50 2.16 4.8× 103 0.19
s7 70 3.42 7.4× 103 0.12
s8 90 4.58 1.0× 104 0.088

aligned vortices (indeed vortex rings) during the next stages of
the evolution. These structures do not seem to result from the
gradual amplification of small perturbations, but they are formed
just at the orifice edge. Nevertheless, this instability does not lead
immediately to pinch-off; rather, the small vortices roll up and
merge into the primary vortex ring (third plotted line). This is

apparent also in the fourth plotted line, depicting the flow after
the end of the accelerated ejection, immediately after the pinch-
off: two vortices (a and b) are still moving along a spiral orbit
around the primary vortex ring before they merge with it. Thus,
the overall message from this global behaviour is that pinch-off
takes place at about t ≈ 0.3 s, i.e. once the maximum velocity
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Fig. 3. Four snapshots of the velocity (arrows) and absolute value of the vorticity (contour lines) for the program s5. Contour lines of vorticity (made non-dimensional with
the piston period, T ) are plotted from 50 up to 300, with step 50. The letters a and b indicate two secondary vortices.

and vanishing acceleration are attained (compare to Fig. 2b,c for
velocity program s5).

3.2. Slug model predictions

In order to have a simplified approach to compare with
experimental data (especially in connection to the proposed
scaling, presented in the next section) and a test to verify the
relevance of viscous effects in the investigated phenomenon, the
impulse conservation based ‘‘slug model’’ has been used [5,10,
2,9,32]. This model has been already considered in other works
on vortex rings, among others by Didden [33], Glezer [10] and
Krueger [9]. However, in this case the model is applied over the
entire evolution of the vortex ring from generation to free motion
(i.e. during the piston accelerating phase, deceleration and rest).
In the slug model, the flow is thought to be driven by a virtual
piston of the same diameter as the orifice (sketched in the inset of
Fig. 1). Therefore, the volume of the ejected fluid, at a given time,
is computed as the product of the orifice area by the virtual piston
displacement, L(t) (Fig. 1), while s(t) is used to indicate the specific
piston program. The virtual displacement L(t), and the circulation
generated at the orifice, Γ (t), are related to the velocity of the
fluid at the orifice U0 (which, in principle, equals the velocity of
the piston except for the contraction ratio):

L (t) =
∫ t

0
U0
(
t ′
)
dt ′ (2)

Γ (t) =
1
2

∫ t

0
U20
(
t ′
)
dt ′. (3)

From dimensional arguments, the following relationships can be
derived between the vortex circulation, Γ , vorticity, ω(t), and
velocity, UV [4]:

Γ (t) ≈ UV (t)D (t) (4)

ω (t) ≈ UV (t)
D (t)
d2 (t)

(5)

where D(t) and d(t) indicate the vortex ring and vortex core
diameters, respectively. Moreover, the vortex position in time,
xV (t), is given by

xV (t) =
∫ t

0
UV
(
t ′
)
dt ′ ≈

∫ t

0

Γ
(
t ′
)

D (t ′)
dt ′. (6)

In previous equations, all quantities are assumed to change in time,
except D(t), which is considered as a constant equal to the orifice
diameter D0, as confirmed by experimental data.
From these equations, a prediction for the behaviour in time

of a vortex ring is derived. The velocity, U0(t), measured experi-
mentally is used in (2) and (3) to compute L(t) and Γ (t). Thus, by
assuming D(t) = D0, from (4) it is possible to derive UV (t), and
from (6) the travel distance of the vortex, xV (t) (notice that multi-
plicative constants are not given for UV (t) and xV (t) and a factor,
C1, equal to 1 will be used). Lastly, Eq. (5) yields the vorticity, ω(t),
once the behaviour of d(t) is known (for example from experimen-
tal data).
Before drawing predictions, the proper non-dimensional time

scales of the problem are discussed in detail in the next section.
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3.3. Scaling

The formation process has been observed to scale with the
orifice diameter, D0, and the running mean of the exit velocity
[33,10]:

u∗ (t) =
1
t

∫ t

0
U0
(
t ′
)
dt ′ (7a)

which is nothing less than L(t)/t . Choosing the orifice diameter,D0,
as length scale, a time scale can be defined:

t∗ (t) =
D0
u∗ (t)

=
D0
L (t)

t, (7b)

which is non-trivially dependent on time t (through L(t)). Thus,
the phenomenon can be described in terms of the non-dimensional
time t/t∗ (see, for example, [5]).
The previous scaling has been successfully applied to vortex

motion before pinch-off [33,10,6,34]. Applying the scaling given in
(7a) and (7b) after pinch-off as well, especially if the pinch-off time
is not well determined, would yield a velocity scale that continues
to change also when the vortex ring is completely formed and any
further change in U0(t) is not relevant anymore.
As the velocity scale of the vortex ring is based on the exit

velocity U0(t), one should only consider the time interval that
contributes to the formation of the ring. Therefore, in computing
the time scale, the integration of U0(t) should be stopped when
the exit flow no longer influences the vortex ring. There are
two main events that eventually stop this interaction: the first
is the end of the ejection phase, the second is the achievement
of a final evolution stage of the vortex ring, occurring at a
critical value of the non-dimensional time t/t∗, which is known
to depend on the shape of the program [6]. The occurrence of
either event determines when the integration of (7a) and (7b)
should stop. These criteria can be easily translated into practical
rules in the case of schematic velocity programs, but they are not
easy to apply for biological-like flows, since they vary gradually
and are characterised by positive and negative accelerations that
significantly affect the formation of vortex rings. As a consequence,
in these kinds of flow, the limiting time is not simply related to
general properties of the vortex rings, nor can it be related to the
end of the ejection phase. In fact, the event marking the definitive
disconnection between the vortex ring and the orifice jet, the
pinch-off, has been observed to occur between the time at which
the maximum ejection velocity is attained (dU0/dt = 0) and the
end of the ejection (U0 = 0) (as in the discussion of Fig. 3).
Analysis of the present experimental data suggests that, for

gradually varied flows, accelerated ejection is mostly relevant to
the formation of the vortex ring. Following this idea, we proposed
interrupting the integration of (7a) at a time, ta, slightly after the
positive acceleration phase ends. In practice, this corresponds to
the time when the quantity L(t)/t = u∗(t) is maximum, i.e. when

d
dt

(
1
t

∫ t

0
U0
(
t ′
)
dt ′
)
= 0,

or, correspondingly, when

U0 (ta) =
L (ta)
ta
= u∗ (ta) . (8)

The meaning of Eq. (8) is the following. While the average velocity
of the ejected fluid column, u∗, is smaller than the instantaneous
ejection velocity, U0, the vortex is still connected to the orifice by
a vorticity layer. Conversely, when u∗(t) > U0(t), the fluid ejected
from the orifice at velocity U0(t) is no longer able to feed the pre-
viously ejected fluid moving at velocity u∗(t). Thus, the time when

the two previous velocities are equal identifies the end of the in-
fluence of the orifice flow on the vortex ring and vortex pinch-off.
The time t = ta is univocally and easily determined by the spe-
cific velocity program. The use of non-dimensional time and ve-
locity scales based on this consideration allows the description of
the entire vortex dynamics (generation, pinch-off and subsequent
evolution). Therefore, in relation to (7a) and (7b), we can choose
the velocity and time scales as follows:

u∗ (t) =


1
t

∫ t

0
U0
(
t ′
)
dt ′ = u∗ (t) for t ≤ ta

1
ta

∫ ta

0
U0
(
t ′
)
dt ′ = u∗ (ta) for t > ta,

(9a)

t∗ (t) =


D0
u∗ (t)

=
D0
L (t)

t for t ≤ ta
D0
u∗ (ta)

=
D0
L (ta)

ta for t > ta,
(9b)

where the time ta is defined by Eq. (8).
It is worth noting that, in principle, the previous scaling is not

different from the one proposed by Didden [33], Glezer [10], and
Gharib et al. [6] and generalised by Dabiri and Gharib [34] to
account for time-varying velocity. However, the main question is
to find a reliable method for choosing the time when the influence
of the flow from the orifice ends and the integration of Eqs. (7a)
and (7b) should be interrupted. The proposed criterion, given by
Eq. (8), makes it possible to identify this precise instant in a simple
way for any velocity program and to unequivocally describe the
entire process of vortex generation, detachment and free motion.
The vortex position, circulation and peak vorticity can be non-

dimensionalised by using the previous velocity and time scales
(7a) and (7b) or (9a) and (9b). While the dimensional time t in-
creases continuously, the non-dimensional time t/t∗ could also
decrease (due to the reduction of L(t) during backflow) and the
non-dimensional time t/t∗ always increases monotonically (since
t∗ is a constant for t > ta). This must be considered when examin-
ing the results presented in the next sections.
From the slug model presented in the previous section, it is

possible to derive a simple prediction of the behaviour of non-
dimensional quantities by assuming an increasing power law for
U0(t) (using (7a) and (7b)) and by approximating D(t)with D0:

xV (t)
D0
≈

(
t
t∗

)2
Γ (t)
u∗ (t)D0

≈
UV (t)
u∗ (t)

≈

(
t
t∗

)
ω (t) t∗ (t) ≈

(
t
t∗

)
1
d2(t)

,

(10a)

where themultiplicative coefficients are dependent on the specific
power law used. Thus, initially the position of the vortex increases
as the square of the non-dimensional time, while the non-
dimensional circulation increases in a linear manner and the non-
dimensional peak vorticity as (t/t∗)−1, if d(t) is dependent in a
linear manner on t/t∗ (as reported in the following).
On the other hand, for a decreasing power law for U0(t) (using

(9a) and (9b)) and by determining the time ta by means of (8), the
following predictions are obtained:

xV (t)
D0
≈

(
t
t∗

)
Γ (t)
u∗ (t)D0

≈ const

ω (t) t∗ (t) ≈
1
d2 (t)

;

(10b)
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Fig. 4. Non-dimensional vortex position as a function of time for the eight tested
programs. Time t is made non-dimensional by t∗ in (a) and by t∗ in (b). The relative
error on position is 2%.

i.e. the vortex position increases linearlywith the non-dimensional
time t/t∗, whereas the circulation is almost constant. With d(t)
depending linearly on t/t∗ (as reported in the following), the
non-dimensional vorticity decreases with (t/t∗)−2. For velocity
programs, U0(t), that are more complicated than a simple
increasing or decreasing power law, predictions are still possible
(even if not always in analytic form). These predictions are plotted
together with experimental results in the next sections. In these
cases, differences between time scales using (7b) or (9b) are
pointed out and compared to the relations (10a) and (10b).

3.4. Vortex ring position and motion

The proposed scaling is verified through the analysis of the
experimental data describing the vortex ring motion. These data
are also compared with predictions based on the ‘‘slug model’’
(described in Sections 3.2 and 3.3). The vortex core position was
found from the positive and negative maxima of the vorticity
on the measuring plane; the downstream travel distance was
computed as the average of the two positions. In Fig. 4, the
position of the vortex ring was plotted as a function of time for
the eight tested piston programs: in Fig. 4a, the time is made non-
dimensional by means of the time scale t∗ (after integration of
Eqs. (7a) and (7b) over the whole time history), whereas the time
scale t∗, as defined in (9b), was used in Fig. 4b.
In Fig. 4a, the different curves diverge and behave in a non-

linear manner as t/t∗ exceeds about 1.5 already during the

accelerating phase. This corroborates the prediction of Eq. (10a)
in which a quadratic behaviour is expected (as above mentioned,
t/t∗ also decreases after this time). The observed divergence
between the results from different velocity programs also suggests
that the end of the influence of the orifice flow on the vortex
ring formation depends mainly on the shape of the velocity
program. Conversely, using the scaling proposed in Eq. (9b), Fig. 4b,
all data collapse on a line for the complete series of velocity
programs (a deviation around 10% is still present for t/t∗ >
5, presumably based on the uncertainty in the experimental
evaluation of ta), suggesting that time t∗ is the proper scale for
the whole phenomenon of vortex ring generation, pinch-off and
successive development. For t > ta, the behaviour is nearly linear,
as predicted by (10b).
It is interesting to compare the experimental results with the

specific predictions of the ‘‘slug model’’ (and not only in terms
of general trends as in Eqs. (10a) and (10b)). In Fig. 5a, the non-
dimensional vortex positions for different programs are plotted
as a function of the non-dimensional time t/t∗ together with
predictions obtained from relation (6) using (3), and assuming a
constant of proportionality equal to 1 (for the sake of clarity only
four programs out of eight are presented). The agreement between
the model and the data is quite good for all programs (especially
for s1 and s6) in both the accelerating phase and the decelerating
phase. In performing this comparison, it must be considered
that the slug model is a pure inviscid ‘‘ideal’’ model which
should not reproduce the experimental data exactly. Moreover,
the predictions of the slug model confirm that the time scale t∗
is a correct scaling parameter before pinch-off (the predictions
and experimental data are very close one to each other), while
it is not particularly suited for the subsequent phases. In Fig. 5b,
vortex positions are plotted as functions of non-dimensional time
t/t∗. In this case, the data corresponding to different programs
collapses quite well, and almost linear behaviour is observed after
the accelerating phase. This confirms that the time t∗ allows for
the proper scaling of the data and that the model predictions
accurately reproduce the behaviour of experimental data, even if
the slopes are different. This difference in slope depends on the fact
that the no multiplicative constant, C1, is present in relation (6),
so that it is assumed that C1 = 1. To account for the differences
between the present data and model predictions reported in
Fig. 5b, it seems that in (6) C1 ∼ 2.2, almost independently of the
specific program. We stress again that the time when the exit flow
no longer influences the vortex ring (which is the point where the
curves end the quadratic growth and continues as a straight line)
is just t = ta (determined from (8)).
From the above data on vortex positions, the vortex travel

velocity, Uv , has been computed by central differences. It should
be expected that the non-linear quadratic phase should give a
linear increase of the velocity and that the linear increase of the
position after ‘‘pinch-off’’ should result in a constant travel velocity.
In Fig. 6, the vortex travel velocity made non-dimensional by the
velocity scale u∗(t) (Eq. (9a)) is presented for the different velocity
programs. The results follow quite closely with what was expected
from previous data on vortex position in time (as the position
is increasing linearly for 3 < t/t∗ < 7, accordingly the travel
velocity is about constant) with differences within 20%. For t/t∗ >
5, the velocity tends to decrease, which is consistent with the
free motion of the vortex ring after pinch-off taking into account
viscous effects [2]. As for the vortex position in time, even for
the velocity, the proposed scaling allows a collapse of data of the
different velocity programs on a single curve describing a universal
evolution of the phenomenon. Notice that Eq. (4) indicates that
the behaviour of the vortex velocity is exactly the same as that of
vortex circulation, except for the (nearly constant) quantityD(t) =
D0 and for a multiplicative constant. Thus, in the next section, slug
model predictions will be compared with measurements of vortex
circulation (which does not depend on arbitrary multiplicative
constants in relation (3)).
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3.5. Vortex circulation, radius and vorticity

In order to compute the properties of the resulting vortex
ring, its cross-sectional area on the measurement plane has to
be identified. To this end, the discriminant, ∆, of the 2D strain-
rate tensor has been computed over the measurement plane [35].
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Fig. 7. Non-dimensional vortex circulation as a function of non-dimensional time
for the eight piston programs. Comparisons between model predictions (red lines)
and experimental data (black lines). Symbols as in Fig. 5. The relative error on
circulation is 3%. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Negative values of ∆ indicate the presence of a vortex. Then,
the cross-sections are taken as the areas, around the maximum
and minimum of the vorticity, where ∆ < 0.1∆min, with ∆min
indicating theminimumof the discriminant on themeasured field.
Once the vortex has been identified, its main features can be

derived. Fig. 7 shows the non-dimensional vortex circulation, Γv ,
as a function of the non-dimensional time. The circulation, Γv ,
was obtained by integrating the vorticity over the vortex area,
and made dimensionless using the scale u∗(t)D0. In every tested
case, the circulation, after an initial increase, reached a plateaux
ranging from 1.5 to 3, depending on the specific velocity program.
The initial increase ended at t/t∗ roughly equal to 4, i.e. when the
vortex ring reached its maximum velocity (as above stated the
two quantities are closely related). This behaviour is in agreement
with the model prediction of Eq. (10a) during accelerated ejection
(in this phase the time scale t∗ is equivalent to t∗). After
that instant, which roughly corresponds to the ‘‘pinch-off’’, the
circulation remained nearly constant, in agreement with the
Kelvin theorem (at this time the proposed time and velocity
scales are simply constant), with predictions from (10b) and
with findings from other authors (obtained also for impulsive
or rapidly changing forcing) [7,6]. The measured and predicted
time for reaching the limiting constant value of the circulation
is t/t∗ between 3 and 4 which closely agrees with the so-called
‘‘formation time’’ proposed by Gharib et al. [6].
The limiting constant values predicted by the slug model are

in close agreement with experimental data. This means that the
limiting value of circulation of the vortex ring generated by a given
velocity program can be predicted using a very simple model. This
fact has important consequences for the modelling of flow fields
which can be assimilated to pulsed jets through orifices.
The peak vorticity is related to circulation by Eqs. (4) and (5) and

measurements can be compared with model predictions, once the
vortex core diameter, d(t), is known. In Fig. 8, the latter is plotted
(non-dimensionalised by the orifice diameter) for the eight piston
programs. After a short transitional phase, the diameter increases
in a linear manner as t/t∗ for all velocity programs.
The values of d(t) were used in Eq. (5) to provide a prediction

of the non-dimensional peak vorticity shown together with exper-
imental data in Fig. 9 (as in the previous Figs. 7 and 8, the vortic-
ity and time are made non-dimensional by using scales computed
slightly after the end of the accelerated ejection). The peak vorticity
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Fig. 8. Non-dimensional vortex diameter as a function of time for the eight piston
programs. The relative error on diameter is 2%.
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Fig. 9. Non-dimensional peak vorticity as a function of non-dimensional time
for the eight tested piston programs. Comparisons between model predictions
(red lines) and experimental data (black lines). Symbols as in Fig. 5. The relative
error on vorticity is 7%. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

is measured by taking the maximum vorticity value in the vortex
cross-sectional area. As mentioned in Section 3.3, from Eq. (10a) it
is possible to state that the peak vorticity should decrease as the
inverse of the non-dimensional time for t ≤ ta and as (t/t∗)−2 for
larger non-dimensional times. The results plotted in Fig. 9, confirm
this prediction: the peak vorticity, ω, at the centre of the vortices
tends to decrease after the steep initial growth. The collapse of the
data on a common behaviour is not as good as for the vortex po-
sition (Figs. 4 and 5) and circulation (Fig. 7). In this case, the ver-
tical dispersion of the data is mainly due to the differentiation of
experimental data. Nevertheless, the different velocity programs
give similar temporal trends, confirming that the time t∗ scales the
phenomenonproperly. The slugmodel also rather successfully pre-
dicts the experimental values of peak vorticity during the deceler-
ation of ejection velocity (thus indicating that the multiplicative
constant in relation (5) is nearly equal to 1).

4. Discussion and conclusions

A criterion for evaluating the time scaling of vortex rings in the
case of gradually varying flows has been proposed. It is based on
the experimental observation of eight different velocity programs,
generating vortex rings through a thin-edged orifice. The velocity
programs were selected in relation to applications concerning
cardiac flows and pulsed locomotion of aquatic animals.
Indeed, the case of gradual variation of orifice flows is at the

same time representative of a wide range of biological flows, such

as intraventricular flows, jet propulsion of squids and jellyfishes,
amongst others, and is challenging since the flow modulation
results in accelerations and decelerations of the exit flow that
influence the formation process.
On the basis of the present experiments, a criterion has been

proposed in order to compute the time when the vortex ring is
no longer influenced by the orifice flow. This has been observed to
happenwhen the average velocity of the fluid column ejected from
the orifice exceeds the instantaneous velocity at the orifice. This
condition is reached when the average ejection velocity attains
a maximum. That time is determined univocally from the given
velocity program and is observed to take place slightly after the
end of the accelerated ejection.
In other words, while the instant of pinch-off does not have

a unique definition (because it is dependent on the iso-vorticity
line considered) and it is difficult to determine experimentally
(since time and space resolved velocitymeasurements are required
in addition to the high sensitivity to measurement noise), the
proposed criterion is easily and univocally determined from the
velocity program itself. The proposed criterion accounts not only
for scaling during vortex formation, but also during pinch-off and
further vortex motion.
The analysis of motion, and of other important characteristics

of vortex rings, confirms that time, t∗, is a proper scale for the
phenomenon also in the quite complicated case of the gradual
variation of piston velocity. At the same time, it is useful to easily
estimate the instant when the influence of the orifice flow on the
vortex ring comes to an end. This result is applicable to anyphysical
system which generates vortices recursively.
The experimental results and the proposed scaling were

discussed also with the help of the so-called ‘‘slug model’’, which
only implies the knowledge of the velocity program under the
assumption of total impulse conservation, making it possible to
derive predictions for the vortex position, circulation and peak
vorticity in time. These predictions (which also have analytical
forms in the case of velocity programs expressed in terms of
simple power laws) are in close agreementwith experimental data,
thus suggesting that the total impulse is more or less conserved
and viscous effects are negligible even during accelerated ejection
phases.
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